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Abstract

We consider the exponential Levy models and we study the conditions under

which f-minimal equivalent martingale measure preserves Levy property. Then

we give a general formula for optimal strategy in a sense of utility maximization.

Finally, we study change-point exponential Levy models, namely we give the

conditions for the existence of f-minimal equivalent martingale measure and we

obtain a general formula for optimal strategy from point of view of the utility

maximization. We illustrate our results considering Black-Scholes model with

change-point.
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1 Introduction

The parameters of financial models are generally highly dependent on time : a number
of events (for example the release of information in the press, changes in the price of
raw materials or the first time a stock price hits some psychological level) can trigger
a change in the behavior of stock prices. This time-dependency of the parameters
can often be described using a piece-wise constant function : we will call this case a
change-point situation. In this context, an important problem in financial mathemat-
ics will be option pricing and hedging. Of course, the time of change (change-point)
for the parameters is not explicitly known, but it is often possible to make reasonable
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assumptions about its nature and use statistical tests for its detection.

Change-point problems have a long history, probably beginning with the papers
of Page [39],[40] in an a-posteriori setting, and of Shiryaev [46] in a quickest detec-
tion setting. The problem was later considered in many papers, see for instance [12],
[43],[18],[42], [2],[50], [36], also the book [1] and references there. In the context of
financial mathematics, the question was investigated in [27], [6], [26],[19],[13],[49], [51]
and was often related to a quickest detection approach.

In this paper we study optimal portfolios from the point of view of utility maxi-
mization, for exponential Levy change-point models where the parameters of the model
before and after the change are known and with a change-point which is independent
from the observed processes. The case of a change-point at the first exit time for some
functional of the price of the risky asset will be considered in a forthcoming paper.

Let us describe our change-point model more precisely. Let L = (Lt)t≥0 be a
Levy process with parameters (b, c, ν) where b is the drift parameter, c the diffusion
parameter and ν the Levy measure which satisfies

∫

R∗

(x2 ∧ 1)ν(dx) < +∞. (1)

As is well known, the characteristic function of Lt for t ∈ R+ and u ∈ R is given by:

φt(u) = EeiuLt = eψ(u)t

where the characteristic exponent ψ(u) is equal to:

ψ(u) = iub− 1

2
cu2 +

∫

R∗

(exp(iux)− 1− iul(x))ν(dx),

where from now on, l is the truncation function.

Let L̃ = (L̃t)t≥0 be a Levy process which is independent from L and with parameters
(b̃, c̃, ν̃) where as before b̃ is the drift parameter, c̃ the diffusion parameter and ν̃ the
Levy measure which satisfies (1) when replacing ν by ν̃. Let τ be a random variable
which is independent from L and L̃ and let X = (Xt)t≥0 be the process given by:

Xt = Lt1I{τ>t} + (Lτ + L̃t − L̃τ )1I{τ≤t} (2)

where 1I(·) is the indicator function. Let also

r(t) = r1I{τ>t} + r̃1I{τ≤t} (3)

be the interest rate changing from r to r̃ at the change-point τ . Our model for risky
and non risky assets will then be given by

St = S0 exp(Xt), Bt = B0 exp(

∫ t

0

r(s)ds) (4)
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respectively. The multidimensional case and multiple change-point situations can be
defined in a similar way.

It is well known that exponential Levy models are in general incomplete so that
for option pricing, one has to choose a ”good” equivalent martingale measure. Many
approaches have been developed and various criteria suggested for this choice of mar-
tingale measure, for example risk-minimization in an L2-sense [16],[44], [45], Hellinger
integrals minimization [9], [10], [25], entropy minimization [37], [17] ,[15], f q-martingale
measures [30] or Esscher measures[28]. In our change-point setting we will consider
minimal quadratic variation measures, minimal entropy measures and f q -minimal
measures as special cases of minimal f -divergence martingale measures. The notion of
f -divergence was introduced by Ciszar [11] and was investigated in a number of papers
and books, see for instance [35] and references there. In a number of papers it was
also noticed that utility maximization is closely related with the choice of a minimal
martingale measure via the Fenchel-Legendre transform. The optimal portfolios for
Levy models for some special cases of utility functions were considered in [24], [31],
[32],[5].

The paper is organized in the following way. In 2. we consider minimal martin-
gale measures and we give a general expression for minimal martingale measures in
change-point situations. We restrict ourselves to f -divergences for which the minimal
martingale measure preserves the Levy property and such that the multiplication of the
argument of the f -divergence by a constant does not change the minimal martingale
measure. The conditions under which the f -divergence minimal martingale measure
preserves the Levy property are discussed in Theorem 1 and also in [4], and a number
of important examples mentioned above satisfy both these properties. Then, we give
the expression for f -divergence minimal martingale measure in the change-point case
(see Theorem 2). We illustrate this result by an example considering the Black-Scholes
model with a change-point.

In 3. we first recall some useful results about optimal strategies in general. Then,
we give an expression for optimal strategies of exponential Levy model with no change-
point (Theorem 4). Finally, we obtain the expression for optimal strategies for expo-
nential Levy models in a change -point situation (Theorem 5). We illustrate this result
by an example considering again the Black -Scholes model with a change-point.

2 Minimal martingale measures in change-point sit-

uations

We start by describing in more details our model for the risky asset. Let (D,G,G)
be the canonical space of right-continuous functions with left-hand limits equipped
with its natural filtration G = (Gt)t≥0 which satisfies standard conditions: it is right-
continuous, G0 = {∅, D}, ∨t≥0 Gt = G . On the product of such canonical spaces we

define two independent Levy processes L = (Lt)t≥0 and L̃ = (L̃t)t≥0 with characteristics
(b, c, ν) and (b̃, c̃, ν̃) respectively and denote by P and P̃ their respective laws which
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are assumed to be locally equivalent: P
loc∼ P̃ . We suppose that the Levy measures of

these processes satisfy
∫

x>1

(ex − 1)dν <∞,

∫

x>1

(ex − 1)dν̃ <∞.

As we will consider the market on a fixed finite time interval, we are really only inter-
ested in P |GT

and P̃ |GT
for a fixed T ≥ 0.

Our change-point will be represented by an independent random variable τ of law α
taking values in ([0, T ],B([0, T ]). The set {τ = T} corresponds to the situation when
the change-point does not take place, or at least not on the interval we are studying.
On the probability space (D × D × [0, T ], G × G × B([0, T ], P × P̃ × α) we define a
measurable map X by (2) and we denote by P its law. If we observe only the process
X then the natural probability space to work is (D,G,P) equipped with the right-
continuous version of the natural filtration G = (Gt)t≥0 where Gt = σ{Xs, s ≤ t} for
t ≥ 0.
Now, if we observe not only the process X but also some complementary variables
related with τ then we can take it in account by the enlargement of the filtration. First
we consider the filtration H given by Ht = σ(1I{τ≤s}, s ≤ t) and note that HT = σ(τ).
Then we introduce two filtrations: the initially enlarged filtration F = (Ft)t≥0

F0 = G0 ∨ HT , Ft =
⋂

s>t

(Gs ∨ HT ) (5)

and the progressively enlarged filtration F̂ = (F̂t)t≥0 which satisfies :

F̂0 = G0 ∨ H0, F̂t =
⋂

s>t

(Gs ∨ Hs) (6)

In the case of additional information the most natural filtration from the point of view
of observable events would be F̂. However, we will see that it is much easier to start by
working with the initially enlarged filtration and then come back to the progressively
enlarged filtration.

We notice that conditional law of X the conditionally to {τ = T} is P , the law of

the first Levy process, and that P
loc
<< P . We set

dPt
d Pt

= Yt

where Pt and Pt denote the restrictions of the corresponding measures to the σ-algebra
Ft. We remark that

Yt = 1I[[0,τ ]](t) +
yt
yτ

1I]]τ,+∞[[(t) (7)

with yt =
dP̃t
dPt

. After all these precisions we define our risky asset by formula (4) and

assume for simplicity that r and r̃ in (3) are equal to zero, and that S0 = 1. In what
folows we use E for the expectation with respect to P as well as for the expectation
with respect to P × P̃ × α.
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2.1 Equivalent martingale measures in a change-point situa-

tion.

First of all, we need to describe the set of equivalent martingale measures (EMMs) for
our model, in particular in relation to the sets of EMMs for the two associated Levy
models L and L̃ which we denote by M(P ) and M(P̃ ) respectively. We assume these
sets are non-empty. LetQ ∈ M(P ) and Q̃ ∈ M(P̃ ). We introduce the Radon-Nikodym
density processes ζ = (ζt)t≥0 and ζ̃ = (ζ̃t)t≥0 given by

ζt =
dQt

dPt
, ζ̃t =

dQ̃t

dP̃t

where Qt, Pt, Q̃t, P̃t stand for the restrictions of the corresponding measures to the
σ-algebra Ft, and also the process z = (zt)t≥0 given by

zt = ζt1I[[0,τ ]](t) + ζτ
ζ̃t

ζ̃τ
1I]]τ,+∞[[(t) (8)

We finally consider the measure Q defined by:

dQt

dPt
= c(τ)zt (9)

where c(·) is a measurable function [0, T ] → R+,∗ such that Ec(τ) = 1.

Lemma 1. A measure Q is an equivalent martingale measure for the exponential model
( 4) related to the process X iff its density process has the form (9).

Proof First we show that the process Z = (Zt)t≥0 given by

Zt = c(τ)zt (10)

is a density process with respect to P and that the process S = (St)t≥0 such that

St = eLt1I[[0,τ ]](t) + Sτe
L̃t−L̃τ1I]]τ,+∞[[(t) (11)

is a (Q,F) - martingale.
We begin by noticing that if M, M̃ are two strictly positive martingales on the same
filtered probability space and τ is a stopping time independent of M and M̃ then
N = (Nt)t≥0 such that

Nt = c(τ)

[

Mt1I[[0,τ ]](t) +Mτ

M̃t

M̃τ

1I]]τ,+∞[[(t)

]

is again a martingale. This can, for example, be seen by conditioning with respect to
τ and using the facts that M and M̃ are martingales.
To show that Z is a (P,F)-martingale, we prove the equivalent fact that (YtZt)t≥0 is
a (P,F) - martingale. But this follows from the previous remark taking Mt = ζt and
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M̃t = ζ̃tyt and using (7), (8), (10).
Furthermore, taking conditional expectation with respect to HT and using the fact
that ζ and ζ̃ are density processes independent from τ , we see that EZt = 1.
To show that S = (St)t≥0 is (Q,F)-martingale we establish that (Yt Zt St)t≥0 is a (P,F)

- martingale. For this we use the same remark with Mt = eLtζt and M̃t = ytζ̃te
L̃t .

Conversely, Z is the density of any equivalent martingale measure if and only if
(Zt St)t≥0 is a (P,F) - martingale. But the last fact is equivalent to the fact that
for any bounded stopping time σ,

E(Zσ Sσ) = 1.

Replacing σ by σ∧ τ in previous expression we deduce that (Zt∧τ )t≥0 is the density
of a martingale measure for (eLt∧τ )t≥0. In the same way, using the martingale properties
of Z we get for any bounded stopping time σ

E(
Zσ Sσ

Zσ∧τ Sσ∧τ
) = 1

and so ( Zt

Zt∧τ
)t≥τ is the density of an equivalent martingale measure for (eL̃t−L̃t∧τ )t≥τ .

2.2 The f-divergence minimal martingale measures.

We now turn to the problem of finding martingale measures which are minimal with
respect to some f -divergence. We recall that if f is a convex function on R, the
f -divergence of Q with respect to P will be

f(Q|P ) = EP [f(
dQ

dP
)]

if the integral given above exists. By convention we set it equal to +∞ otherwise. We
recall that P here is the law of the Levy process L with the parameters (b, c, ν).

Definition 1. We say that Q∗ is an f -divergence minimal equivalent martingale mea-
sure if f(Q∗|P ) < +∞ and

f(Q∗|P ) = inf
Q∈M(P )

f(Q|P )

where M(P ) is the set of equivalent martingale measures supposed to be non-empty.

Definition 2. We say that an f -divergence minimal martingale measure Q∗ is invari-
ant under scaling if for all x ∈ R+,∗

f(xQ∗|P ) = inf
Q∈M(P )

f(xQ|P )

Definition 3. For a given exponential Levy model S = eL, we say that an f -divergence
minimal martingale measure Q∗ preserves the Levy property if L remains a Levy process
under Q∗.
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It was shown in [16],[15], [9], [30] that the properties mentioned above are satisfied
for the most common f -divergence functions, in particular for f(x) = x lnx, f(x) =
(1 − √

x)2, f(x) = (1 − x)2, f(x) = xγ with γ > 1 or γ < 0, f(x) = 1 − xγ with
0 < γ < 1. Note also that these functions satisfy: f ′′(x) = axγ for some a > 0 and
γ ∈ R. Conversely, we show in the next theorem that under some conditions, the
functions which preserve the Levy property are, up to a linear term, of these forms.

Let us denote

ζ∗t =
dQ∗

t

dPt

the Radon-Nikodym derivatives of Q∗
t with respect to Pt where t stands for the restric-

tions of the measures to the σ- algebra Gt. Let (β∗, Y ∗) be the Girsanov parameters,
i.e. the parameters arising in Girsanov theorem and corresponding to the change of
the measure P by Q∗. We exclude in advance from our consideration the trivial case
when Q∗ = P corresponding to β∗ = 0, Y ∗ = 1. Let also

ρλ(t, x) = EQ∗ [f ′(xλζ∗T−t)]

and
qλ(t, x) = λEQ∗ [ζ∗T−tf

′′(xλζ∗T−t)]

when these expectations exist. For simplicity of notation in the case of λ = 1 we will
omit the index 1.

Theorem 1. Let f be a strictly convex function which belongs to C3(R+,∗) and such
that an f -minimal equivalent martingale measure Q∗ exists and preserves the Levy
property. We suppose that c 6= 0 and that the Levy measure ν has a strictly positive
density with respect to Lebesgue measure.

We also suppose that the following integrability conditions are satisfied : for each
λ > 0 and each compact set K belonging to R+,∗

EP |f(λζ∗T )| < +∞, EP [ sup
0≤t≤T

| ζ∗t f ′(λζ∗t ) |] < +∞,

EP [ sup
λ∈K, 0≤t≤T

(ζ∗t )
2f ′′(λζ∗t )] < +∞, EP [ sup

λ∈K, 0≤t≤T
(ζ∗t )

3|f ′′′(λζ∗t )|] < +∞

Then f ′′(x) = axγ with a > 0 and γ ∈ R, i.e. up to a multiplicative constant and a
linear term, f(x) = x ln(x), or f(x) = − ln(x) or f(x) = sign(p)sign(p − 1) xp with
p 6= 0, 1. Moreover, Q∗ is invariant under scaling.

Remark 1. It should be noticed that for the functions f ′′(x) = axγ with a > 0 and
γ ∈ R due to the monotonicity of f ′, f ′′ and f ′′′ we can omit supλ∈K in the integrability
conditions and they become:

EP |f(λζ∗T )| < +∞, EP [ sup
0≤t≤T

| ζ∗t f ′(λζ∗t ) |] < +∞.

Remark 2. In the case when the continuous martingale part of L is zero and/or the
Levy measure of L does not have a positive density with respect to the Lebesgue measure,
the answer is given in [4].
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Proof of theorem 1 The proof of this theorem is highly related with the next section
and the proof of Theorem 4. To simplify the notation we put λ = 1. Making the
correspondence between f -divergence minimization and utility maximization we obtain
that Q∗ × λ× νQ

∗

- a.s. :

ρ(t, ζ∗t−Y
∗(x))− ρ(t, ζ∗t−)− β∗(ex − 1)ζ∗t− q(t, ζ

∗
t−) = 0.

In particular, as this equality is true λ-a.e, it must hold for some sequence (tn)n≥1 such
that tn → T . Since ρ(T, x) = f ′(x) and q(T, x) = f ′′(x), we get as n goes to infinity:

f ′(ζ∗T−Y
∗(x))− f ′(ζ∗T−)− β∗(ex − 1)ζ∗T−f

′′(ζ∗T−) = 0

We note that ζ∗T− = ζ∗T (P -a.s. and Q∗-a.s.) since the initial process has no fixed points
of discontinuity.

Since the continuous martingale part of L is not zero, the law of ζ∗T has a strictly
positive density with respect to the Lebesgue measure. Hence, we have λ2-a.e. :

f ′(yY ∗(x))− f ′(y)− β∗(ex − 1)yf ′′(y) = 0

We observe that since f ′ is a strictly increasing function, Y ∗ is a strictly monotone
function. Setting Y ∗(x) = v and writing x = (Y ∗)−1(v) where (Y ∗)−1 is the inverse of
Y ∗, we obtain that λ2-a.e. for all v, y ∈ R+,∗

f ′(yv)− f ′(y) = g(v)yf ′′(y)

where g is some function. Since f ′ is differentiable and f ′′(y) > 0 for y ∈ R+,∗, the
function g is differentiable, too. Differentiating with respect to v gives us :

f ′′(yv) = g′(v)f ′′(y)

Taking y = 1 we get for all y, v ∈ R+,∗

f ′′(yv) = af ′′(v)f ′′(y)

where a = (f ′′(1))−1. Hence f ′′(y) = ayγ with γ ∈ R.

2.3 f-divergence minimal martingale measures in a change-

point situation

In the following theorem we give an expression for the density of the f -divergence min-
imal martingale measures in our change-point framework. We introduce the following
hypotheses :

(H1): The f -divergence minimal equivalent martingale measures Q∗ and Q̃∗ relative
to L and L̃ exist.

(H2): The f -divergence minimal equivalent martingale measures Q∗ and Q̃∗ preserve
the Levy property and are invariant under scaling.
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(H3): For all c > 0 and t ∈ [0, T ], we have: EQ| f ′(c ζ∗t ) | < ∞, EQ̃| f ′(c ζ̃∗t ) | < ∞
where ζ∗ and ζ̃∗ are the densities of the f -minimal equivalent martingale measures Q∗

and Q̃∗ with respect to P and P̃ respectively.

We set for t ∈ [0, T ]

z∗T (t) = ζ∗t
ζ̃∗T
ζ̃∗t

Theorem 2. Assume that f is a strictly convex function, f ∈ C1(R+,∗), and that
(H1), (H2), (H3) hold. Then if the f - minimal equivalent martingale measure Q∗ for
the change-point model (4) exists, it has the following structure:

dQ∗
T

dPT
= c(τ) z∗T (τ) (12)

where c(·) is a measurable function [0, T ] → R+ such that Ec(τ) = 1.
For c > 0, let

λt(c) = E[f ′(c z∗T (t)) z
∗
T (t)]

where the expectation is taken with respect to P and let ct(λ) be its right-continuous
inverse.
Then, if there exists λ∗ such that

∫ T

0

ct(λ
∗)dα(t) = 1, (13)

the f - minimal equivalent martingale measure for a change-point situation exists and
is given by (12) with c∗(t) = ct(λ

∗) for t ∈ [0, T ].
In particular , if f ′(x) = axγ, for a > 0 and γ ∈ R+,∗, then

c∗(t) =
[E( z∗T (t)

γ+1 )]−
1

γ

∫ T

0
[E( z∗T (t)

γ+1 )]−
1

γ dα(t)

and for f ′(x) = ln(x) + 1,

c∗(t) =
e−E( z∗

T
(t) ln z∗

T
(t) )

∫ T

0
e−E( z∗

T
(t) ln z∗

T
(t) ) dα(t)

.

Proof of Theorem 2 Since Q∗ is an equivalent martingale measure we have from (9)
that

f(Q∗
T |PT ) = E[f( c(τ) ζτ

ζ̃T

ζ̃τ
)]

It follows from the independence of L, L̃ and τ that

E[f( c(τ)ζτ
ζ̃T

ζ̃τ
)|τ = t] = E[f( c(t) ζt

ζ̃T

ζ̃t
)]

9



Now, the independence of L and L̃ implies the conditional independence of ζ and ζ̃
given σ(Ls, s ≤ T ). Using the convexity of f and invariance of f under scaling, we
see that in order to minimize f -divergence, the measure Q should be such that ζ is
the density of an f -minimal martingale measure for (eLt)t≥0 and ζ̃ the density of an

f -minimal martingale measure for (eL̃t)t≥0. Hence (12) holds.
It follows from the previous formula that we have to minimize the function

F (c) =

∫ T

0

E[f( c(t)z∗T (t) )] dα(t)

over all cadlag functions c : [0, T ] → R+,∗ such that Ec(τ) = 1. For that we consider
the linear space L of such cadlag functions c : [0;T ] → R with the norm ||c|| =
supt∈[0,T ] |c(t)| and the cone of such positive functions.
If f is strictly convex then the function F will be convex. Then according to the
Kuhn-Tucker theorem (see [34]) one has to consider the function

Fλ(c) = F (c)− λ

∫ T

0

(c(t)− 1)dα(t)

with Lagrangian factor λ > 0, and compute, if it exists, the Frechet derivative of Fλ(c)
denoted by ∂Fλ

∂c
. This derivative is a linear operator on the space L such that

lim
||δ||→0

|Fλ(c+ δ)− Fλ(c)− ∂Fλ

∂c
δ|

||δ|| = 0 (14)

We show that

∂Fλ
∂c

(δ) =

∫ T

0

(E[f ′(c(t)z∗T (t))z
∗
T (t)]− λ) δ(t)dα(t) (15)

By the Taylor formula, we have for δ ∈ L :

Fλ(c+ δ)− Fλ(c)−
∂Fλ
∂c

δ =

∫ T

0

E[(f ′((c(t) + θ(t))z∗T (t))− f ′(c(t)z∗T (t)))z
∗
T (t)]δ(t)dα(t)

where θ(t) is a function which takes values in [0, δ(t)]. It is not difficult to see that the
modulus of the right-hand side in the previous equality is bounded from above by:

sup
t∈[0,T ]

E[ | f ′((c(t) + θ(t))z∗T (t))− f ′(c(t)z∗T (t)) | z∗T (t) ] ||δ||

From hypothesis (H3) it follows that for all c > 0

E[f ′(cz∗T (t))z
∗
T (t)] <∞

Since f ′ is continuous and increasing and the functions c and δ are bounded, we con-
clude by Lebesgue’s dominated convergence theorem that (14) holds and then (15).
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According to [34], we now have to find c such that ∂Fλ

∂c
δ = 0 for all δ ∈ L. In order for

the derivative of Fλ to be zero, it is necessary and sufficient to take c such that

E[f ′(c(t)z∗T (t))z
∗
T (t)]− λ = 0 α-a.s.

For each c > 0 and t ∈ [0, T ] consider the function

λt(c) = E[f ′(cz∗T (t))z
∗
T (t)]

which is continuous and increasing in c. Its right-continuous inverse ct(λ) satisfies:

λ = E[f ′(ct(λ)z
∗
T (t))z

∗
T (t)]

Now to obtain a minimizer c∗, it remains to find, if it exists, λ∗ which satisfies (13).
Let us now consider the special case f ′(x) = axγ . Then we obtain up to a constant,
that λt(c) = acγE[z∗T (t)

γ+1] and for f ′(x) = ln(x)+1 we get λt(c) = E[z∗T (t) ln z
∗
T (t)]+1.

Writing now ct(λ) and integrating with respect to α we find λ∗ and the expression of
c∗(t).

Example: A change-point Black-Scholes model
We now want to apply the results in the simplest of settings, namely when L and L̃
define Black-Scholes type models. Therefore, we assume that L and L̃ are continu-
ous Levy processes with characteristics (b, c, 0) and (b̃, c, 0) respectively, c > 0. As is
well known, the initial models will be complete, with a unique equivalent martingale
measure which defines a unique price for options. However, in our change-point situ-
ation the martingale measure is not unique, and we have an infinite set of martingale
measures of the form

dQt

dPt
(X) = c(τ) exp (

∫ t

0

βsdX
c
s −

1

2

∫ t

0

β2
scds )

where c(·) is a measurable function [0, T ] → R+,∗ such that E[c(τ)] = 1 and

βs = −1

c
[ (b+

c

2
) I[0,τ ](s) + (b̃+

c

2
) I]τ,+∞[(s) ]

If for example f ′(x) = axγ , applying Theorem 2, we get

c∗(t) =
e−

γ+1

2c
[(b+ c

2
)2t+(b̃+ c

2
)2(T−t)]

∫ T

0
e−

γ+1

2c
[(b+ c

2
)2t+(b̃+ c

2
)2(T−t)]dα(t)

and if f ′(x) = ln(x) + 1, then

c∗(t) =
e−

1

2c
[(b+ c

2
)2t+(b̃+ c

2
)2(T−t)]

∫ T

0
e−

1

2c
[(b+ c

2
)2t+(b̃+ c

2
)2(T−t)]dα(t)
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3 Optimal strategies for utility maximization

In this section, we are interested in finding optimal strategies for terminal wealth with
respect to some utility functions. More precisely, we assume that our financial market
consists of two assets : a non-risky asset B, with interest rate r, and a risky asset S,
modeled using the change-point Levy model defined in (4). We denote by ~S = (B, S)

the price process and by ~Φ = (φ0, φ) the amount of money invested in each asset.

According to usual terminology, a predictable ~S-integrable process ~Φ is said to be a
self-financing admissible strategy if for every t ∈ [0, T ] and x initial capital

~Φt · ~St = x+

∫ t

0

~Φu · d~Su (16)

where the stochastic integral in the right-hand side is bounded from below. Here ·
denotes the scalar product. We will denote by A the set of all self-financing admissible
strategies. In order to avoid unnecessary complications, we will assume that the interest
rate r is 0, so that starting with an initial capital x, terminal wealth at time T is

VT (φ) = x+

∫ T

0

φsdSs

Let u denote a strictly increasing, strictly concave, continuously differentiable function
on dom(u) = {x ∈ R|u(x) > −∞} which satisfies

u′(+∞) = lim
x→+∞

u′(x) = 0,

u′(x) = lim
x→x

u′(x) = +∞

where x = inf{u ∈ dom(u)}.
We will say that φ∗ defines an optimal strategy with respect to u if

EP [u(x+

∫ T

0

φ∗
sdSs)] = sup

φ∈A
EP [u(x+

∫ T

0

φsdSs)]

As has been shown in [24], there is a strong link between this optimization problem and
the previous problem of finding f -minimal martingale measures. Let f be the convex
conjugate function of u :

f(y) = sup
x∈R

{u(x)− xy} = u(I(y))− yI(y) (17)

where I = (u′)−1. We recall that in particular

if u(x) = ln(x) then f(x) = − ln(x)− 1,

if u(x) =
xp

p
, p < 1 then f(x) = −p− 1

p
x

p

p−1 ,

if u(x) = 1− e−x then f(x) = 1− x+ x ln(x).

The following result taken from [24] gives us the relation between portfolio optimization
and f-minimal martingale measures. We assume for simplicity that x > −∞.

12



Theorem 3. (see [24]) Let x ∈ R+ be fixed. Let Q∗ be an equivalent martingale
measure which satisfies

EP [|f(λ
dQ∗

T

dPT
)|] <∞, EQ∗|f ′(λ

dQ∗
T

dPT
)| <∞

for λ such that

−EQ∗f ′(λ
dQ∗

T

dPT
) = x.

Then Q∗ is an f-minimal martingale measure if and only if

− f ′(λ
dQ∗

T

dPT
) = x+

∫ T

0

φ∗
udSu (18)

where φ∗ is a predictable function such that (
∫ ·

0
φ∗
udSu) is a Q∗-martingale. If the last

relation holds, then
→

Φ= (φ0, φ) with φ0
t = x+

∫ t

0
φudSu− φtSt is an admissible optimal

portfolio strategy.

Remark 3. When x = −∞, (18) remains true but the process φ∗ no longer necessarily
defines an admissible strategy. As in [31], we will say that φ̂ is an asymptotically
optimal strategy if there exists a sequence of stopping times (τn)n∈N which goes to
infinity such that

lim
n→+∞

E[u(x+

∫ T∧τn

0

φ̂sdSs)] = sup
φ∈A

E[u(x+

∫ T

0

φsdSs)]

Now if (18) holds and there exists a sequence of stopping times (τn)n∈N which goes to
infinity such that (φ∗

s1I[[0,T∧τn]])0≤s≤T is a sequence of admissible strategies, then φ∗ will
indeed be asymptotically optimal.

It is obvious that

lim
n→+∞

EP [u(x+

∫ T∧τn

0

φ∗
sdSs)] ≤ sup

φ∈A
EP [u(x+

∫ T

0

φsdSs)] (19)

Now, if φ is any admissible strategy, it follows from the concavity of u that

u(x+

∫ T

0

φsdSs) ≤ u(x+

∫ T

0

φ∗
sdSs) + u′(x+

∫ T

0

φ∗
sdSs)[

∫ T

0

(φs − φ∗
s)dSs]

Note that u′(x+
∫ T

0
φ∗
sdSs) = λ ζ∗T where ζ∗T is Radon-Nikodym density of the measure

Q∗
T with respect to PT . Note also that (

∫ t

0
(φs−φ∗

s)dSs)0≤t≤T is the difference of a local
martingale which is bounded from below and of a martingale with respect to Q∗, so
that

EP [u(x+

∫ T

0

φsdSs)] ≤ EP [u(x+

∫ T

0

φ∗
sdSs)]

and hence

sup
φ∈A

EP [u(x+

∫ T

0

φsdSs)] ≤ EP [u(x+

∫ T

0

φ∗
sdSs)] (20)
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Next, we have in the same way from the concavity of u that

u(x+

∫ T∧τn

0

φ∗
sdSs) ≤ u(x+

∫ T

0

φ∗
sdSs) + u′(x+

∫ T

0

φ∗
sdSs).

∫ T

T∧τn

φ∗
sdSs

Since (
∫ T∧τn
0

φ∗
sdSs)n≥1 is a uniformly integrableQ∗ martingale, the family (

∫ T

T∧τn
φ∗
sdSs)n∈N

is uniformly integrable. Hence (u(x+
∫ T∧τn
0

φ∗
sdSs))n∈N is a uniformly integrable family

and

lim
n→+∞

EP [u(x+

∫ T∧τn

0

φ∗
sdSs) = EP [u(x+

∫ T

0

φ∗
sdSs)] (21)

Finally, it follows from (19), (20) and (21) that φ∗ defines an asymptotically optimal
strategy.

3.1 Optimal strategies for exponential Levy models

In the following theorem we discuss the existence and we give, when it exists, the
expression of an admissible optimal portfolio. LetQ be f-minimal equivalent martingale
measure and P initial measure. To avoid unnecessary complications within this part we
omit * in the notations concerning f-minimal martingale measure and related processes.
Let ζ = (ζt)t≥0 be the Radon-Nikodym density process of Q with respect to P :

ζt =
dQt

dPt
.

Let u be a utility function and f its convex conjugate. We set for fixed λ > 0

ρλ(t, x) = EQ[f
′(xλζT−t)] (22)

and
qλ(t, x) = λEQ[ζT−tf

′′(xλζT−t)]

when these expectations exist.

Theorem 4. Let f be a strictly convex function which belongs to C3(R+,∗) such that
an f -minimal equivalent martingale measure Q∗ exists and preserves the Levy property.
We suppose that c 6= 0. We also suppose that the following integrability conditions are
satisfied : for each λ > 0 and each compact set K belonging to R+,∗

EP |f(λζT )| < +∞, EP [ sup
0≤t≤T

| ζt f ′(λζt) |] < +∞,

(H4) EP [ sup
λ∈K, 0≤t≤T

(ζt)
2f ′′(λζt)] < +∞,

EP [ sup
λ∈K, 0≤t≤T

(ζt)
3f ′′′(λζt)] < +∞.

14



Then, for an initial capital x = −ρλ(0, 1) and a utility function u, an optimal strategy
( an asymptotically optimal strategy) exists and is given by

φt = −βζt−
St−

qλ(t, ζt−) (23)

If f ′′(x) = axγ with a > 0, then

φt = −aβλ
γ+1ζγ+1

t−

St−
EP [ ζ

γ+2
T−t ]

Remark 4. For classical utility functions: u(x) = ln(x), u(x) = xp

p
, p < 1, and u(x) =

1− e−x , the corresponding f satisfies f ′′(x) = axγ with a = 1, γ = −2 in the first case,
a = (1− p)−1, γ = 2−p

p−1
in the second case and a = 1, γ = −1 in the third case.

Remark 5. It should also be noticed that for the functions f ′′(x) = axγ with a > 0 and
γ ∈ R due to the monotonicity of f ′, f ′′ and f ′′′ we can omit supλ∈K in the integrability
conditions and they become:

EP |f(λζ∗T )| < +∞, EP [ sup
0≤t≤T

| ζ∗t f ′(λζ∗t ) |] < +∞.

Lemma 2. Suppose that the conditions of Theorem 4 are satisfied. Then the function
ρλ is twice continuously differentiable in x and once continuously differentiable in t on
the set ]0, T [×R+,∗ and

∂ρλ
∂t

(t, x) = β2λ xEQ[ (ζT−t) f
′′(xλζT−t) ]

+
1

2
β2λ2 x2EQ[ (ζT−t)

2 f ′′′(xλζT−t) ]

+

∫

R∗

EQ[Y (u) f ′(xλζt−Y (u))− Y (u) f ′(xλζt−)− λ xζt−f
′′(xλζt−)(Y (u)− 1)] dν(u),

∂ρλ
∂x

(t, x) = λEQ[ ζT−t f
′′(xλζT−t) ],

∂2ρλ
∂x2

(t, x) = λ2EQ[ (ζT−t)
2 f ′′′(xλζT−t) ]

Proof We remark that the regularity properties of ρλ(T − t, x) are the same as ρλ(t, x).
We introduce for a > 0 the stopping times

sn = inf{t ≥ 0|ζt ≥ n}

We remark that sn → ∞ as n → ∞ and that ∪n>0[[0, sn[[= Ω. To obtain the formula
for the partial derivative with respect to t we use Ito formula for f ′(xλζt∧sn), then we
take the expectation with respect to Q and we passe to the limit as n → ∞. In the

15



limit passage we use the fact that QT << PT expressed in terms of Hellinger process,
namely PT and QT -a.s.

h(
1

2
, P, Q)T =

1

8
β2cT +

∫ T

0

∫

R∗

(
√
Y − 1)2dνPL ) <∞.

For the existence of partial derivatives with respect to x we use Taylor formula for
f ′(xλζt) with integral remainder. The continuity of the derivatives follows directly
from continuity of the derivatives of f and the integrability condition (H4).

Proof of Theorem 4 As L is a Levy process both under P and Q, ζt and ζT/ζt are
independent and so

EQ(f
′(λζT )|ζt = x) = EQ(f

′(xλζT−t))

implying
EQ(f

′(λζT )|Gt) = ρλ(t, ζt)

We recall that ρλ(T, ζT ) = f ′(λζT ). So, if we can write Ito formula for the process
ρλ(t, ζt)t≥0 and obtain the integral representation as in Theorem 3, we will be able to
identify the optimal strategy.

In order to ensure that ζt− is bounded from above and below and that St− is bounded
away from zero, we introduce for a > 0 the stopping times

τn = inf{t ≥ 0|ζt ≥ n, ζt ≤ 1/n, St ≤ 1/n}

We remark that τn → ∞ as n→ ∞ and that ∪n>0[[0, τn[[= Ω.
We write the process ζ in the following form:

ζt = ζct + ζdt

and we separate the big jumps of ∆ζ/ζ− using truncation function l:

ζdt = ζd,lt + ζt−

(

x

ζt−
− l(

x

ζt−
)

)

⋆ (µζ − νζ)

Here and further on, µζ and νζ are respectively the jump measure of ζ with respect to
P and its compensator. Then we put

ζ lt = ζct + ζd,lt

According to Lemma 2 the function ρλ is twice continuously differentiable with respect
to x, once continuously differentiable with respect to t, and has bounded derivatives
on compact sets of ]0, T [×R+,∗. Therefore, we can write the Ito formula :

ρλ(t ∧ τn, ζt∧τn) = ρλ(0, 1)+

∫ t∧τn

0

∂ρλ
∂s

(s, ζs−)ds+

∫ t∧τn

0

∂ρλ
∂x

(s, ζs−)dζ
l
s +

1

2

∫ t∧τn

0

∂2ρλ
∂x2

(s, ζs−)d〈ζc〉s
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+

∫ t∧τn

0

∫

R∗

[ρλ(s, ζs− + x)− ρλ(s, ζs−)−
∂ρλ
∂x

(s, ζs−) ζs− l(
x

ζs−
)] (dµζ − dνQζ )

+

∫ t∧τn

0

∫

R∗

[ρλ(s, ζs− + x)− ρλ(s, ζs−)−
∂ρλ
∂x

(s, ζs−) ζs− l(
x

ζs−
)] dνQζ

Under the measure Q the process ζ l is no more a local martingale, but a semi-martingale
with the decomposition:

ζ lt = Bl
t +ml

t

where ml = (ml
t)t≥0 is a Q-local martingale and Bl = (Bl

t)t≥0 is a Q-drift of ζ l. Let us
calculate this drift.

We note that ζ l can be written as E(M l) where E(·) is Dolean-Dade exponential
and M l = (M l

t )t≥0 is a local martingale with respect to P . Then dζ lt = ζ lt−dM
l
t and

from [21],p.260 or from [29], p. 182 we get

M l = β · Lc + l(Y − 1) ⋆ (µL − νPL )

Here and further on, µL and νL are respectively the jump measure of L with respect
to P and its compensator. Using Girsanov Theorem (see [29],p.159) we find that the
drift of M is given by:

dAlt = β3d < Lc >t +[l(Y − 1)]2 dνPL (24)

and that
dBl

t = ζt−dA
l
t (25)

Since (EQ(f
′(λζT )|Gt))t≥0 is a martingale with respect to Q, the process ρλ(t, ζt)t≥0 is

Q-martingale, and hence, the stopped process (ρλ(t∧ τn, ζt∧τn)t≥0) is also a martingale
with respect to Q. Using (25) and (24) and the fact that dζ lt = ζ lt−dM

l
t , we see that we

must have :
∫ t∧τn

0

∂ρλ
∂s

(s, ζs−)ds+

∫ t∧τn

0

∂ρλ
∂s

(s, ζs−)dA
l
s +

1

2

∫ t∧τn

0

∂2ρλ
∂x2

(s, ζs−)β
2 ζs− cds (26)

+

∫ t∧τn

0

∫

R∗

[ρλ(s, ζs−Y )− ρλ(s, ζs−)−
∂ρλ
∂x

(s, ζs−) l(Y − 1)]Y dνds = 0

Let us introduce now the process L̂ = (L̂t)t≥0 such that

St = S0E(L̂)t

where E(·) is the Dolean’s-Dade exponential. Hence, if L̂ is a martingale with respect
to Q, then S will be a local martingale with respect to Q. The parameters of the
process L̂ with respect to to P can easily be expressed using the parameters (b, c, ν) of
the Levy process L :







b̂ = b+ 1
2
c+ (ex − 1− x) ⋆ ν

ĉ = c
ν̂ = (ex − 1) · ν
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Since Lc = L̂c and writing L̂ = L̂c + L̂d we get:

ρλ(t ∧ τn, λζt∧τn) = ρλ(0, 1) +

∫ t∧τn

0

βζs−
∂ρλ
∂x

(s, ζs−)dL̂s +Nd
t∧τn (27)

where Nd = (Nd
t )t≥0 is the purely discontinuous martingale given by

Nd
t∧τn =

∫ t∧τn

0

∫

R∗

[ ρλ(s, ζs−Y )−ρλ(s, ζs−)−ζs−β (ex−1)
∂ρλ
∂x

(s, ζs−) ]d(µL−νQL ) (28)

Since c 6= 0, in the case νQL 6= 0 the integral with respect to (µL − νQL ) with a non-zero

integrand can not be written as a stochastic integral with respect to L̂. Then from
Theorem 3 we deduce that Nd

T = 0 (Q−a.s.). But Nd is a Q-martingale, which implies
Nd
t = 0 for all t ∈ [0, T ] (Q− a.s.) and we should necessarily have Q× λ× νQ-a.s.:

ρλ(t, ζt−Y )− ρλ(t, ζt−)− β(ex − 1)ζt−
∂ρλ
∂x

(t, ζt−) = 0. (29)

In the case νQ is zero measure, which implies that νP is zero measure, we also have
Nd
T = 0.

Finally from (27) and (29) we deduce that on each stochastic interval [[0, τn[[

ρλ(T, λζT ) = ρλ(0, 1) +

∫ T

0

βζs−
∂ρλ
∂x

(s, ζs−)dL̂s

and, hence,

f ′(λζT ) = ρλ(0, 1) +

∫ T

0

βζs−
Ss−

∂ρ

∂x
(s, ζs−)dSs (30)

Note that for all t ≤ T ,

ρλ(t, λζt) = ρλ(0, 1) +

∫ t

0

βζs−

Ss−

∂ρλ
∂x

(x, ζs−)dSs

Now as (ρλ(t, λζt))0≤t≤T defines a Q-martingale, the process on the right-hand side is
also a Q-martingale.

Finally, in the decomposition (18), x = −ρλ(0, 1) = −EQf
′(λζT ) and φ is given by

(23). Computations in the special cases presented above are straightforward.

3.2 Optimal strategies in a change-point situation

Let u be a utility function and f its convex conjugate. We denote by (β, Y ) and (β̃, Ỹ )
the Girsanov parameters corresponding to the changes of measure from P and P̃ to
the f-divergence minimal measures Q∗ and Q̃∗ respectively. Then the first Girsanov
parameter for the change of the measure P to Q∗ will be:

βt = βI[0,τ ](t) + β̃ I]τ,+∞[(t)
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For 0 ≤ t ≤ T we write

z∗t (τ) = ζ∗t I[0,τ ](t) + ζ∗τ
ζ̃∗t
ζ̃∗τ
I]τ,+∞[(t)

From the Theorem 2 we know that the Radon-Nikodym derivative of Q∗ with respect
to P is

Z∗
T (τ) = c∗(τ)z∗T (τ)

where c∗(τ) is defined in Theorem 2 and ζ∗, ζ̃∗ are the densities of Q∗ and Q̃∗ with
respect to P and P̃ .

Taking the regular versions of conditional probabilities, we denote for 0 ≤ v ≤ T

ρ(v)(t, x) = E[z∗T−t((v − t)+)f ′(xλz∗T−t((v − t)+)]

and
q(v)(t, x) = λE[[z∗T−t((v − t)+)]2f ′′(xλz∗T−t((v − t)+)]

when these expectations exist. Here x+ = max(0, x). We can now state the following
result:

Theorem 5. Let f be a strictly convex function which belongs to C3(R+,∗) satisfying
(H1), (H2), (H4) for Q and Q̃ and (13) . Then there exists an F-optimal strategy φ∗

for our change-point model. In addition, it is F̂-adapted and

φ∗
t = −βtZ

∗
t−(τ)

St−
q(τ)(t, Z∗

t−(τ)) (31)

In particular, when f ′′(x) = axγ with a > 0, we have:

φ∗
t = −aλ

γ+1βtZ
∗γ+1
t−

(τ)

St−
E([Z∗

T−t((τ − t)+)]γ+2 | τ)

Proof From Theorem 2 it follows that there exists an f -minimal martingale measure
Q∗. Since the processes X and S are F̂-adapted, applying for example Theorem 3.1 in
[24], we have the existence of an F̂-adapted optimal strategy φ∗ such that

−f ′(λZ∗
T (τ)) = x+

∫ T

0

φ∗
udSu

and such that
∫ .

0
φ∗
udSu defines a local martingale with respect to (Q, F̂).

The proof of the formula for the optimal strategy is similar to that of formula (23)
in Theorem 3. Namely, we write the Ito formula for conditional expectation replacing
β by βt, Y by Yt and ζt by Z

∗
t (τ). The corresponding formulas for Nd can be obtained

with the same changes. Then using the relation

z∗T (τ)

z∗t (τ)
L
= z∗T−t((τ − t)+)
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and the fact that the left-hand side of this equality is independent from z∗t (τ), we obtain

EQ∗(f ′(λZ∗
T (τ)) | τ = v, Z∗

t (τ) = x) = ρ(v)(t, x).

Then for a regular version of conditional probabilities we have:

EQ∗(f ′(λZ∗
T (τ)) | Ft) = EQ∗(f ′(λZ∗

T (τ)) | Gt ∨ σ(τ)) = ρ(τ)(t, Z∗
t (τ))

where the last function is obtained by replacing of v and x by τ and Z∗
t (τ) respec-

tively. Then applying Ito’s formula again, we find the continuous martingale part of
the decomposition of (ρ(v)(t, Z∗

t (τ))t≥0 and then we replace v by τ and it gives us a
final result for optimal strategy.

Example: A change-point Black-Scholes model
As before, we now want to apply the results when L and L̃ define Black-Scholes type
models. Therefore, we assume that L and L̃ are continuous Levy processes with char-
acteristics (b, c, 0) and (b̃, c, 0) respectively. Let τ be a random variable bounded by T
which is independent from L and L̃ . Then the asymptotically optimal strategy from
the point of view of maximization of exponential utility u(x) = 1− exp(−x) will be :

φ∗
t = − βt

St−
=

(b+ c/2)I[0,τ ](t) + (b̃+ c/2) I]τ,+∞[(t)

cSt−
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