
ar
X

iv
:1

00
4.

48
22

v1
  [

q-
fi

n.
PR

] 
 2

7 
A

pr
 2

01
0

Modelling Information Flows in

Financial Markets

Dorje C. Brody1, Lane P. Hughston1 & Andrea Macrina2,3

1 Department of Mathematics, Imperial College London, London SW7 2AZ
2 Department of Mathematics, King’s College London, London WC2R 2LS
3 Institute of Economic Research, Kyoto University, Kyoto 606-8501, Japan

Abstract

This paper presents an overview of information-based asset pricing.
In the information-based approach, an asset is defined by its cash-flow
structure. The market is assumed to have access to “partial” infor-
mation about future cash flows. Each cash flow is determined by a
collection of independent market factors called X-factors. The mar-
ket filtration is generated by a set of information processes, each of
which carries information about one of the X-factors, and eventually
reveals the X-factor in a way that ensures that the associated cash
flows have the correct measureability properties. In the models con-
sidered each information process has two terms, one of which contains
a “signal” about the associated X-factor, and the other of which rep-
resents “market noise”. The existence of an established pricing kernel,
adapted to the market filtration, is assumed. The price of an asset
is given by the expectation of the discounted cash flows in the asso-
ciated risk-neutral measure, conditional on the information provided
by the market. When the market noise is modelled by a Brownian
bridge one is able to construct explicit formulae for asset prices, as well
as semi-analytic expressions for the prices and greeks of options and
derivatives. In particular, option price data can be used to determine
the information flow-rate parameters implicit in the definitions of the
information processes. One consequence of the modelling framework
is a specific scheme of stochastic volatility and correlation processes.
Instead of imposing a volatility and correlation model upon the dy-
namics of a set of assets, one is able to deduce the dynamics of the
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volatilities and correlations of the asset price movements from more
primitive assumptions involving the associated cash flows. The paper
concludes with an examination of situations involving asymmetric in-
formation. We present a simple model for informed traders and show
how this can be used as a basis for so-called statistical arbitrage. Fi-
nally, we consider the problem of price formation in a heterogeneous
market with multiple agents.

1 Cash flow structures and market factors

In financial markets, the revelation of information is the most important fac-
tor in the determination of the price movements of financial assets. When
a new piece of information (whether true, partly true, misleading, or bogus)
circulates in a financial market, the prices of related assets move in response,
and they move again when the information is updated. But how do we build
specific models that incorporate the impact of information on asset prices?
In this article we present an overview of some of the key issues involved in
modelling the flow of information in financial markets, and develop in some
detail some elementary models for “information” in various situations. We
show how information flow processes, when appropriately modelled, can be
used to determine the associated price processes of financial assets. Ap-
plications to the pricing of various types of contingent claims will also be
indicated. One of the contributions of the present work is to introduce a
model for dynamic correlation in the situation where we consider a portfolio
of assets. Rather than imposing an artificial correlation structure on the as-
sets under consideration, we are able to infer the correlation structure from
more basic assumptions. In the final section of the paper, we make some
remarks about statistical arbitrage strategies, and about price formation in
markets characterised by inhomogeneous information flows.

When models are constructed for the pricing and risk management of
complicated financial products, the price dynamics of the simpler financial
assets, upon which the more complicated products are based, are often simply
“assumed” (modulo some parametric or functional freedom). One can un-
derstand from a practical angle why it can be expeditious to proceed on that
basis. Nevertheless, from a fundamental view we have to consider that even
the basic financial assets (shares, bonds, etc) are characterised by a number
of potentially “complex” features, and so to make sense of the behaviour of
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such assets we need to consider what goes into the determination of their
prices. To build up models for the dynamics of asset prices, it seems logical
to proceed step by step along the following lines: (1) model the cash-flows
arising from the asset as random variables; (2) model the market filtration
(the flow of information to the market); (3) model the pricing kernel (which
takes into account discounting, risk aversion, and the absence of arbitrage);
and (4) work out the resulting dynamics for the price process.

We model the unfolding of chance in a financial market with the specifi-
cation of a probability space (Ω,F ,P) on which we are going to construct a
filtration {Ft} representing the flow of information to market participants.
Here P denotes the “physical” probability measure. The markets we con-
sider will, in general, be incomplete. That is to say, although derivatives can
be priced we do not assume that they can be hedged. Since we are going
to model the filtration we say that we are working in an information-based
asset pricing framework. The general approach that we describe here is that
of Brody, Hughston & Macrina [1–3].

Consider a financial instrument that delivers to its owner a set of random
cash flows {DTk

}k=1,...,n on the dates {Tk}k=1,...,n. For simplicity, we assume
that these dates are fixed, and finite in number. The extension to random
dates and to an infinite number of dates is straightforward. Let the pricing
kernel be denoted {πt}. At time t the value St of a contract that generates
the cash flows {DTk

}k=1,...,n is given by the following valuation formula:

St =
1

πt

n
∑

k=1

1{t<Tk}E
P [πTk

DTk
|Ft] . (1.1)

Thus, at time t, for each cash flow that has not yet occurred we take its
discounted risk-adjusted conditional expectation, and then we form the sum
of such expressions to give the total value of the asset.

Sometimes it is maintained that to regard share prices as being entirely
determined by expected dividends is incorrect—that other factors come into
play as well, such as the value implicit in corporate control, the value of
the status of being a shareholder, and so on. In our view such “implicit”
dividends, to the extent that they are relevant, and can be assigned a value,
have to be modelled, and thus enter the valuation formula alongside the
tangible cash flows. Sometimes it is argued that market sentiment is also
important: indeed, it clearly is; but our view is that sentiment is implicit
in the imperfect information the market is receiving concerning future cash
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flows; that sentiment about a future share price is, in essence, information
concerning cash flows (both tangible and intangible) extending beyond the
date or dates to which the sentiment refers.

In order to apply the valuation formula we need to model the market
filtration {Ft}, as well as the pricing kernel {πt}. In particular, it is logical
to model the filtration first since the pricing kernel has to be adapted to the
filtration. To model the filtration we proceed as follows. Let us introduce
a set of independent random variables {XTk

}k=1,...,n, which we call market

factors or simply “X-factors”. For each k, the cash flow DTk
is assumed to

depend on the market factors XT1
, XT2

, · · · , XTk
. Thus, in association with

each date Tk we introduce a so-called “cash-flow function” ∆Tk
such that

DTk
= ∆Tk

(XT1
, XT2

, · · · , XTk
). (1.2)

For each asset, we need to model the X-factors, the a priori probabilities,
and the cash-flow functions. In general, the X-factor associated with a given
date will be a vectorial quantity. The cash-flow diagram associated with a
typical asset is illustrated schematically in Figure 1.

-

t0 T 1 T 2 . . . T n

{XT1
} {XT1

, XT2
} . . . {XT1

, · · · , XTn
}

6

DT1

6

DT2

6

DTn

Figure 1: The value St at time t of a security that delivers the random cash flows
DT1

,DT2
, · · · , at times T1, T2, · · · , is determined by the valuation formula (1.1).

The cash flow DT1
is determined by a set of one or more independent X-factors

{XT1
}. Then DT2

is determined by {XT1
,XT2

}, where XT2
represents a further

set of independent X-factors, and so on.
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2 X-factor analysis

Let us look at some elementary examples of cash-flow models based on X-
factors. The first example we consider is a simple credit-risky bond, with
two remaining coupons to be paid and no recovery on default. Then we have
the following cash-flow structure:

DT1
= cXT1

, (2.1)

DT2
= (c+ n)XT1

XT2
. (2.2)

Here c and n denote the coupon and principal, respectively; and XT1
and

XT2
are independent digital random variables taking the values 0 or 1 with

designated a priori probabilities. Evidently, if the first coupon is not paid,
then neither will the second. On the other hand, even if XT1

takes the value
unity, and the first coupon is paid, the second coupon and the principal will
not be paid unless XT2

also takes the value unity.
The second example is a simple model for a credit-risky coupon bond

with recovery. In this case the cash-flow functions are given as follows:

DT1
= cXT1

+R1(c+ n)(1−XT1
), (2.3)

DT2
= (c+ n)XT1

XT2
+R2(c+ n)XT1

(1−XT2
). (2.4)

Here R1 and R2 denote recovery rates. Thus if default occurs at the first
coupon, then both the coupon and principal become immediately due, and a
fixed fraction R1 of c+n is paid. But if default occurs at the second coupon
date then the recovery rate is R2. We observe that the X-factor method
allows for a rather transparent representation of the cash-flow structure of
such a security, and isolates the variables that underlie the various cash flows.

3 Information processes

We assume that with reference to each market factor market participants
will have access to information, which in general is imperfect. We model the
imperfect information available to market participants concerning a typical
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market factor XT with the introduction of a so-called “information process”
{ξtT}0≤t≤T . An information process is required to have the property

ξTT = f(XT ) (3.1)

for some invertible function f(x). This condition ensures that the information
process “reveals” the value of the associated market factor XT at time T . At
earlier times, the value of ξtT contains “partial information” about the value
of the X-factor. We shall come to some explicit examples of information
processes shortly.

We are now in a position to say how we model the market filtration. In
particular, we shall assume that {Ft} is generated collectively by the various
market information processes {ξtTk

}k=1,...,n. In other words, the information
at time t is given by the following sigma-algebra:

Ft = σ
[

{

ξsTk

}

0≤s≤t, k=1,...,n

]

. (3.2)

We thus have the following sequence of ideas: market participants are
concerned with cash flows; cash flows are dependant on a set of independent
market factors; market participants have partial access to the market factors;
and this imperfect information generates the market filtration.

We are left with the problem of taking the conditional expectation of the
risk-adjusted discounted cash flows to generate price processes; for this pur-
pose we have to model the pricing kernel. We assume that the pricing kernel
is adapted to the market filtration. Thus from knowledge of the history of
the information processes from time 0 up to time t one can work out the
value of the pricing kernel at t (see, e.g., [8]). In a typical model the pricing
kernel is given by the discounted marginal utility of consumption of a repre-
sentative agent. It is reasonable to suppose that the consumption plan of the
agent is adapted to the information filtration. The idea is that the filtration
represents the flow of information available at each time t about the relevant
market factors, and that the consumption of the agent is determined by this
information. In other words, the agent behaves “rationally”, always acting
optimally on the available information, in accordance with appropriate crite-
ria. There may be an idiosyncratic element to any given agent’s consumption
plan that is not adapted to the market filtration, and is essentially private.
But the representative agent has no idiosyncratic consumption.
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4 Brownian-bridge information

For the construction of explicit models it is useful to transform to the risk-
neutral measure Q. This can be achieved by use of the pricing kernel, which
we regard as specified. Thus for the present we confine the discussion to “mi-
croeconomic” issues: we take no notice of the informational notions implicit
in the formulation of the pricing kernel, and make the additional simplify-
ing assumption in what follows that the default-free interest-rate system is
deterministic. Then the valuation formula takes the following form:

St =
n
∑

k=1

1{t<Tk}PtTk
EQ [DTk

|Ft] . (4.1)

Absence of arbitrage implies that the discount bond system {PtT}0≤t≤T<∞ is
of the form PtT = P0T/P0t, where {P0t}0≤t<∞ is the initial term structure.

With these assumptions in place, we are in a position to specify a model
for the information flow. For each X-factor XT we take the associated infor-
mation process to be of the form

ξtT = σtXT + βtT . (4.2)

Here {βtT} is a Q-Brownian bridge over the interval [0, T ], satisfying β0T = 0,
βTT = 0, E[βtT ] = 0, and E [βsTβtT ] = s(T − t)/T . The X-factor and
the Brownian bridge are assumed to be Q-independent. Thus the Brownian
bridge represents “market noise” and only the “market signal” term involving
the X-factor contains true market information. The parameter σ can be
interpreted as the “information flow rate” for the factor XT .

In the situation where we have a multiplicity of factorsXTk
(k = 1, . . . , n),

the information processes are taken to be of the form

ξtTk
= σktXTk

+ βtTk
, (4.3)

where we assume that the X-factors and Brownian bridges are independent.
The motivation for the use of a bridge to represent noise is intuitively as

follows. We assume that initially all available market information is taken
into account in the determination of prices, or, equivalently, the a priori

probability laws for the market factors. After the passage of time, new stories
circulate, and we model this by taking into account that the variance of the
Brownian bridge increases for the first half of its trajectory. Eventually,
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the variance falls to zero at T , when the “moment of truth” arrives. The
parameter σ represents the rate at which the true value of XT is “revealed”
as time progresses. Thus, if σ is low, then XT is effectively hidden until near
the time T ; on the other hand, if σ is high, then we can think of XT as being
revealed quickly. If the X-factor is “dimensionless”, then σ has the units

σ ∼ [time]−1/2, (4.4)

and a rough measure for the timescale τ over which information is revealed
is

τ =
1

σ2Var[XT ]
. (4.5)

In particular, if τ ≪ T , then the value of XT will be revealed rather early,
e.g., after the passage of a few multiples of τ . On the other hand, if τ ≫ T ,
then XT will only be revealed at the last minute, as a “surprise”.

We remark that the information process (4.2) has the Markov property.
This feature implies simplifications in the resulting models. In particular, on
account of the relation (3.1) we find that the conditioning with respect to Ft

in (4.1) can be replaced by conditioning with respect to the random variables
ξtTk

(k = 1, . . .). For a proof of the Markov property, see [1, 9].

5 Assets paying a single dividend

Consider an asset that pays single dividend DT ≥ 0 at time T , and assume
that there is only one market factor XT , so DT = f(XT ). For the moment,
let us assume further that f(x) = x. Thus, we have DT = XT , where the
market factor XT is a continuous nonnegative random variable with a priori

Q-density p(x) for x > 0. It follows by use of the Markov property of {ξtT}
that the price of such an asset can be written in the form

St = PtTE [DT |ξtT ]

= PtT

∫ ∞

0

x pt(x) dx, (5.1)

where pt(x) is the conditional density of XT . Making use of the the Bayes
formula one can show that pt(x) is given more explicitly by

pt(x) =
p(x) exp

[

T
T−t

(σxξtT − 1
2
σ2x2t)

]

∫∞
0
p(x) exp

[

T
T−t

(σxξtT − 1
2
σ2x2t)

]

dx
. (5.2)
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Thus at each time t < T the price of the asset is determined by the random
value of the information ξtT available at that time, and is given by

St = PtT

∫∞
0
xp(x) exp

[

T
T−t

(σxξtT − 1
2
σ2x2t)

]

dx
∫∞
0
p(x) exp

[

T
T−t

(σxξtT − 1
2
σ2x2t)

]

dx
(5.3)

The dynamics of the price process can then be obtained by an application of
Ito’s lemma, with the following result:

dSt = rtStdt+ PtT
σT

T − t
Vart [XT ] dWt. (5.4)

Here

Vart [XT ] =

∫ ∞

0

x2pt(x)dx−
(
∫ ∞

0

xpt(x)dx

)2

(5.5)

denotes the conditional variance of XT , which by (5.2) is evidently given as a
function of t and ξtT . The {Ft}-adapted process {Wt} driving the dynamics
of the asset in (5.4) above is not given exogenously, but rather is defined in
terms of the information process itself for t < T by the following formula:

Wt = ξtT −
∫ t

0

1

T − s
(σTEs [XT ]− ξsT ) ds. (5.6)

Indeed, one can verify, by use of the Lévy criterion, that the process {Wt},
as thus defined, is an {Ft}-Brownian motion. Hence we see that in an
information-based approach we can derive the Brownian motions that drive
the markets: they are not “inputs” to the model, but rather can be seen as
arising as a “consequence” of the model.

6 Geometric Brownian motion model

A simple application of the X-factor technique arises in the case of geomet-
ric Brownian motion models. We consider a limited-liability company that
makes a single cash distribution ST at time T . Alternatively, think of a
portfolio containing a single stock which will be sold off at time T for ST ,
with the proceeds of the sale going to the investor. We assume that ST has
a log-normal distribution under Q, and can be written in the form

ST = S0 exp
(

rT + ν
√
TXT − 1

2
ν2T

)

, (6.1)
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where the market factor XT is normally distributed with mean zero and
variance one, and where r > 0 and ν > 0 are constants. The information
process {ξt} is taken to be of the form (4.2), where in the present example
the information flow rate is given by

σ =
1√
T
. (6.2)

By use of the Bayes formula we find that the conditional probability density
is Gaussian,

pt(x) =

√

T

2π(T − t)
exp

(

− 1

2(T − t)

(√
Tx− ξtT

)2
)

, (6.3)

and has the following dynamics:

dpt(x) =
1

T − t

(√
Tx− ξtT

)

pt(x)dξtT . (6.4)

A short calculation then shows that the value of the asset in this example is
given at time t < T by

St = e−r(T−t)Et[ST ]

= e−r(T−t)

∫ ∞

−∞
S0e

rT+ν
√
Tx− 1

2
ν2Tpt(x)dx

= S0 exp
(

rt+ νξtT − 1
2
ν2t
)

. (6.5)

The surprising fact is that {ξtT} itself turns out to be an {Ft}-Brownian
motion. Hence, writing Wt = ξtT for 0 ≤ t ≤ T we obtain the standard
geometric Brownian motion model:

St = S0 exp
(

rt+ νWt − 1
2
ν2t
)

. (6.6)

We see that starting with an information-based argument we are able to
recover the familiar asset price dynamics given by (6.6). An important point
to note is that the Brownian bridge process {βtT} arises naturally in this
context. In fact, if we start with (6.6) then we can make use of the following
well-known orthogonal decomposition:

Wt =
t

T
WT +

(

Wt −
t

T
WT

)

. (6.7)
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The second term on the right, which is independent of the first term on the
right, is a standard representation for a Brownian bridge process:

βtT = Wt −
t

T
WT . (6.8)

Then by setting XT = WT/
√
T and σ = 1/

√
T we find that the right side of

(6.7) is indeed the market information. In other words, when it is formulated
in an information-based framework, the standard Black-Scholes-Merton the-
ory can be expressed in terms of a normally distributed X-factor and an
independent Brownian-bridge noise process.

7 Pricing contingent claims

The information-based price (5.3) of a single-dividend paying asset at first
glance appears to be given by a rather complicated expression, suggesting
perhaps that it would be impractical for use as a model for the pricing and
hedging of contingent claims. However, there is a remarkable simplification
involving a change of measure that allows one both to price and to hedge
vanilla options. This can be seen as follows. Let us consider a European-style
call option on the asset, with option maturity t and strike K. The value of
the option at time 0 is given by

C0 = P0tE
Q
[

(St −K)+
]

. (7.1)

Let us define a process {Φt} by the expression appearing in the denominator
of (5.3), so

Φt =

∫ ∞

0

p(x) exp

[

T

T − t
(σxξtT − 1

2
σ2x2t)

]

dx. (7.2)

Then it can be shown that {Φ−1
t } is a positive Q-martingale, which can be

used to change the probability measure from Q to a new measure B. Under
the measure B, which we call the “bridge measure”, the information process
itself is a Brownian bridge. More precisely, under B the process {ξsT}0≤s≤t

has the law of a Brownian bridge spanning the interval [0, T ], restricted to
[0, t]. That is to say, {ξsT}0≤s≤t is B-Gaussian with mean zero and covariance
cov[ξaT , ξbT ] = a(T − b)/T for 0 ≤ a ≤ b ≤ t. The initial value of the option
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is thus given by

C0 = P0tE
B

[(

PtT

∫ ∞

0

xp(x)e
T

T−t
(σxξtT− 1

2
σ2x2t)dx

−K
∫ ∞

0

p(x)e
T

T−t
(σxξtT− 1

2
σ2x2t)dx

)+
]

. (7.3)

It can be shown that the asset price is a monotonically increasing function
of the value of ξtT . It follows that there is a unique critical level ξ∗ for
the information such that the expression inside the max-function in (7.3) is
positive. It follows that the option price can be written in terms of a single
integration involving the normal distribution function:

C0 = P0t

∫ ∞

0

p(x) (PtTx−K)N

(

ξ∗ − σxt
√

t(T − t)/T

)

dx. (7.4)

As another example we consider the following. Suppose that the single
cash flow DT is a binary random variable taking the values {d0, d1} with a

priori probabilities {p0, p1}. The asset in this case can be thought of as a
simple credit-risky discount bond that pays d1 if there is no default, and d0
if there is a default. A short calculation allows one to verify that

C0 = P0t

[

p1(PtTd1 −K)N(u+)− p0(K − PtTd0)N(u−)
]

, (7.5)

where u+ and u− are defined by

u± =
ln
[

p1(PtT d1−K)
p0(K−PtT d0)

]

± 1
2
σ2(d1 − d0)

2τ

σ
√
τ (d1 − d0)

, (7.6)

with τ = tT/(T−1). It can be shown that the option delta at time 0, defined
as usual by

δ0 =
∂C0

∂S0
, (7.7)

can be calculated explicitly, with the following result:

δ0 =
(PtTd1 −K)N(u+) + (K − PtTd0)N(u−)

PtT (d1 − d0)
. (7.8)

We see, therefore, that the apparent complexity of (5.3) does not lead to any
intractability when it comes to derivatives pricing and hedging.
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8 Volatility and correlation

In the case of an asset that pays multiple dividends, the price is determined
by the conditional expectation given in equation (4.1). In terms of the cash-
flow functions defined by (1.2) we thus obtain the following for the dynamics
of the asset price:

dSt = rt St dt+
n
∑

k=1

∆Tk
d1{t<Tk}

+

n
∑

k=1

1{t<Tk} PtTk

k
∑

j=1

σjTj

Tj − t
Covt

[

∆Tk
, XTj

]

dW j
t . (8.1)

The leading term in the drift is the short rate, as one might expect, and
there is also a term representing the downward jump in the asset that occurs
when a dividend is paid. The independent {Ft}-adapted Brownian motions
{W j

t } driving the price dynamics are given in terms of the corresponding
information processes by

W j
t = ξtTj

−
∫ t

0

1

Tj − s

(

σj Tj Es

[

XTj

]

− ξsTj

)

ds. (8.2)

We see that if an asset delivers one or more cash flows depending on two or
more market factors, then it will exhibit “unhedgeable” stochastic volatility
[2, 7]. That is to say, one would not expect to be able to hedge a position
in an option by use of a position in the underlying. In general, if the asset
cash flows depend on n X-factors in total, then to hedge a generic derivative
based on the given asset one will need the underlying together with n − 1
options as hedging instruments, i.e. n hedging instruments in total. One
can read from (8.1) the generic form of the stochastic volatility implied for
a given configuration of X-factors and cash-flow functions.

It follows likewise from (8.1) that two or more assets will exhibit dynamic
correlation when they share one or more X-factors in common. As a specific
example of dynamic correlation let us consider a pair of credit-risky discount
bonds. The first bond is defined by a cash flow DT1

at T1. The second is
defined by a cash flow DT2

at T2 > T1. The cash flow structure is taken to
be:

DT1
= n1XT1

+R1n1(1−XT1
), (8.3)
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and

DT2
= n2XT1

XT2
+Ra

2n2(1−XT1
)XT2

+Rb
2n2XT1

(1−XT2
) +Rc

2n2(1−XT1
)(1−XT2

). (8.4)

Here, n1 and n2 denote the bond principals, andXT1
andXT2

are independent
digital random variables. The possible recovery rates in the case of default
are denoted by R1, R

a
2, R

b
2, and R

c
2. One can have in mind the following story.

Consider a factory with debt S1
t . Across the street is a little restaurant with

debt S2
t . If the factory goes bust (XT1

= 0) then so will the restaurant,
because this is where the workers have their lunch. On the other hand, even
if the factory is successful (XT1

= 1), the restaurant may still go bust on
account of bad management (XT2

= 0). The recovery rates on the restaurant
bond depend on the details of what goes wrong: Ra

2 (restaurant fails because
factory fails); Rb

2 (restaurant fails on account of bad management); Rc
2 (fac-

tory fails, and bad restaurant management). One might expect Rb
2 > Ra

2,
since as long as the factory continues, the restaurant facilities could be sold
at a good price. The worst scenario is that of Rc

2. For the dynamics of the
first bond (the “factory”), for which the price is

S1
t = PtT1

Et [DT1
] , (t < T1), (8.5)

we have:

dS1
t = rtS

1
t dt+ PtT1

σ1T1
T1 − t

αVart [XT1
] dW 1

t , (8.6)

where α = n1(1 − R1). For the dynamics of the second bond (the “restau-
rant”), for which the price is

S2
t = PtT2

Et [DT2
] , (t < T2), (8.7)

we have:

dS2
t = rtS

2
t dt+ PtT2

σ1T1
T1 − t

(β + δEt [XT2
]) Vart [XT1

] dW 1
t

+PtT2

σ2T2
T2 − t

(γ + δEt [XT1
]) Vart [XT2

] dW 2
t , (8.8)

where the constants β, γ, and δ are given by β = n2(R
b
2 −Rc

2), γ = n2(R
a
2 −

Rc
2), and δ = n2(1−Ra

2 −Rb
2 +Rc

2). The filtration {Fs} is generated by the
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information processes {ξsT1
} and {ξsT2

} associated with XT1
and XT2

. The
dynamics of the bond prices depend on a common Brownian driver {W 1

t }.
The fact that the asset payoffs share a common X-factor thus gives rise to a
dynamic correlation between the movements of the price processes {S1

t } and
{S2

t }. The instantaneous correlation between the price movements of the
factory bond and the restaurant bond is given by the following expression:

ρt =
dS1

t dS
2
t

√

(

dS1
t

)2(
dS2

t

)2
. (8.9)

Hence, using the formulae for the dynamics of the two assets, we obtain:

ρt =
1√
ψt

σ1T1
T1 − t

(β + δEt [XT1
]) Vart [XT1

] , (8.10)

where

ψt =

(

σ1T1
T1 − t

)2

(β + δ Et [XT2
])2 (Vart [XT1

])2

+

(

σ2T2
T2 − t

)2

(γ + δ Et [XT1
])2 (Vart [XT2

])2 . (8.11)

We see from (8.10) that we are able to calculate explicitly the dynamics of
the correlation between the movements of the two asset prices.

9 Amount of information about the future

cash flow contained in the price process

Since we are modelling the flow of information in an explicit manner, we
are able to quantify how much information regarding the value of the cash
flow DT is contained in the value ξt at time t of the associated information
process. For simplicity we shall in the discussion that follows assume that the
cash flow DT takes the discrete values {di}i=1,...,n with a priori probabilities
{pi}i=1,...,n. A reasonable measure for quantifying the information content is
given by the mutual information J(ξt, DT ) between the two random variables,
which in the present context is given by the expression

J(ξt, DT ) =

n
∑

i=1

∫ ∞

−∞
ρ(ξ, i) ln

(

ρ(ξ, i)

ρ(ξ)ρ(i)

)

dξ, (9.1)
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where

ρ(ξ, i) =
d

dξ
Q

[

(ξt < ξ) ∩ (DT = di)
]

(9.2)

is the joint density of the random variables ξt and DT ), and ρ(ξ) and ρ(i)
are the respective marginal probabilities. By use of the relation

Q

[

(ξt < ξ) ∩ (DT = di)
]

= Q(ξt < ξ|DT = di)Q(DT = di) (9.3)

we deduce that

ρ(ξ, i) = pi
1

√

2πt(T − t)/T
exp

(

−1
2

(x− σdit)
2

t(T − t)/T

)

, (9.4)

since conditional on DT = di the random variable ξt is normally distributed
with mean σtdi and variance t(T − t)/T . From (9.4) the marginal densities

ρ(ξ) =
n
∑

i=1

ρ(ξ, i) and ρ(i) =

∫ ∞

−∞
ρ(ξ, i)dξ (9.5)

can be deduced. In particular, ρ(i) = pi. By substituting (9.4) in (9.1), the
information about the cash flow DT contained in ξt can be determined.

From an information-theoretic point of view, two processes related through
an invertible function, thus sharing the same filtration, in general possess dif-
ferent information content. On the other hand, since what is observed in the
market is the price St, which is an invertible function of ξt, it is more rele-
vant to determine the mutual information J(St, DT ), that is, the amount of
information about the future cash flow contained in the market price. It can
be shown that in the present context we have J(St, DT ) = J(ξt, DT ).

10 Information disparity and statistical arbi-

trage

So far we have assumed that market participants have equal access to infor-
mation, but one can ask what happens if some traders are more “informed”
than others. Suppose we consider a financial product that pays a single cash
flow DT at time T . We can think of this product as a kind of bond. The
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general market trader has access to an information process concerning DT ,
but there are also “informed” traders who have access to one or more addi-
tional information processes concerning DT . The informed trader is thus in
some sense able to make a “better estimate” of the value of the asset.

To be more specific, let us suppose that while the general market trader
has access to the information ξt = σtDT +βtT , an informed trader has access
in addition, say, to the information ξ′t = σ′tDT + β ′

tT , where {β ′
tT } may or

may not be correlated with the market noise {βtT}. Thus, the information
source for the informed trader is given by {Gt} = σ({ξs, ξ′s}0≤s≤t). The use
of such extra information can, but need not, represent “insider trading” in
the usual sense. That is, it may be that the informed trader merely has
better access to (and better computer power for the purpose of digesting)
the vast domain of publicly available information. Since we have introduced
an information measure regarding impending cash flows, we can quantify the
excess information held by the informed trader above that held by general
market traders. This is measured by the difference of the mutual information
∆J . In figure 2 we plot an example of ∆J , indicating the way in which the
excess information held by the informed trader changes in time.

Given that the informed trader is on average “more knowledgeable” than
the general market trader, it is natural to ask how the informed trader can
take advantage of the situation to seek so-called “statistical arbitrage” op-
portunities. We assume that the informed trader operates on a relatively
small scale, and that the actions of this trader do not significantly influence
the market. Suppose we consider a trading strategy such that at some desig-
nated time t ∈ (0, T ) a market trader purchases a bond if, and only if, at that
time the bond price St is greater than the quantity KPtT for some specified
constant K. Once a bond is purchased, it is held to maturity. The informed
trader follows the same rule, but makes a better estimate of the value of the
bond, and hence purchases the bond iff S̃t > KPtT , where

S̃t = PtTE[DT |Gt]. (10.1)

The significance of S̃t is that it represents the price that the informed trader
knows that the market as a whole would make if the market as a whole had
the same knowledge as the informed trader.

That such a strategy leads to a statistical arbitrage opportunity for the
informed trader can be seen as follows [4]. We assume that the initial position
of a trader is zero, i.e. purchase of a bond at t requires borrowing the amount
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Figure 2: Mutual information difference. The additional information held by an
informed trader over that of the market is nonnegative. The parameters are set to
be d1 = 0, d2 = 1, p1 = 0.2, p2 = 0.8, T = 5, σ = 0.25, σ′ = 0.45, and ρ = 0.15
(the correlation between βtT and β′

tT ).

St at that time, and repaying the amount P−1
tT St at T . Thus the value of a

general market trader’s portfolio at T is

VT = 1{St > KPtT }(DT − P−1
tT St), (10.2)

whereas the value of the informed trader’s portfolio at T is

ṼT = 1{S̃t > KPtT}(DT − P−1
tT StT ). (10.3)

Consider the present value P0TE[∆VT ] of a security that delivers a cash flow
equal to the excess profit or loss

∆VT = ṼT − VT (10.4)

generated by the strategy of the informed trader. By the tower property we
have

E[∆VT ] = E[E[∆VT |Gt]]. (10.5)

18



0 1 2 3 4 5
-20

0

20

40

60

80

100

120

140

160

180

time (yrs)

I
n
s
i
d
e
r
 
P
&
L
 
-
 
M
a
r
k
e
t
 
P
&
L

Figure 3: The P&L difference for digital bonds. At each time traders purchase the
bond if and only if the valuation of the bond is greater than a specified threshold.
The general market trader buys if St > KPtT , whereas the informed trader uses
the criterion S̃t > KPtT . The difference in profit and loss between the informed
trader and the general market trader is plotted, based on 2000 realisations, when
the a priori probability of default is p1 = 0.2. Other parameters are set to be
d1 = 0, d2 = 1, T = 5, σ = 0.25, σ′ = 0.45, ρ = 0.15, and K = 0.7.

However,

E[∆VT |Gt] = P−1
tT

(

1{S̃t > KPtT} − 1{St > KPtT }
)(

S̃t − St

)

, (10.6)

since the random variables St and S̃t are Gt-measurable. If S̃t > St then

1{S̃t > KPtT } − 1{St > KPtT } ≥ 0; (10.7)

whereas if S̃t < St then

1{S̃t > KPtT } − 1{St > KPtT } ≤ 0. (10.8)

It follows that E[∆VT |Gt] > 0 with probability greater than zero, and there-
fore E[∆VT ] > 0. We know that according to the usual no-arbitrage argu-
ments the present value of the payoff of the strategy of the general market
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trader must be zero. It follows that the informed trader can execute a transac-
tion at zero cost that has positive value: this is what we mean by “statistical
arbitrage”. A simulation study of the profit arising from this trading strat-
egy is shown in figure 3, indicating a close correspondence with the excess
information held by the informed trader shown in figure 2.

11 Price formation in inhomogeneous mar-

kets

The idea of “informed trading” can be extended to a market that has a
number of traders operating in it, all more or less on an equal footing, but
where different traders have access to different information. In other words,
there is an inhomogeneous information flow in the market. This line of
thinking leads naturally to the consideration of price formation in such a
market.

Let us consider, as an example, a market with two traders, labelled
“Trader 1” and “Trader 2”. As before, there is a single asset, with a
single dividend DT paid at time T . The traders have access to separate
sources of information about DT , given respectively by ξ1t = σ1tDT +β

1
tT and

ξ2t = σ2tDT + β2
tT . Here the Brownian bridges {β1

tT} and {β2
tT} are assumed,

for simplicity, to be independent. Trader 1 works out the price

S1
t = PtTE[DT |ξ1t ] (11.1)

that he knows the market would have made had the market possessed the
information generated by {ξ1t }. Likewise, Trader 2 works out the price

S2
t = PtTE[DT |ξ2t ] (11.2)

that she knows the market would have made had the market possessed the
information generated by {ξ2t }.

Traders 1 and 2 are unaware of each other’s prices, but can gain informa-
tion by trading. The trading process works as follows. Each trader makes a
spread about their price. Letting 0 < φ− < 1 < φ+, we set

S1±
t = φ±S1

t (11.3)

for the buy price S1−
t and sell price S1+

t made by Trader 1 at time t. Thus
Trader 1 is willing to buy at a price slightly below his information-based
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valuation S1
t , and is willing to sell at a price that is slightly above that

valuation. Likewise Trader 2 is willing to buy at a price slightly below her
information-based valuation S2

t , and is willing to sell at a price that is slightly
above that valuation:

S2±
t = φ±S2

t . (11.4)

We assume that there is an exchange that continuously monitors the prices
made by the traders. The exchange effects a trade of some fixed size when
the buy price of one of the traders reaches the level of the sell price of the
other trader. That is to say, a trade takes place when

S1−
t = S2+

t or S1+
t = S2−

t . (11.5)

When a trade occurs, at that moment each trader learns the price of the
other, and as a consequence can back out the value of the corresponding
information process. Therefore, when a trade occurs, the traders each briefly
have access to both pieces of information, and are thus in a position to make
a better price, namely that given by

S1,2
t = PtTE[DT |ξ1t , ξ2t ]. (11.6)

We conclude that immediately after a trade the information-based prices
made by each of the traders will jump to the same level, and that the a

priori probability distribution for DT will be updated correspondingly.
Once the trade is concluded, the link between the two traders is lost, and

each trader again has access only to their own information source. Starting
from the same price, the prices made by the two traders diverge as they
receive different information going forward. A further trade will then occur
when the buy price of one of the traders next hits the sell price of the other
trader.

At the time the trade is executed, the joint information can be embodied
in the value of an effective information process {ξ̂t}0≤t≤T given by

ξ̂t =
√

(σ1)2 + (σ2)2 tDT +
σ1 β

1
tT + σ2 β

2
tT

√

(σ1)2 + (σ2)2
. (11.7)

We note that {ξ̂t} is indeed an information process, since it can be written
in the form

ξ̂t = σ̂tDT + β̂tT , (11.8)
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where

σ̂ =
√

(σ1)2 + (σ2)2, and β̂tT =
σ1 β

1
tT + σ2 β

2
tT

√

(σ1)2 + (σ2)2
. (11.9)

One can show that {β̂tT } is a Brownian bridge and is independent of DT .
Thus, immediately after the trade is executed, the price S1,2

t made by both
traders is of the form

S1,2
t = PtT

∫∞
0
x p(x) exp

[

T
T−t

(

σ̂ x ξ̂t − 1
2
σ̂2 x2 t

)]

dx

∫∞
0
p(x) exp

[

T
T−t

(

σ̂ x ξ̂t − 1
2
σ̂2 x2 t

)]

dx
. (11.10)

As an example, let us consider the case of a digital payout taking the
values 0 and 1 with a priori probabilities p0 and p1. We consider the case in
which the information flow rates are the same, so we set σ1 = σ2 = σ. Then
for the valuations we have

S1
t =

p1 exp
[

T
T−t

(

σξ1t − 1
2
σ2t
)]

p0 + p1 exp
[

T
T−t

(

σξ1t − 1
2
σ2t
)] (11.11)

and

S2
t =

p1 exp
[

T
T−t

(

σξ2t − 1
2
σ2t
)]

p0 + p1 exp
[

T
T−t

(

σξ2t − 1
2
σ2t
)] . (11.12)

For the spreads, we assume φ+ = 1 + δ and φ− = 1 − δ where δ is small. If
Trader 1 is the buyer then the condition for a trade is

(1− δ)S1
t = (1 + δ)S2

t . (11.13)

Given his knowledge ξ1t , Trader 1 can use the condition to work out the value
of ξ2t . In particular, suppose that

ξ2t = ξ1t + εt, (11.14)

where εt is small. Then a calculation shows that εt is given, to first order, by

εt = − 2 δ(T − t)

σ T
(

1− E
[

XT | ξ1t
]) . (11.15)
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The general situation, where there are a number of traders present in the
market, and where the asset cash flows depend on a number of market fac-
tors, is very rich. It is evident that in the broad picture there is no universal
filtration, nor a universal pricing measure. Nevertheless, by exchanging in-
formation through trading activity, market participants can maintain a “law
of reasonable price range” if not a “law of one price”.

Certainly, the notion that there is a universal market filtration is un-
realistic. What counts is not merely “access in principle” to information,
but rather “access in practice”. Perhaps some broader version of market
efficiency will survive, taking into account the cost of such access (cf. [5]).
A subscription to the Wall Street Journal is not free, nor is a Bloomberg
terminal. Access to vast information providers such as Google and Yahoo
may seem free or nearly so, but from a broader perspective this is not so—
someone pays, in cash or kind. What is the market price of information? And
how does this depend on the “information about the information”? For the
answers to these questions we must await the development of new models.
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Figure 4: Schematic illustration of information-based trading. An exchange ex-
ecutes a trade when the sell price of Trader i matches the buy price of Trader j

(dashed lines meet at filled dots). At the execution time tn, both traders have
access to each other’s valuations Si

tn (empty circles) and thus to each other’s in-
formation. As a consequence, the traders are able to update their valuations and
obtain the common price S

j,k
tn . After the trade has been executed and the respec-

tive asset valuations have been updated, the traders “separate”, and return to
their individual valuations. The respective valuations may drift in different direc-
tions. The traders will get in contact again as soon as the exchange notifies them
that the respective sell and buy prices have matched again. Such an information-
based trading mechanism can be extended to multiple traders, as suggested in the
illustration.
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