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Chain Ladder Method: Bayesian Bootstrap versus Classical Bootstrap

Gareth W. Peters1,2 Mario V. Wüthrich3 Pavel V. Shevchenko2

Abstract

The intention of this paper is to estimate a Bayesian distribution-free chain ladder (DFCL)

model using approximate Bayesian computation (ABC) methodology. We demonstrate how to

estimate quantities of interest in claims reserving and compare the estimates to those obtained

from classical and credibility approaches. In this context, a novel numerical procedure utilising

Markov chain Monte Carlo (MCMC), ABC and a Bayesian bootstrap procedure was developed in

a truly distribution-free setting. The ABC methodology arises because we work in a distribution-

free setting in which we make no parametric assumptions, meaning we can not evaluate the

likelihood point-wise or in this case simulate directly from the likelihood model. The use of a

bootstrap procedure allows us to generate samples from the intractable likelihood without the

requirement of distributional assumptions, this is crucial to the ABC framework. The developed

methodology is used to obtain the empirical distribution of the DFCL model parameters and

the predictive distribution of the outstanding loss liabilities conditional on the observed claims.

We then estimate predictive Bayesian capital estimates, the Value at Risk (VaR) and the mean

square error of prediction (MSEP). The latter is compared with the classical bootstrap and

credibility methods.

Key words: Claims reserving, distribution-free chain ladder, mean square error of prediction,
Bayesian chain ladder, approximate Bayesian computation, Markov chain Monte Carlo,
annealing, bootstrap
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1. Motivation

The distribution-free chain ladder model (DFCL) of Mack [14] is a popular model for stochastic

claims reserving. In this paper we use a time series formulation of the DFCL model which allows

for bootstrapping the claims reserves. An important aspect of this model is that it can provide

a justification for the classical deterministic chain ladder (CL) algorithm which originally was

not founded on an underlying stochastic model. Moreover, it allows for the study of prediction

uncertainties. Note that there are different stochastic models that lead to the CL reserves (see for

example Wüthrich-Merz [30], Section 3.2). In the present paper we use the DFCL formulation

to reproduce the CL reserves.

The paper presents a novel methodology for estimating a Bayesian DFCL model utilising a

framework of approximate Bayesian computation (ABC) in a non-standard manner. A method-

ology utilising Markov chain Monte Carlo (MCMC), ABC and a Bayesian bootstrap procedure

is developed in a distribution-free setting. The ABC framework is required because we work in

a distribution-free setting in which we make no parametric assumptions about the form of the

likelihood. Effectively, the ABC methodology allows us to overcome the fact that we cannot

evaluate the likelihood point-wise in the DFCL model. Typically, ABC methodology circum-

vents likelihood evaluations by simulation from the likelihood. However, in this case simulation

from the likelihood model is not directly available because no parametric assumption is made.

We combine ABC methodology with bootstrap to overcome this additional complexity that the

DFCL model presents in the ABC framework. Then, by using an MCMC numerical sampling

algorithm combined with the novel version of ABC that has the embedded bootstrap procedure,

we are able to obtain samples from the intractable posterior distribution of the DFCL model

parameters.

This allows us to utilise this methodology to obtain the Bayesian posterior distribution of the

DFCL model parameters empirically. Then we demonstrate two approaches in which we can

utilise the posterior samples for the DFCL model parameters to obtain the Bayesian predictive

distribution of the claims. The first approach involves using each posterior sample to numeri-

cally estimate the full predictive claims distribution given the observed claims. The alternative

approach involves using the posterior samples for the DFCL model parameters to form Bayesian

point estimators. Then, conditional on these point estimators, we can obtain the Bayesian

conditional predictive distribution for the claims. The second approach will be relevant for
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comparisons with the classical and credibility approaches. The first approach has the benefit

that it integrates out of the Bayesian predictive claims distribution the parameter uncertainty

associated with estimation of the DFCL chain ladder parameters.

The paper then analyses the parameter estimates in the DFCL model, the associated claims

reserves and the mean square errors of prediction (MSEP) from both the frequentist perspective

and a contrasting Bayesian view. In doing so we analyse CL point estimators for parameters of

the DFCL model, the resulting estimated reserves and the associated MSEP from the classical

perspective. These include non-parametric bootstrap estimated prediction errors which can be

obtained via one of two possible bootstrap procedures, conditional or unconditional. In this

paper we consider the process of conditional back propagation; see [30] for in-depth discussion.

These classical frequentist estimators are then compared to Bayesian point estimators. The

Bayesian estimates considered are the maximum a posteriori (MAP) and the minimum mean

square error (MMSE) estimators. For comparison with the classical frequentist reserve estimates,

we also obtain the associated Bayesian estimated reserves conditional upon the Bayesian point

estimators.

In addition, since in the Bayesian setting we obtain samples from the posterior for the parameters

we use these along with the MSEP obtained by the estimated Bayesian point estimators to obtain

associated posterior predictive intervals to be compared with the classical bootstrap procedures.

We then robustify the prediction of reserves by Rao-Blackwellization, that is, we integrate out

the influence of the unknown variance parameters in the DFCL model. Having done this, we

analyse the resultant MSEP. This is again only achievable since in the Bayesian setting we obtain

samples from the joint posterior for the CL factors and the variances.

To summarize our contribution, the novelty within this paper involves the development and

comparison of a new estimation methodology to work with the Bayesian CL model for the

DFCL model which makes no parametric assumptions on the form of the likelihood function;

see also Gisler-Wüthrich [12]. This is unlike the works of Yao [31] and Peters et al. [21] that

assume explicit distributions in order to construct the posterior distributions in the Bayesian

context. Instead we demonstrate how to work directly with the intractable likelihood functions

and the resulting intractable posterior distribution, using novel ABC methodology. In this

regard we demonstrate that we do not need to make any parametric assumptions to perform

posterior inference, avoiding potentially poor model assumptions made, as for example in the

paper of Yao [31].
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accident development years j

year i 0 1 . . . j . . . I

0

1 observed random variables Ci,j ∈ DI

...

i

... to be predicted Ci,j ∈ Dc
I

I − 1

I

Table 1: Claims development triangles.

Outline of this paper. The paper begins with a presentation of the claims reserving problem

and then presents the model we shall consider. This is followed by the description of the

classical CL algorithm and the construction of a Bayesian model that can be used to estimate

the parameters of the model. The Bayesian model is constructed in a distribution-free setting.

This is followed by a discussion on classical versus Bayesian parameter estimators along with

a bootstrap based procedure for the estimation of the parameter uncertainty in the classical

setting. The next section presents the methodology of ABC coupled with a novel bootstrap

based sampling procedure which will allow us to work directly with the distribution-free Bayesian

model. We then illustrate the developed algorithm on a synthetic data set and the real data set,

comparing performance to the classical results and those obtained via credibility theory.

2. Claims development triangle and DFCL model

We briefly outline the claims development triangle structure we utilise in the formulation of

our models. Assume there is a run-off triangle containing claims development data with the

structure given in Table 1.

Assume that Ci,j are cumulative claims with indices i ∈ {0, . . . , I} and j ∈ {0, . . . , J}, where
i denotes the accident year and j denotes the development year (cumulative claims can refer

to payments, claims incurred, etc). We make the simplifying assumption that the number of

accident years is equal to the number of observed development periods, that is, I = J . At time
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I, we have observations

DI = {Ci,j; i+ j ≤ I} , (2.1)

and for claims reserving at time I we need to predict the future claims

Dc
I = {Ci,j; i+ j > I, i ≤ I, j ≤ J} . (2.2)

Moreover, we define the set Bj = {Ci,k; i+ k ≤ I, 0 ≤ k ≤ j} for j ∈ {0, . . . , I}, that is, B0 is

the first column in Table 1.

2.1. Classical chain ladder algorithm

In the classical (deterministic) chain ladder algorithm there is no underlying stochastic model.

It is rather a recursive algorithm that is used to estimate the claims reserves and which has

proved to give good practical results. It simply involves the following recursive steps to predict

unobserved cumulative claims in Dc
I . Set Ĉi,I−i = Ci,I−i and for j > I − i

Ĉi,j = Ĉi,j−1f̂
(CL)
j−1 with CL factor estimates f̂

(CL)
j−1 =

∑I−j
i=0 Ci,j∑I−j

i=0 Ci,j−1

. (2.3)

Since this is a deterministic algorithm it does not allow for quantification of the uncertainty

associated with the predicted reserves. To analyse the associated uncertainty there are several

stochastic models that reproduce the CL reserves; for example Mack’s distribution-free chain

ladder model [14], the over-dispersed Poisson model (see England-Verrall [6]) or the Bayesian

chain ladder model (see Gisler-Wüthrich [12]). We use a time series formulation of the Bayesian

chain ladder model in order to use bootstrap methods and Bayesian inference.

2.2. Bayesian DFCL model

We use an additive time series version of the Bayes chain ladder model (Model Assumptions 3.1

in Gisler-Wüthrich [12]).

Model Assumptions 2.1.

1. We define the CL factors by F = (F0, . . . , FJ−1) and the standard deviation parameters

by Ξ = (Ξ0, . . . ,ΞJ−1). We assume independence between all these parameters, i.e. the

prior density of (F,Ξ) is given by

π(f ,σ) =
J−1∏

j=0

π(fj) π(σj), (2.4)

where π(fj) denotes the density of Fj and π(σj) denotes the density of Ξj.
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2. Conditionally, given F = f = (f0, . . . , fJ−1) and Ξ = σ = (σ0, . . . , σJ−1), we have:

• Cumulative claims Ci,j in different accident years i are independent.

• Cumulative claims satisfy the following time series representation

Ci,j+1 = fjCi,j + σj
√
Ci,jεi,j+1, (2.5)

where conditionally, given B0, we have that the residuals εi,j are i.i.d. satisfying

E [εi,j|B0,F ,Ξ] = 0 and Var [εi,j |B0,F ,Ξ] = 1, (2.6)

and P [Ci,j > 0| B0,F ,Ξ] = 1 for all i, j.

Remark. Note that the assumptions on the residuals are slightly involved in order to guarantee

that cumulative claims Ci,j are positive P -a.s.

Corollary 2.2. Under Model Assumptions 2.1 we have that conditionally, given DI , the random
variables (F0,Ξ0), . . . , (FJ−1,ΞJ−1) are independent. Thus, we obtain the following posterior
distribution for (F ,Ξ), given DI ,

π (f ,σ|DI ) =

J−1∏

j=0

π (fj, σj |DI) . (2.7)

This result follows from Theorem 3.2 in Gisler-Wüthrich [12]; from prior independence of the

parameters; and the fact that Ci,j+1 only depends on Fj , Ξj and Ci,j (Markov property). This

has important implications for the ABC sampling algorithm developed below.

In order to perform the Bayesian analysis we make explicit assumptions on the prior distributions

of (F ,Ξ).

Model Assumptions 2.3.

In addition to Model Assumptions 2.1 we assume that the prior model for all parameters j ∈
{0, . . . , J − 1} is given by:

• Fj ∼ Γ (αj, βj), where Γ (αj , βj) is a gamma distribution with mean E [Fj ] = αjβj = f̂
(CL)
j

(see (2.3)) and large variance to have diffuse priors.

• The variances Ξ2
j ∼ IG (aj, bj), where IG (aj, bj) is an inverse gamma distribution with

mean E
[
Ξ2
j

]
= bj/(aj − 1) = σ̂

2(CL)
j (see (3.1) below) and large variance.
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Remarks

1. The likelihood model is intractable, meaning that no density can be written down an-

alytically in the DFCL model. In formulating the Bayesian model we have only made

distributional assumptions on the priors for the parameters (F ,Ξ) but not on the observ-

able cumulative claims Ci,j. Though we make distributional assumptions for the priors, the

model is distribution-free because no distributional assumptions on the cumulative claims

are made. As a result of only making assumptions on the priors, a standard Bayesian

analysis using analytic posterior distributions cannot be performed. One way out of this

dilemma would be to re-formulate the Bayesian model by making distributional assump-

tions (for example, this is done in Yao [31]) but then the model is no longer distribution-

free. Another approach would be to use credibility methods (see Gisler-Wüthrich [12])

but this only gives statements for the first two moments. In the present set up we develop

ABC methods that allow for a full distributional answer for the posterior distributions

without making explicit distributional assumptions for the cumulative claims Ci,j.

2. Our priors are chosen as diffuse priors with large variances. This again highlights the

differences between specification of the prior distributions and making distributional as-

sumptions for the actual likelihood model, these are mutually exclusive ideas.

3. We select the priors to ensure that we maintain several relevant aspects of the DFCL

model. In particular, it is important to utilise priors that enforce the strict positivity of

the parameters fj, σj > 0. We note here that the parametric Bayesian model developed

in Yao [31] failed in this aspect when it came to prior specification. Therefore we develop

an alternative prior structure that satisfies these required properties of the DFCL model.

3. DFCL model parameter estimators

This section considers both classical and Bayesian estimators for the chain ladder framework,

including both the chain ladder factors and the variance parameters.

3.1. Classical

In the classical CL method, the CL factors are estimated by f̂
(CL)
j given in (2.3). The variance

parameters are estimated by

σ̂
2(CL)
j =

1

I − j − 1

∑I−j−1

i=0
Ci,j

(
Ci,j+1

Ci,j
− f̂

(CL)
j

)2

; (3.1)
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see (3.4) in Wüthrich-Merz [30].

Note that this estimator is only well-defined for j < I − 1. There is a vast literature and

discussion on the estimation of tail parameters. We do not enter this discussion here but we

simply choose the estimator given in Mack [14] for the last variance parameter which is defined

by

σ̂
2(CL)
J−1 = min

{
σ̂
4(CL)
J−2

σ̂
2(CL)
J−3

, σ̂
2(CL)
J−3 , σ̂

2(CL)
J−2

}
. (3.2)

3.2. Bayesian

In a Bayesian inference context one calculates the posterior distribution of the parameters,

given DI . As in (2.7) we denote this posterior by π (f ,σ|DI). Since the MCMC-ABC bootstrap

procedure will allow us to obtain samples from the posterior distribution of the Bayesian DFCL

model presented, we can now consider estimating CL point estimators using these samples.

There are two commonly used point estimators in Bayesian analysis that correspond to the

posterior mode (MAP) and the posterior mean (MMSE), respectively:

(
f̂
(MAP )
j , σ̂

(MAP )
j

)
= argmaxfj ,σj

π (fj, σj |DI) , (3.3)

and

f̂
(MMSE)
j =

∫
fj π (fj|DI) dfj = E [Fj | DI ] , (3.4)

σ̂
(MMSE)
j =

∫
σj π (σj|DI) dσj = E [Ξj| DI ] . (3.5)

In the case in which fj is not independent of σj , the MAP estimators obtained through joint

maximization are optimal. However, in practice one often works with marginal estimators for

simplicity. Additionally, note that for diffuse priors we find (see Corollary 5.1 in Gisler-Wüthrich

[12])

f̂
(MMSE)
j ≈ f̂

(CL)
j . (3.6)

Hence, using Corollary 2.2, we obtain the approximation

E [Ci,J | DI ] = E [E [Ci,J | DI ,F ,Ξ]| DI ] = Ci,I−i E




J−1∏

j=I−i

Fj

∣∣∣∣∣∣
DI




= Ci,I−i

J−1∏

j=I−i

E [Fj | DI ] = Ci,I−i

J−1∏

j=I−i

f̂
(MMSE)
j (3.7)

≈ Ci,I−i

J−1∏

j=I−i

f̂
(CL)
j = Ĉi,J ,
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where on the last line we have an equality if the diffusivity of the priors π(fj) tends to infinity.

This is exactly the argument why the Bayesian CL model can be used to justify the CL predictors;

see Gisler-Wüthrich [12].

3.3. Full predictive distribution and VaR

In addition, the posterior samples for the DFCL model parameters, obtained via the MCMC-

ABC bootstrap procedure, will allow us to obtain the predictive distribution of the claims in

two ways. The first is the full predictive distribution of the claims obtained after integrating out

the posterior uncertainty associated with the Bayesian DFCL model parameters to empirically

estimate

π (Dc
I |DI) =

∫ ∫
π (Dc

I |f ,σ) π (f ,σ|DI) dfdσ. (3.8)

In practice, this numerical procedure involves taking each posterior sample for the DFCL model

parameters and obtaining an estimate of the predicted claims.

The second approach involves using one of the Bayesian point estimators for the parameters

such as the MMSE to obtain π
(
Dc

I |f̂MMSE, σ̂MMSE
)
. Alternatively, one may consider a Rao-

Blackwellised version of the Bayesian predictive distribution of claims involving

π
(
Dc

I |f̂MMSE,DI

)
=

∫
π
(
Dc

I |f̂MMSE,σ
)
π
(
σ|f̂MMSE,DI

)
dσ

having numerically integrated out the Bayesian posterior uncertainty associated with the DFCL

variance parameters. Such methods are typically known as empirical Bayesian approaches.

These results can then be applied to estimate any risk measures. For example, if we fix a security

level 95% we can calculate the VaR on that level, which is defined by

VaR0.95

(
Ci,J − E [Ci,J |DI ]

∣∣∣∣DI

)
= min

{
x; P

[
Ci,J − E [Ci,J |DI ] > x

∣∣∣∣DI

]
≤ 0.05

}
. (3.9)

4. Bootstrap and mean square error of prediction

Assume that we have calculated the Bayesian predictor or the CL predictor given in (3.7).

Then we would like to determine the prediction uncertainty, that is, we would like to study

the deviation of Ci,J around its predictor. If one is only interested in second moments, the

so-called conditional mean square error of prediction (MSEP), one can often estimate the error

terms analytically. However, other uncertainty measures like Value-at-Risk (VaR) can only be

determined numerically; see (3.9).
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A popular numerical method is the bootstrap method. The bootstrap technique was developed

by Efron [3] and extended by Efron-Tibshirani [4] and Davison-Hinkley [1]. In the actuarial

literature the development of bootstrap procedures includes the work of Taylor [27], Taylor-

McGuire [28], [29], England-Verrall [5], [7] and Pinheiro et al. [19].

This procedure allows one to obtain information regarding an aggregated distribution given

a single realisation of the data. To apply the bootstrap procedure one introduces a minimal

amount of model structure such that resampling observations can be achieved using observed

samples of the data.

In this section we present a bootstrap algorithm in the classical frequentist approach. That is,

we assume that the CL factors F = f and the standard deviation parameters Ξ = σ given in

Model Assumptions 2.1 are unknown constants. The bootstrap then generates synthetic data

denoted by D∗
I that allow for the study of the fluctuations of f̂ (CL) and σ̂2(CL) (for details see

Section 7.4 in Wüthrich-Merz [30]). In the presented text we restrict ourselves to the conditional

resampling approach presented in Section 7.4.2 of Wüthrich-Merz [30].

4.1. Non-parametric classical bootstrap (conditional version)

1. Calculate estimated residuals ε̃i,j for i+ j ≤ I, j > 0, conditional on the estimators f̂
(CL)
0:J−1

and σ̂
2(CL)
0:J−1 and the observed data DI :

ε̃i,j = ε̃i,j(f̂
(CL)
j−1 , σ̂

(CL)
j−1 ) =

Ci,j − f̂
(CL)
j−1 Ci,j−1

σ̂
(CL)
j−1

√
Ci,j−1

.

2. These residuals (ε̃i,j)i+j≤I give the empirical bootstrap distribution F̂DI
.

3. Sample i.i.d. residuals ε̃∗i,j ∼ F̂DI
for i+ j ≤ I, j > 0.

4. Generate bootstrap observations (conditional resampling)

C∗
i,j = f̂

(CL)
j−1 Ci,j−1 + σ̂

(CL)
j−1

√
Ci,j−1ε̃

∗
i,j,

which defines D∗
I = D∗

I (f̂
(CL), σ̂(CL)). Note that for the unconditional version of boot-

strap we should generate C∗
i,j = f̂

(CL)
j−1 C∗

i,j−1 + σ̂
(CL)
j−1

√
C∗
i,j−1ε̃

∗
i,j . For a discussion on this

approach, see Section 7.4.1 of [30].
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5. Calculate bootstrapped CL parameters f̂∗
j and σ̂2∗

j by

f̂∗
j =

∑I−j−1
i=0 C∗

i,j+1∑I−j−1
i=0 Ci,j

,

σ̂2∗
j =

1

I − j − 1

∑I−j−1

i=0
Ci,j

(
C∗
i,j+1

Ci,j
− f̂∗

j

)2

.

6. Repeat steps 3-5 and obtain empirical distributions from the bootstrap samples Ĉ∗
i,J , f̂

∗
j

and σ̂2∗
j . These are then used to quantify the parameter estimation uncertainty.

This non-parametric classical bootstrap method can be seen as a frequentist approach. This

means that we do not express our parameter uncertainty by the choice of an appropriate prior

distribution. We rather use a point estimator for the unknown parameters and then study the

possible fluctuations of this point estimator.

The main difficulty now is that the non-parametric bootstrap method, as described above,

underestimates the “true” uncertainty. This comes from the fact that the estimated residuals ε̃i,j,

in general, have variance smaller than 1 (see formula (7.23) in Wüthrich-Merz [30]). This means

that our estimated residuals are not appropriately scaled. Therefore, frequentists use several

different scalings to correct this fact (see formula (7.24) in Wüthrich-Merz [30] or England-Verrall

[6]). Here, we use a different approach by introducing the novel Bayesian bootstrap method

embedded within an MCMC-ABC algorithm to obtain empirically the posterior distribution of

the Bayesian DFCL model, described below. Having obtained this, we can then calculate all

required Bayesian parameter estimates, capital reserve estimates and associated risk measures

such as VaR. Before presenting the methodology for this novel MCMC-ABC algorithm we will

finalize this section with the decompositions of the MSEP under frequentist, Bayesian and

credibility approaches.

4.2. Frequentist bootstrap estimates

Let us for the time-being concentrate on the conditional MSEP given by

msepCi,J |DI

(
Ĉi,J

)
= E

[(
Ci,J − Ĉi,J

)2∣∣∣∣DI

]
(4.1)

= Var (Ci,J | DI) +
(
E [Ci,J | DI ]− Ĉi,J

)2
.
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The first term is known as the conditional process variance and the second term as the parameter

estimation uncertainty. In the frequentist approach (i.e. for given deterministic F = f and

Ξ = σ) these terms can be calculated as

Var (Ci,J | DI) =
(
E [Ci,J |Ci,I−i]

)2 J−1∑

j=I−i

σ2
j /f

2
j

E [Ci,j |Ci,I−i]

def.
= Ci,I−iΓI−i, (4.2)

and
(
E [Ci,J | DI ]− Ĉi,J

)2
= C2

i,I−i




J−1∏

j=I−i

fj −
J−1∏

j=I−i

f̂
(CL)
j




2

def.
= C2

i,I−i∆I−i; (4.3)

see Wüthrich-Merz [30], Section 3.2.

The process variance (4.2) is estimated by replacing the parameters by its estimators,

V̂ar (Ci,J | DI) =
(
Ĉi,J

)2 J−1∑

j=I−i

σ̂
2(CL)
j /(f̂

(CL)
j )2

Ĉi,j

def.
= Ci,I−iΓ̂

freq
I−i . (4.4)

The parameter estimation error is more involved and there we need the bootstrap algorithm. As-

sume that the bootstrap method gives T bootstrap samples f̂
∗(1)
j , . . . , f̂

∗(T )
j . Then the parameter

estimation error (4.3) is estimated by the sample variance of the product of the bootstrap obser-

vation chain ladder parameter estimates f̂
∗(1)
j , . . . , f̂

∗(T )
j , which gives the estimator C2

i,I−i∆̂
freq
I−i .

4.3. Bayesian estimates

In the Bayesian setup, (i.e. choosing prior distributions for the unknown parameters F and Ξ)

we obtain a natural decomposition of the conditional MSEP:

msepCi,J |DI
(E [Ci,J | DI ]) = Var (Ci,J | DI) (4.5)

= E [Var (Ci,J | DI ,F ,Ξ)| DI ] + Var (E [Ci,J | DI ,F ,Ξ]| DI) .

The average process variance is given by (see Wüthrich-Merz [30], Lemma 3.6)

E [Var (Ci,J | DI ,F ,Ξ)| DI ] = Ci,I−i

J−1∑

j=I−i

E




j−1∏

m=I−i

Fm Ξ2
j

J−1∏

n=j+1

F 2
n

∣∣∣∣∣∣
DI


 (4.6)

= Ci,I−i

J−1∑

j=I−i

j−1∏

m=I−i

E [Fm| DI ]E
[
Ξ2
j

∣∣DI

] J−1∏

n=j+1

E
[
F 2
n

∣∣DI

] def.
= Ci,I−iΓ̂

Bayes
I−i ,

where we have used posterior independence (2.7). The parameter estimation error is given by

Var (E [Ci,J | DI ,F ,Ξ]| DI) = C2
i,I−i Var




J−1∏

j=I−i

Fj

∣∣∣∣∣∣
DI


 def.

= C2
i,I−i∆̂

Bayes
I−i , (4.7)
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where we have used (3.7). Using (2.7), we obtain for the last term

C2
i,I−i∆̂

Bayes
I−i = C2

i,I−i




J−1∏

j=I−i

E
[
F 2
j

∣∣DI

]
−

J−1∏

j=I−i

E [Fj | DI ]
2


 . (4.8)

In order to calculate these two terms given in (4.6) and (4.8), we need to calculate the posterior

distribution of (F ,Ξ), given DI . Since we do not have a full distributional model, we cannot

write down the likelihood function, which would allow for analytical solutions or Markov chain

Monte Carlo (MCMC) simulations. Therefore we introduce the ABC framework which allows for

distribution-free simulations using appropriate bootstrap samples and a distance metric. This

will be discussed in Section 5.

4.4. Credibility Estimates

As mentioned previously, we can also consider the credibility estimates given in Gisler-Wüthrich

[12]. As long as we are only interested in the second moments (i.e. conditional MSEP) we can

also use credibility estimators, which are minimum variance estimators that are linear in the

observations. For diffuse priors we obtain the approximation given in Corollary 7.2 of Gisler-

Wüthrich [12]

m̂sepCi,J |DI
(E [Ci,J | DI ]) = Ci,I−iΓ̂

cred
I−i + C2

i,I−i∆̂
cred
I−i , (4.9)

where

Γ̂cred
I−i =

J−1∑

j=I−i





j−1∏

m=I−i

f̂ (CL)
m σ̂

2(CL)
j

J−1∏

n=j+1

(
(f̂ (CL)

n )2 +
σ̂
2(CL)
n∑I−n−1

i=0 Ci,n

)
 , (4.10)

∆̂cred
I−i =

J−1∏

j=I−i

(
(f̂

(CL)
j )2 +

σ̂
2(CL)
j∑I−j−1

i=0 Ci,j

)
−

J−1∏

j=I−i

(f̂
(CL)
j )2. (4.11)

In the results section we compare the frequentist bootstrap approach, the credibility approach

and the ABC bootstrap approach that is described below (see Table 7 below).

5. ABC for intractable likelihoods and numerical Markov chain sampler

To estimate numerically the parameters, predicted claims and associated uncertainty measures

such as the MSEP presented in the previous sections, the Bayesian approach requires the ability

to sample from the posterior distribution of the DFCL model parameters. Obtaining samples
{
f (t),σ2(t)

}
t=1:T

which are realisations of a random vector distributed with a posterior distri-

bution π (f ,σ|DI) in the DFCL model is difficult since the likelihood is intractable. Hence,
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standard numerical approaches such as Markov chain Monte Carlo (MCMC) algorithms (see

Gilks et al. [11]) cannot be directly used since they all require explicit repeated evaluation of the

likelihood function at each stage of the Markov chain sampling algorithm. It is common to avoid

this difficulty by making distributional assumptions for the form of the likelihood. This then

violates the DFCL model assumption but allows for relatively standard sampling procedures to

be applied. In this regard, one possible approach involves making a specific Gaussian assump-

tion for the likelihood. One problem with this assumption, which is evident immediately, is that

it precludes skewness in the model. Here, we do not make any such assumptions and instead

we work in a truly distribution-free model using ABC to facilitate sampling from an intractable

posterior distribution.

There is an additional complexity in the DFCL model not typically encountered when working

with ABC methodology. Typically, ABC methodology is developed in the case in which the

model likelihood cannot be evaluated point-wise, but conditional on parameter values, synthetic

data is easily simulated from the model; see examples in Peters-Sisson [16] and Peters et al. [22].

This is not the case in the Bayesian DFCL model. Under the DFCL model the likelihood is

only expressed by moment conditions, hence we cannot evaluate the likelihood point-wise and

also the simulation from the likelihood cannot be performed directly. This is why we introduce

the novel concept of the Bayesian bootstrap which is embedded within the ABC methodological

framework.

Hence, to sample from the posterior in our DFCL model we develop a novel formulation of

the ABC methodology based on the bootstrap and conditional back transformation procedure,

similar to that discussed in Section 4.

ABC methods aim to sample from posterior distributions in the presence of computationally

intractable likelihood functions. For an application in risk modelling of ABC methodology, see

Peters-Sisson [16]. In this article we present a novel MCMC-ABC algorithm. Before presenting

some details of the numerical MCMC procedure, we note that alternative numerical algorithms

could be considered in the ABC context. For example, a sequential Monte Carlo (SMC) based

algorithms which can improve simulation efficiency can be found in Del Moral et al. [2], Sisson

et al. [25], Peters et al. [17],[18] and Marjoram et al. [15].
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5.1. ABC methodology

In this section we provide a brief description of ABC methodology, which describes a suite of

methods developed specifically for working with models in which the likelihood is computation-

ally intractable. Here we work with a Bayesian model and consider the likelihood intractability

to arise in the sense that we may not evaluate the likelihood point-wise.

The ABC method we consider here embeds an intractable target posterior distribution, in our

case denoted by π (f ,σ|DI), into a general augmented model

π (f ,σ,D∗
I ,DI) = π (DI |D∗

I ,f ,σ) π (D∗
I |f ,σ) π (f ,σ) , (5.1)

where D∗
I is an auxiliary vector on the same space as DI . In this augmented Bayesian model, the

weighting function π (DI |D∗
I ,f ,σ) weights the intractable posterior. In this paper we consider

the hierarchical model assumption, where we work with π (DI |D∗
I ,f ,σ) = g (DI |D∗

I ); see Reeves

and Pettitt [24].

The mechanism in the ABC framework which allows one to avoid the evaluation of the intractable

likelihood involves replacing this evaluation with data simulation from the likelihood. That is,

given a realisation of the parameters of the model, a synthetic data set D∗
I is generated and

compared to the original data set. This is a key aspect of the novel methodology we develop

in this paper, since we utilise a bootstrap procedure to perform this simulation in the DFCL

model setting.

Then summary statistics S(D∗
I ) derived from this data are compared to summary statistics of the

observed data S(DI) and a distance ρ (S(D∗
I ), S(DI)) is calculated. Finally, a weight is given to

these parameters according to the weighting function g (DI |D∗
I ), which may give greater weight

when S(D∗
I ) and S(DI) are close (i.e. where ρ (S(D∗

I ), S(DI )) is small).

For example, under the “Hard Decision” (HD) weighting given by

g (DI |D∗
I ) ∝




1 if ρ (S (DI) , S (D∗

I )) ≤ ǫ,

0 otherwise;

(5.2)

a reward is given to summary statistics of the augmented auxiliary variables S (D∗
I ) within an

ǫ-tolerance of the summary statistic of the actual observed data S (DI), as measured by distance

metric ρ.

Hence, in the ABC context, an approximation to the intractable target posterior marginal

distribution π (f ,σ|DI ), for which we are interested in formulating an empirical estimate, is
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given by

πABC (f ,σ|DI , ǫ) ∝
∫

g (DI |D∗
I )π (D∗

I |f ,σ) π (f ,σ) dD∗
I . (5.3)

As briefly mentioned, obtaining samples from the ABC posterior can be achieved using a num-

ber of numerical procedures, in this paper we consider an MCMC approach. The MCMC class

of likelihood-free algorithm is justified on a joint space formulation, in which the stationary

distribution of the Markov chain is given by πABC (f ,σ,D∗
I |DI , ǫ). The corresponding target

distribution for the marginal distribution πABC (f ,σ|DI , ǫ) is then obtained via numerical inte-

gration. Note that the marginal posterior distribution πABC (f ,σ|DI , ǫ) → π (f ,σ|DI) as ǫ → 0,

recovering the ”true” (intractable) posterior, assuming that S (DI) are sufficient statistics and

that the weighting function converges to a point mass on S (DI) as ǫ → 0; see Peters-Sisson [16]

and references therein for detailed discussion. Accordingly, the tolerance ǫ is typically set as low

as possible for a given computational budget. In this paper we focus on the class of MCMC-based

sampling algorithms.

The ABC methodology is novel both in the statistics literature and in the actuarial literature.

It is informative to clearly provide the justification for this approach both theoretically and nu-

merically. The simplest understanding of ABC is achieved by considering a rejection algorithm,

therefore we provide a basic argument for how the ABC methodology works in simple rejection

sampling in Appendix A. The actuarial DFCL model considered in this paper requires the more

sophisticated MCMC-ABC methodology described below.

5.2. Technical justification for MCMC-ABC algorithm

For given observations DI we want to sample from πABC(f ,σ|DI) with an intractable likelihood

function. We assume that S(DI) is either the data itself or a summary of the data such as a

sufficient statistic for the model from which we assume data DI is a realisation. We assume

that, given a set of parameters values (f ,σ), we can generate from the DFCL model (via a

conditional bootstrap procedure) a synthetic data set denoted D∗
I . We define a hard decision

function g(D∗
I ,DI) = I{ρ(S(D∗

I ), S(DI)) < ǫ}(D∗
I ) for a given tolerance level ǫ > 0 and a

distance metric ρ(·, ·), where I{·} is the indicator function which equals 1 if the event is true and

0 otherwise. As demonstrated in Appendix A, we use the approximation, (A.3)-(A.4), which

gives us in the Bayesian DFCL model setting,

πABC(f ,σ|DI , ǫ) =

∫
g(DI |D∗

I ) π(D∗
I |f ,σ) π(f ,σ) dD∗

I∫
g(DI |D∗

I ) π(D∗
I |f ,σ) π(f ,σ) dD∗

I df dσ
=

π(f ,σ)E [g(DI |D∗
I )| f ,σ]

E
[
g(DI |D∗

I )
] .

(5.4)
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In the next step the numerator of (5.4) is approximated using the empirical distribution:

π(f ,σ)E [g(DI |D∗
I )|f ,σ] ≈ π(f ,σ)

1

L

L∑

l=1

g
(
DI |D∗,(l)

I (f ,σ)
)
, (5.5)

where D∗,(l)
I (f ,σ)

i.i.d.∼ π(D∗
I |f ,σ). Finally, we need to consider the denominator E [g(X|y)]. In

general this has a non-trivial form that cannot be calculated analytically. However, since we use

an MCMC based method the denominators cancel in the accept-reject stage of the algorithm.

Therefore, the intractability of the denominator does not impede sampling from the posterior.

Thus we use

πABC(f ,σ|DI , ǫ) ≈
∫
g(DI |D∗

I ) π(D∗
I |f ,σ) π(f ,σ) dD∗

I∫
g(DI |D∗

I ) π(D∗
I |f ,σ) π(f ,σ) dD∗

I df dσ

∝ π(f ,σ)E [g(DI |D∗
I )| f ,σ]

≈ π(f)π(σ)
1

L

L∑

l=1

g
(
DI |D∗,(l)

I (f ,σ)
)

(5.6)

in order to obtain samples from πABC(f ,σ|DI , ǫ). Almost universally, L = 1 is adopted to

reduce computation but on the other hand this will slow down the rate of convergence to the

stationary distribution.

Note that sometimes one also uses softer decision functions for g(·|·). The role of the distance

measure ρ is evaluated by Peters et al. [22]. We further extend this analysis to the class of

models considered in this paper. We analyse several choices for the distance measure ρ such as

Mahlanobis distance, scaled Euclidean distance and the Manhattan “City Block” distance. Fan

et al. [8] demonstrate that it is not efficient to utilise the standard Euclidean distance, especially

when summary statistics considered are on different scales.

Additionally, using an MCMC-ABC algorithm, it is important to assess convergence diagnostics.

Particularly when using MCMC-ABC where serial correlation in the Markov chain samples

can be significant if the sampler is not designed carefully. We assess autocorrelation of the

simulated Markov chain, the Geweke [10] time series statistic and the Gelman-Rubin [9] R-

statistic convergence diagnostic in an ABC setting.

Concluding: We apply three different techniques in order to treat the intractable likelihood:

1. ABC is used to get a handle on the likelihood and therefore the intractable posterior.

2. As a result of using ABC we need to be able to generate synthetic data samples from

the DFCL model given realisations of the parameters. These data samples come from the

bootstrap algorithm.
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3. We use a well understood MCMC based sampling algorithm that does not require calcula-

tion of the non-analytic normalizing constants for the target distribution πABC(f ,σ|DI , ǫ).

The reason for this is that in the acceptance probability of the MCMC algorithm, the nor-

malizing constant for the target posterior appears both in the numerator and denominator,

resulting in cancellation.

The specific details of the MCMC algorithm and ABC choices are provided in the Appendix B.

6. Example 1: Analysis of MCMC-ABC bootstrap methodology on synthetic data

To test the accuracy of the methodology, first we use synthetic data generated with known

parameter values. The tuning of the proposal distribution in this study is done for the simplest

“base” distance metric, the weighted Euclidean distance. To study the effect of the distance

metric in a comparative fashion we shall keep the proposal distribution unchanged.

The first example we present has a claims triangle of size I = J = 9. In this example we fix the

true model parameters, denoted by f = (f0, . . . , fJ−1) and σ2 =
(
σ2
0 , . . . , σ

2
J−1

)
and given in

Table 2, used to generate the synthetic data set.

6.1. Generation of synthetic data

To generate the synthetic observations for DI , we generate randomly the first column (i.e. B0).

Then conditional on this realisation of B0 we make use of the model given in (2.1) to generate the

remaining columns of DI , ensuring the model assumptions are satisfied. This requires setting

Ci,0 sufficiently large (for appropriate choices of f and σ2) and then sampling i.i.d. realisations

of εi,j ∼ U
[
−
√
3,
√
3
]
used to obtain DI ; see the observations in Table 2.

6.2. Sensitivity analysis and convergence assessment

We perform a sensitivity analysis, studying the impact of the distance metric on the mixing of

the Markov chain in the case of joint estimation of the chain ladder factors and the variance

parameters.

The pre-tuned coefficient of variation of the Gamma proposal distribution for each parameter of

the posterior was performed using the following settings; Tb = 50, 000, T̃ = 200, 000, ǫmin = 0.1

and initial values γj = 1 for all j ∈ {1, . . . , 2J}. Additionally, the prior parameters for the chain
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ladder factors Fj were set as (α, β) = (2, 1.2/2) and the parameters for the variance parameters

Ξ−2
j were set as (a, b) = (2, 1/2).

After tuning the proposal distributions during burn-in and rounding the shape parameters, we

found that γj = 10 for all j ∈ {1, . . . , 2J} produced average acceptance probabilities for each

parameter between 0.3 and 0.5. This is a range typically used in practice when designing MCMC

sampling algorithms.

Then, keeping the proposal distribution constant and using a common data set DI , we ran three

versions of the MCMC-ABC algorithm for 200,000 samples corresponding to:

1. scaled Euclidean distance and joint estimation of posterior for F ,Ξ2;

2. Mahlanobis distance (modified) and joint estimation of posterior for F ,Ξ2; and

3. Manhattan “City Block” distance and joint estimation of posterior for F ,Ξ2.

6.3. Convergence diagnostics

We estimate the three convergence diagnostics given in Appendix B. The results of this analysis

are presented as a function of Markov chain iteration t post burn-in of 50,000 samples.

Autocorrelation Function: Figure 1 shows the estimated autocorrelation functions for the

Markov chains of the random variables F0 and Ξ2
0. We analyze the marginal parameters to

get a reasonable estimate of the mixing behavior of the MCMC-ABC algorithm. The results

demonstrate the degree of serial correlation in the Markov chains generated for these parameters

as a function of lag time τ . The higher the decay rate in the tail of the estimated ACF as

a function of τ , the better the mixing of the MCMC algorithm. Due to the independence

properties of this model there is little difference between results obtained for Scaled Euclidean

and Mahlanobis distances. As shown in Appendix C, the estimate of the covariance matrix

is diagonal on all but the right lower 2 × 2 block. Hence, we recommend using the simple

Scaled Euclidean distance metric as it provided the best trade-off between simplicity and mixing

performance.

Geweke Time Series Diagnostic: Figure 2 shows results for the Geweke time series diag-

nostic. Again, we present the results for the random variables F0 and Ξ2
0. Note, we used the

posterior mean as the sample function and a set of increasing values for T̃ from Tb + 5, 000

increasing in steps of 5,000 samples to T . In each case we split the chain in each “window” given

by {θ(t)i }t=1:T1 and {θ(t)i }t=T ∗:T̃ according to recommendations from Geweke et al. [10]. We then
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calculate the convergence diagnostic ZT̃ which is the difference between these two means divided

by the asymptotic standard error of their difference. As the chain length increases T̃ → ∞, the

sampling distribution of Z → N (0, 1) if the chain has converged. Hence values of ZT̃ in the tails

of a standard normal distribution suggest that the chain was not fully converged early on (i.e.

during the 1st window). Hence, we plot Z
T̃
scores versus increasing T̃ and monitor if they lie

within a 95% confidence interval ZT̃ ∈ [−1.96, 1.96]. The results in Figure 2 clearly demonstrate

the convergence properties of the distance functions differ. Again this is more material in the

Markov chain for the variance parameter when compared to the Markov chain results for the

chain ladder factor. The main point we note is that again one would advise against use of the

“City block” distance metric.

Gelman and Rubin R statistic: Figure 3 presents the Gelman and Rubin convergence

diagnostic. To calculate this we ran 20 chains in parallel, each of length 10,000 samples and for

each chain we discarded 250 samples as burn-in. We then estimated the R statistic as a function

of simulation time post burn-in. Figure 3 shows the convergence rate of the R statistic to 1 for

each distance metric on increasing blocks of 200 samples. Using this summary statistic, all three

distance metrics are very similar in terms of convergence rate of the R statistic to 1.

Overall, these three convergence diagnostics demonstrate that the simple scaled Euclidean dis-

tance metric is the superior choice. Secondly, we see appropriate convergence of the Markov

chains under three convergence diagnostics which tests different aspects of the mixing of the

Markov chains, giving confidence in the performance of the MCMC-ABC algorithm for this

model.

6.4. Bayesian parameter estimates

In this section we present results for the scaled Euclidean distance metric, with a Markov chain

of length 200,000 samples discarding the first 50,000 samples as burn-in. Table 4 shows the CL

parameter estimates for the DFCL model and the associated parameter estimation error. We

define the following quantities:

• f̂
(MAP )
j |σ0:J−1, f̂

(MMSE)
j |σ0:J−1, σ̂fj |σ0:J−1 and [q̂0.05, q̂0.95]|σ0:J−1 denote respectively the

Maximum a-Posteriori, Minimum Mean Square Error, posterior standard deviation of the

conditional distribution of chain ladder factor Fj and the posterior coverage probability

estimates at 5% of the conditional distribution of chain ladder factor Fj . Each of these
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estimates is conditional on knowledge of the true σ0:J−1.

• f̂
(MAP )
j , f̂

(MMSE)
j , σ̂fj and [q̂0.05, q̂0.95] denote the same quantities for the unconditional

distribution after joint estimation of F0:J−1 and Ξ0:J−1.

• Ave[A (θ1:2J , fj)] and Ave[A (θ1:2J , σj)] denote the average acceptance probabilities of the

Markov chain.

• σ̂
2(MAP )
j , σ̂

2(MMSE)
j , σ̂σ2

j
and [q̂0.05, q̂0.95] denote the same quantities for the chain ladder

variances as those defined above for chain ladder factors.

Note, the estimates for f̂
(MAP )
j and σ̂

(MAP )
j were obtained marginally. For the frequentist

approach we obtain the standard error in the estimates by using 1,000 bootstrap realisations

of
{
D(s)

I

}
s=1:1,000

to obtain
{
f̃
(CCL)
(s) , σ̃

2(CCL)
(s)

}
s=1:1,000

. We use these bootstrap samples to

calculate the standard deviation in the estimates of the parameters in the classical frequentist

CL approach, given in brackets (.) next to their corresponding estimators. The standard errors

in the Bayesian parameter estimates are obtained by blocking the Markov chain into 100 blocks

of length 1,500 samples and estimating the posterior quantities on each block.

7. Example 2: Real Claims Reserving data

In this example we consider estimation using real claims reserving data from Wüthrich-Merz

[30], see Table 3. This yearly loss data is turned into annual cumulative claims and divided by

10,000 for the analysis in this example. We use the analysis from the previous study to justify

use of the joint MCMC-ABC simulation algorithm with a scaled Euclidean distance metric.

We pre-tuned the coefficient of variation of the Gamma proposal distribution for each parameter

of the posterior. This was performed using the following settings: Tb = 50, 000, T̃ = 200, 000,

ǫmin = 10−5 and initial values γj = 1 for all j ∈ {1, . . . , 2J}. Here we make a strict requirement of

the tolerance level to ensure we have accurate results from our ABC approximation. Additionally,

the prior parameters for the chain ladder factors Fj were set as (αj, βj) =
(
1, f̂

(CL)
j

)
and the

parameters for the variance Ξ−2
j priors were set as (aj , bj) =

(
1, σ̂

(CL)
j

)
. The code for this

problem was written in Matlab and it took approximately 10 min to simulate 200,000 samples

from the MCMC-ABC algorithm on Intel Xeon 3.4GHz processor with 2Gb RAM.

After tuning the proposal distributions during burn-in we obtained rounded shape parameters
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γ1:9 = [50; 100; 500; 500; 5, 000; 20, 000; 100, 000; 2, 000, 000; 3, 000, 000] provided average accep-

tance probabilities between 0.3 and 0.5.

Estimates of f and σ

Figures 4 presents box-whisker plots of estimates of the distributions of the parameters F0:J−1

and Ξ0:J−1 obtained from the MCMC-ABC algorithm, post burn-in. Figure 5 shows the Bayesian

MCMC-ABC empirical distributions of the ultimate claims, Ci,J for i = 1, . . . , I. In Table 5

we present the predicted cumulative claims for each year along with the estimates for the chain

ladder factors and chain ladder variances under both the classical approach and the Bayesian

model. We see that with this fairly vague prior specified, we do indeed obtain convergence

of the MCMC-ABC based Bayesian estimates f̂ (MMSE), σ̂(MMSE) to the classical estimates

f̂ (CL), σ̂(CL).

Dependence on tolerance ǫ

Figure 6 presents a study of the histogram estimate of the marginal posterior distribution for

chain ladder factor πABC

(
f0|DI , ǫ

min
)
. The plot was obtained by sampling from the full posterior

πABC

(
f ,σ|DI , ǫ

min
)
for each specified tolerance value, ǫmin. Then the samples for the particular

chain ladder parameter in each plot are turned into a smoothed histogram estimate for each

ǫmin and plotted. The results of this analysis demonstrated that when ǫ is large, in this model

greater than around ǫmin = 0.1, the likelihood is not having an influence on the ABC posterior

distribution. Hence, under an MCMC-ABC algorithm, this results in acceptance probabilities

for the chain being artificially high, resulting in estimates of the posterior which reflect the prior

distribution used (in this case a vague prior). As ǫmin is reduced, we notice that the changes in

the estimate of the posterior distribution also reduces. The aim of this study is to demonstrate

that once ǫmin reaches a small enough level, the effect of reducing it further is minimal on the

posterior distribution. We see that changing ǫmin from 10−4 to 10−5 has not had a material

impact on the posterior mean or variance, the change is less than 10%. As a result, reducing

ǫmin past this point cannot be justified relative to the significant increase in computational effort

required to achieve such a further reduction in ǫmin.

Ultimately, we would like an algorithm which could work well for any ǫmin, the smaller the better.

However, we note that with a decreasing ǫmin in the sampler we present in this paper, one must

take additional care to ensure the Markov chain is still mixing and not “stuck” in a particular

state, as is observed to be the case in all MCMC-ABC algorithms. To avoid this acknowledged

difficulty with MCMC-ABC, one should run much longer MCMC chains or alternatively use of
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more sophisticated sampling algorithms such as SMC Samplers PRC-ABC based algorithms; see

Sisson et al. [25].

The conclusion of these findings is that a value of ǫmin = 10−5, which was used for the analysis

of the data in this paper, is suitable numerically and computationally.

VaR and MSEP.

In Table 6 we present the predictive VaR at 95% and 99% levels for the ultimate predicted claims,

obtained from the MCMC-ABC algorithm. These are easily obtained under the Bayesian setting,

using the MCMC-ABC posterior samples to explicitly obtain samples from the full predictive

distribution of the cumulative claims after integrating out the parameter uncertainty numeri-

cally. In addition to this, we present the analysis of the MSEP under the bootstrap frequentist

procedure and the Bayesian MCMC-ABC and credibility estimates for the total predicted cumu-

lative claims for each accident year i. We also present results for the sum of the total cumulative

claims for each accident year, and the associated parameter uncertainty and process variance

(see Section 4 for details).

We can make the following conclusions from these results:

1. The estimates of process variance for each Ci,J demonstrate that the frequentist bootstrap

and the credibility estimates are very close for all accident years i. The Bayesian results

compare favorably with the credibility results.

2. The results for the parameter estimation error for the predicted cumulative claims Ci,J

demonstrate for small i that the Bayesian approach results in a smaller estimation error

compared to the frequentist approach. For large i, the Bayesian approach produces larger

estimation error relative to the credibility approach.

3. The total results for the process variance for C =
∑

i Ci,J demonstrate that the frequentist

and credibility results are very close. Additionally, Bayesian total results are largest fol-

lowed by credibility and then frequentist estimates which is in agreement with theoretical

bounds.

4. The total results for the parameter estimation error for C =
∑

iCi,J demonstrate that fre-

quentist unconditional bootstrap procedure results in the lowest total error. The Bayesian
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approach and credibility total parameter errors are close. Additionally, we note that the

results in Table 7.1 of Wüthrich-Merz [30], for the total parameter estimation error under

an unconditional frequentist bootstrap with unscaled residuals is also very close to the

total obtained under the frequentist approach.

8. Discussion

This paper has presented a distribution-free claims reserving model under a Bayesian paradigm.

A novel advanced MCMC-ABC algorithm was developed to obtain estimates from the resulting

intractable posterior distribution of the chain ladder factors and chain ladder variances. We

assessed several aspects of this algorithm, including the properties of the convergence of the

MCMC algorithm as a function of the distance metric approximation in the ABC component.

The methodologies performance was demonstrated on a synthetic data set generated from known

parameters. Next, it was applied to a real claims reserving data set. The results we obtained

for predicted cumulative ultimate claims were compared to those obtained via classical chain

ladder methods and via credibility theory. This clearly demonstrated that the algorithm is

working accurately and provides us not only with the ability to obtain point estimates for the

first and second moments of the ultimate cumulative claims, but also with an accurate empirical

approximation of the entire distribution of the ultimate claims. This is valuable for many

reasons, including prediction of reserves which are not based on centrality measures such as the

tail based VaR results we present.
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A. ABC algorithm

The ABC algorithm is typically justified in the simple rejection sampling framework. This then

extends in a straightforward manner to other sampling frameworks such as the MCMC algorithm

we utilise in this paper. We denote the posterior density from which we wish to draw samples

by π (θ|y) ∝ π (y|θ)π (θ) with θ ∈ Ω, where Ω denotes support of the posterior distribution and

Y is the support for y.

The ABC method aims to draw from this posterior density π (θ|y) without the requirement of

evaluating the computationally expensive or in our setting intractable likelihood π (y|θ). The

cost of avoiding this calculation is that we obtain an “approximation”.

1st case. We assume that the support Y is discrete. Given an observation y ∈ Y, we would

like to sample from π (θ|y). Then the original rejection sampling algorithm reads as follows:

Rejection Sampling ABC

1. Sample θ′ from prior π (θ);

2. Simulate synthetic data set of auxiliary variables x|θ′ ∼ π (x|θ′);

3. ABC Rejection condition: if x = y then accept sample θ′, else reject sample and return to

step 1.

Then the chosen θ′ is distributed from π(θ|y). This follows from a simple rejection argument,

Denote {x = y} if θ′ was chosen. Then, the joint density of (θ′, x) conditional on {y, x = y} is

given by

π(θ, x|y, x = y) =
π(θ)π(x|θ)I{y}(x)∫

π(θ)π(y|θ)dθ =





π(θ,y)
π(y) = π(θ|y) if x = y,

0 otherwise.
(A.1)

This implies that
∑

x∈Y

π(θ, x|y, x = y) = π(θ|y). (A.2)

Henceforth, this algorithm generates samples θ(t) ∼ π(θ|y), for t = 1, . . . , T .

2nd case. For more general supports Y one replaces the strict equality x = y with a tolerance

ǫ > 0 and a measure of discrepancy or a distance metric ρ(x, y) ≤ ǫ. In this case the poste-
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rior distribution is given by π(θ, x|y, ρ(x, y) < ǫ). Implementing this algorithm in a rejection

sampling framework gives the following:

Rejection Sampling ABC

1. Sample θ′ from prior π (θ);

2. Simulate synthetic data set of auxiliary variables x|θ′ ∼ π (x|θ′);

3. ABC Rejection Condition 2: If ρ(x, y) < ǫ then accept sample θ′, else reject sample and

return to step 1.

In this case the joint density of (θ′, x), conditional on {y, ρ(x, y) < ǫ}, is given by

π(θ, x|y, ρ(x, y) < ǫ) =
π(θ) π(x|θ) I{ρ(x, y) < ǫ}(x)∫

π(θ) π(x|θ) I{ρ(x, y) < ǫ}(x) dxdθ . (A.3)

Note that for appropriate choices of the distance metric ρ and assuming the necessary continuity

properties for the densities we obtain that

lim
ǫ→0

∫

Y
π(θ, x|y, ρ(x, y) < ǫ)dx = π(θ|y). (A.4)

This concept was taken further with the intention of improving the simulation efficiency by

reducing the number of rejected samples. To achieve this, sufficient statistics were used to replace

the comparison between the auxiliary variables (“synthetic data”) x and the observations y.

Denoting the sufficient statistics by S(y) and S(x), allows one to decompose the likelihood under

the Fisher-Neyman factorization theorem into π(y|θ) = f(y)g(S(y)|θ) for appropriate functions

f and g. In the ABC context presented above, the consequence of this decomposition is that when

ρ(S(y), S(x)) < ǫ the obtained samples are from the posterior density π(θ, x|y, ρ(S(y), S(x)) < ǫ)

similar to (A.3). In general, summary statistics will be used when sufficient statistics are not

attainable.

B. MCMC-ABC to sample from πABC (f, σ|DI)

We develop an MCMC-ABC algorithm which has an adaptive proposal mechanism and anneal-

ing of the tolerance during burn-in of the Markov chain. Having reached the final tolerance

post annealing, denoted ǫmin, we utilise the remaining burn-in samples to tune the proposal

distribution to ensure an acceptance probability between the range of 0.3 and 0.5 is achieved.

The optimal acceptance probability when posterior parameters are i.i.d. Gaussian was proven to

be at 0.234; see Roberts et al. [20]. Though our problem does not match the required conditions
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for this proof, it provides a practical guide. To achieve this, we tune the coefficient of variation

of the proposal, in our case it is the shape parameter of the Gamma proposal distribution. We

impose an additional constraint that the minimum shape parameter value is set at γmin
j for

j ∈ {1, . . . , 2J}.

MCMC-ABC algorithm using bootstrap samples.

1. For t = 0 initialize the parameter vector randomly, this gives θ
(0)
1:2J =

(
f
(0)
0:J−1, σ

(0)
0:J−1

)
.

Initialize the proposal shape parameters γj ≥ γmin
j for all j ∈ {1, . . . , 2J}.

2. For t = 1, . . . , T

(a) Set
(
θ
(t)
1:2J

)
=
(
θ
(t−1)
1:2J

)
.

(b) For j = 1, . . . , 2J

i. Sample proposal θ∗j from a Γ(γj , θ
(t)
j /γj)-distribution. We denote the Gamma

proposal density by K
(
θ∗j ; γj , θ

(t)
j /γj

)
. This gives proposed parameter vector

θ∗ =
(
θ
(t)
1:j−1, θ

∗
j , θ

(t)
j+1:2J

)
.

ii. Conditional on θ∗ =
(
θ
(t)
1:j−1, θ

∗
j , θ

(t)
j+1:2J

)
, generate synthetic bootstrap data set

D∗
I = D∗

I (θ
∗) using the bootstrap procedure detailed in Section 4 where we

replace the CL parameter estimates (f̂ (CL), σ̂(CL)) by the parameters θ∗.

iii. Evaluate summary statistics S (DI ; 0, 1) and S (D∗
I ;µ

∗; s∗) and corresponding de-

cision function g(DI |D∗
I ) as described in Section 5.

iv. Accept proposal with ABC acceptance probability

A
(
θ
(t)
1:2J ,θ

∗
)
= min



1,

π
(
θ∗j

)
K
(
θ
(t)
j ; γj , θ

∗
j/γj

)

π
(
θ
(t)
j

)
K
(
θ∗j ; γj , θ

(t)
j /γj

) g(DI |D∗
I )



 .

That is, simulate U ∼ U(0, 1) and set θ
(t)
j = θ∗j if U < A

(
θ
(t)
1:2J ,θ

∗
)
.

v. If 100 ≤ t ≤ Tb and ǫt = ǫmin then check to see if tuning of the proposal is

required. Define the average acceptance probability over the last 100 iterations

of updates for parameter i by ā
(t−100:t)
i and consider the adaption:

γ∗j =





0.9γj if ā
(t−100:t)
i < 0.3 and γj > γmin

j ,

1.1γj if ā
(t−100:t)
i > 0.5,

γj otherwise.

Then set the proposal shape parameter as γj = max{γ∗j , γmin
j }.
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The MCMC-ABC algorithm presented can be enhanced by utilising an idea of Gramacy et al.

[13] in an ABC setting. This involves a combination of tempering the tolerance {ǫt}t=1:T and

importance sampling corrections.

B.1. ABC algorithmic choices for the time series DFCL model

We start with the choices of the ABC components.

• Generation of a synthetic data set: Note that in this setting not only is the likelihood

intractable but also the generation of a synthetic data set D∗
I given the current parameter

values F ,Ξ is not straightforward. The synthetic data set D∗
I is generated using the

bootstrap procedure described in Section 4. Note that both the bootstrap residual ε̃i,j and

the bootstrap samples D∗
I are functions of the parameter choices; see Section 4.1. Therefore

we generate for given F = f and Ξ = σ the bootstrap residuals ε̃i,j = ε̃i,j(fj−1, σj−1)

and the bootstrap samples D∗
I = D∗

I (f ,σ) according to the non-parametric bootstrap (see

Section 4.1) where we replace the CL parameter estimates (f̂ (CL), σ̂(CL)) by the parameters

θ = (F ,Ξ).

• Summary statistics: We introduce summary statistics to replace sufficient statistics

when they are not attainable for a given model. Then, in order to define the decision

function g, we introduce summary statistics; see Appendix A. For the observed data DI

we define the vector

S (DI ; 0, 1) = (S1, . . . , Sn+2)

= (C0,1, . . . , C0,J , C1,1, . . . , C0,J−1, . . . , CI−2,1, CI−2,2, CI−1,1; 0, 1) ,

where n denotes the number of residuals ε̃i,j. For given θ = (F ,Ξ), we generate the

bootstrap sample D∗
I = D∗

I (F ,Ξ) as described above. The corresponding residuals ε̃i,j =

ε̃i,j(Fj−1,Ξj−1) should also be close to the standardized observations. Therefore, we define

its empirical mean and standard deviation by

µ∗ = µ∗(F ,Ξ) =
1

n

∑

i,j

ε̃i,j(Fj−1,Ξj−1), (B.1)

s∗ = s∗(F ,Ξ) =


 1

n− 1

∑

i,j

(ε̃i,j(Fj−1,Ξj−1)− µ∗(F ,Ξ))2



1/2

. (B.2)
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Hence, the summary statistics for the synthetic data is given by

S (D∗
I ;µ

∗, s∗) =
(
C∗
0,1, . . . , C

∗
0,J , C

∗
1,1, . . . , C

∗
0,J−1, . . . , C

∗
I−2,1, C

∗
I−2,2, C

∗
I−1,1;µ

∗, s∗
)
.

• Distance metrics:

– Mahlanobis distance and scaled Euclidean distance

Here we draw on the analysis of Sisson et al. [8] that proposes the use of the

Mahlanobis distance metric given by

ρ (S (DI ; 0, 1) , S (D∗
I ;µ

∗, s∗))

= [S (DI ; 0, 1) − S (D∗
I ;µ

∗, s∗)]⊤ Σ−1
DI

[S (DI ; 0, 1) − S (D∗
I ;µ

∗, s∗)] ,

where the covariance matrix ΣDI
is an appropriate scaling described in Appendix

C. The scaled Euclidean distance is obtained when we only consider the diagonal

elements of the covariance matrix ΣDI
.

Note, the covariance matrix ΣDI
provides a weighting on each element of the vector of

summary statistics to ensure they are scaled appropriately according to their influence

on the ABC approximation. There are many other such weighting schemes one could

conceive.

– Manhattan “City Block” distance

We consider the L1-distance given by

ρ (S (DI ; 0, 1) , S (D∗
I ;µ

∗, s∗)) =

n+2∑

i=1

|Si (DI ; 0, 1) − Si (D∗
I ;µ

∗, s∗)| .

• Decision function: We work with a hard decision function given by

g (DI |D∗
I ) = I {ρ (S (DI ; 0, 1) , S (D∗

I ;µ
∗, s∗)) < ǫ} .

• Tolerance schedule: We use the sequence

ǫt = max
{
20, 000 − 10t, ǫmin

}
.

Note, the use of an MCMC-ABC algorithm can result in “sticking” of the chain for ex-

tended periods. Therefore, one should carefully monitor convergence diagnostics of the

resulting Markov chain for a given tolerance schedule. There is a trade-off between the

length of the Markov chain required for samples approximately from the stationary dis-

tribution and the bias introduced by non zero tolerance. In this paper we set ǫmin via
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preliminary analysis of the Markov chain sampler mixing rates for a transition kernel with

coefficient of variation set to one.

We note that in general, practitioners will have a required precision in posterior estimates

that can be directly used to determine, for a given computational budget, a suitable

tolerance ǫmin.

• Convergence diagnostics: We stress that when using an MCMC-ABC algorithm, it is

crucial to carefully monitor the convergence diagnostics of the Markov chain. This is more

important in the ABC context than in the general MCMC context due to the possibility of

extended rejections where the Markov chain can stick in a given state for long periods. This

can be combatted in several ways which will be discussed once the algorithm is presented.

The convergence diagnostics we consider are evaluated only on samples post annealing

of the tolerance threshold and after an initial burn-in period once tolerance of ǫmin is

reached. If the total chain has length T , the initial burn-in stage will correspond to the

first Tb samples and we define T̃ = T − Tb. We denote by {θ(t)i }t=1:T̃ the Markov chain of

the i-th parameter after burn-in. The diagnostics we consider are given by:

– Autocorrelation. This convergence diagnostic will monitor serial correlation in the

Markov chain. For given Markov chain samples for the i-th parameter {θ(t)i }t=1:T̃ , we

define the biased autocorrelation estimate at lag τ by

ÂCF (θi, τ) =
1

(T̃ − τ)σ̂ (θi)

T̃−τ∑

t=1

[θ
(t)
i − µ̂ (θi)][θ

(t+τ)
i − µ̂ (θi)], (B.3)

where µ̂ (θi) and σ̂ (θi) are the estimated mean and standard deviation of θi.

– Geweke [10] time series diagnostic. For parameter θi it is calculated as follows:

1. Split the Markov chain samples into two sequences, {θ(t)i }t=1:T1 and {θ(t)i }
t=T ∗:T̃

,

such that T ∗ = T̃ − T2 + 1, and with ratios T1/T̃ and T2/T̃ fixed such that

(T1 + T2)/T̃ < 1 for all T̃ .

2. Evaluate µ̂
(
θT1
i

)
and µ̂

(
θT2
i

)
corresponding to the sample means on each sub

sequence.

3. Evaluate consistent spectral density estimates for each sub sequence, at frequency

0, denoted ŜD(0;T1, θi) and ŜD(0;T2, θi). The spectral density estimator consid-

ered in this paper is the classical non-parametric periodogram or power spectral
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density estimator. We use Welch’s method with a Hanning window; for details

see Appendix D.

4. Evaluate convergence diagnostic given by

Z
T̃
=

µ̂
(
θ
T1
i

)
−µ̂

(
θ
T2
i

)

T−1
1 ŜD(0;T1,θi)+T−1

2 ŜD(0;T2,θi)
.

According to the central limit theorem, as T̃ → ∞ one has that ZT̃ → N (0, 1) if

the sequence {θ(t)i }t=1:T̃ is stationary.

– Gelman-Rubin [9] R-statistic diagnostic. This approach to convergence analysis re-

quires that one runs multiple parallel independent Markov chains each starting at

randomly selected initial starting points (we run five chains). For comparison pur-

poses we split the total computational budget of T̃ into T1 = T2 = . . . = T5 = T̃
5 .

The convergence diagnostic for parameter θi is calculated using the following steps:

1. Generate five independent Markov chain sequences, producing the chains for

parameter θi denoted {θ(t)i,k}t=1:Tk
for k ∈ {1, . . . , 5}.

2. Calculate the sample means µ̂
(
θTk
i

)
for each sequence and the overall mean

µ̂
(
θT̃i

)
.

3. Calculate the variance of the sequence means

1
4

∑5
k=1

(
µ̂
(
θTk
i

)
− µ̂

(
θT̃i

))2 def.
= Bi/Tk.

4. Calculate the within-sequence variances ŝ2
(
θTk
i

)
for each sequence.

5. Calculate the average within-sequence variance, 1
5

∑5
k=1 ŝ

2
(
θTk
i

)
def.
= Wi.

6. Estimate the target posterior variance for parameter θi by the weighted linear

combination σ̂2
(
θT̃i

)
= Tk−1

Tk
Wi +

1
Tk
Bi. This estimate is unbiased for samples

which are from the stationary distribution. In the case in which not all sub chains

have reached stationarity, this overestimates the posterior variance for a finite T̃

but asymptotically, T̃ → ∞, it converges to the posterior variance.

7. Improve on the Gaussian estimate of the target posterior given by

N (µ̂
(
θT̃i

)
, σ̂2

(
θT̃i

)
) by accounting for sampling variability in the estimates of

the posterior mean and variance. This can be achieved by making a Student-t

approximation with location µ̂
(
θT̃i

)
, scale

√
V̂i and degrees of freedom dfi, each

given respectively by:

V̂i = σ̂2
(
θT̃i

)
+ Bi

T̃
and dfi =

2V̂ 2
i

V̂ar(V̂i)
, where the variance is estimated as
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V̂ar
(
V̂i

)
=

1

5

(
T1 − 1

T1

)2

V̂ar
(
ŝ2
(
θTk
i

))
+

(
6√
2T̃

)2

B2
i

+
12(T1 − 1)

25T1
Ĉov

(
ŝ2
(
θTk
i

)
, µ̂
(
θT̃i

))

− 24(T1 − 1)

25T1
µ̂
(
θT̃i

)
Ĉov

(
ŝ2
(
θTk
i

)
, µ̂
(
θT̃i

))
.

(B.4)

Note, the covariance terms are estimated empirically using the within sequence

estimates of the mean and variance obtained for each sequence.

8. Calculate the convergence diagnostic
√
R̂ =

√
V̂idfi

Wi(dfi−2) , where as T̃ → ∞ one

can prove that R̂ → 1. This convergence diagnostic monitors the scale factor by

which the current distribution for θi may be reduced if simulations are continued

for T̃ → ∞.

C. Scaling of statistics in distance metrics

In the Mahlanobis distance metric, estimation of the scaling weights is given by the covariance

ΣDI
= Cov (S (D∗

I ; µ̃, s̃)| DI), where µ̃ and s̃ are the sample mean and standard deviation of n

i.i.d. residuals εi,j (see also (B.1)-(B.2)). Next we outline the estimation of ΣDI
by a matrix

Σ̂CL
DI

.

• Starting with the elements Σ̂CL
DI

(k, l) with k, l ∈ {1, . . . , n}, we obtain from the conditional

resampling bootstrap

– Cov
(
C∗
i,j, C

∗
i′,j′

∣∣∣DI , f̂
(CL), σ̂(CL)

)
= 0 if i 6= i′ or j 6= j′

– Var
(
C∗
i,j

∣∣∣DI , f̂
(CL), σ̂(CL)

)
= σ̂

2(CL)
j−1 Ci,j−1.

• Considering the elements k ∈ {n + 1, n + 2}, l ∈ {1, . . . , n} and also k ∈ {1, . . . , n}, l ∈
{n+ 1, n + 2} of the covariance matrix ΣDI

, for simplicity we set Σ̂CL
DI

(k, l) = 0.

• Considering elements k, l ∈ {n + 1, n + 2}, we assess now Cov(µ̃, s̃) either analytically or

numerically by simulation of appropriate i.i.d. residuals.

Parametric Approximation

– In approximating µ̃ and s̃ we assume i.i.d. samples εi,j∼N (0, 1).

– Using the assumptions we know that:

Var(µ̃) = 1
n ,
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Var(s̃) = 1
(n−1)2

[(
1 + 4

n2 + 1
n2

)∑n
s=1Var

(
ε̃2s
)]

= 1
(n−1)2

[2n(1 + 5
n2 )],

Cov(µ̃, s̃) = 1
2(n−1)2

[1− 2
n ].

– Under these assumptions:

1. If the distribution of εi,j is skewed then it is more appropriate to do a numerical

approximation with the observed residuals from the bootstrap algorithm.

2. The precision ǫt from the MCMC-ABC algorithm should depend on the size of the

claims triangle, that is, the number of residuals n.

D. Estimating the Spectral Density

This is calculated via a modified technique using Welch’s method; see Proakis-Manolakis [23],

910-913 . This involves performing the following steps:

• Split each sequence {θ(t)i }t=1:T1 and {θ(t)i }t=T ∗:T̃ into L = 20 non-overlapping blocks of

length N .

• Apply a Hanning window function w(t) = 0.5
(
1− cos

(
2πt
N−1

))
to the samples of the

Markov chain in each block.

• Take the discrete Fourier transform (DFT) of each windowed block given by Θ̃l
i(k) =

∑N−1
t=0 θ

(t)
i exp

(
−2πikt

N

)
.

• Estimate the spectral density (SD) as ŜD(wk) =
1
L

∑L−1
l=0 Θ̃l

i(k).
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Year 0 1 2 3 4 5 6 7 8 9

0 248.97 299.47 357.00 418.61 473.63 563.35 693.22 796.84 914.95 1,084.24

1 186.72 201.99 227.23 271.18 305.16 379.37 466.16 554.30 660.75

2 172.58 207.48 250.37 304.44 356.92 417.60 477.99 542.25

3 195.19 229.06 290.83 320.11 367.60 469.93 543.40

4 131.00 168.50 198.18 219.26 270.00 344.63

5 163.58 181.16 222.10 246.78 303.00

6 294.30 373.08 477.16 566.20

7 529.31 577.71 805.95

8 249.00 321.83

9 140.41

fj 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

σ2
j 1 1 1 1 1 1 1 1 1 1

Table 2: Synthetic Data - Cumulative claims Ci,j for each accident year i and development year j, i+ j ≤ I .

Year 0 1 2 3 4 5 6 7 8 9

0 594.6975 372.1236 89.5717 20.7760 20.6704 6.2124 6.5813 1.4850 1.1130 1.5813

1 634.6756 324.6406 72.3222 15.1797 6.7824 3.6603 5.2752 1.1186 1.1646

2 626.9090 297.6223 84.7053 26.2768 15.2703 6.5444 5.3545 0.8924

3 586.3015 268.3224 72.2532 19.0653 13.2976 8.8340 4.3329

4 577.8885 274.5229 65.3894 27.3395 23.0288 10.5224

5 618.4793 282.8338 57.2765 24.4899 10.4957

6 560.0184 289.3207 56.3114 22.5517

7 528.8066 244.0103 52.8043

8 529.0793 235.7936

9 567.5568

Table 3: Real Data - Incremental claims Yi,j = Ci,j − Ci,j−1 for each accident year i and development year j,

i+ j ≤ I .
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DFCL model j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

fj 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20

f̂
(CL)
j 1.20 (2.40E-2) 1.22 (3.27E-2) 1.16 (2.46E-2) 1.17 (2.44E-2) 1.23 (2.63E-2) 1.19 (2.78E-2) 1.16 (2.59E-2) 1.17 (2.10E-2) 1.19 (2.51E-2)

f̂
(MAP )
j |σ0:J−1 1.07 (0.02) 1.19 (0.02) 1.05 (0.02) 1.04 (0.02) 1.10 (0.02) 1.08 (0.02) 0.97 (0.02) 1.19 (0.03) 1.14 (0.04)

f̂
(MMSE)
j |σ0:J−1 1.19 (1.34E-2) 1.21 (1.38E-2) 1.18 (1.27E-2) 1.19 (1.30E-2) 1.17 (1.37E-2) 1.18 (1.53E-2) 1.20 (1.60E-2) 1.18 (1.73E-2) 1.19 (2.35E-2)

σ̂fj |σ0:J−1 0.23 (4.00E-3) 0.22 (3.1E-3) 0.20 (3.1E-3) 0.21 (3.2E-3) 0.22 (3.9E-3) 0.27 (1.01E-2) 0.35 (1.24E-2) 0.44 (1.41E-2) 0.70 (1.60E-2)

[q̂0.05, q̂0.95]|σ0:J−1 [0.75,1.50] [0.77,1.50] [0.76,1.41] [0.75,1.44] [0.82,1.51] [0.78,1.52] [0.65,1.60] [0.46,1.79] [0.25,2.50]

f̂
(MAP )
j 1.15 (0.02) 1.13 (0.02) 1.06 (0.02) 1.09 (0.02) 1.15 (0.02) 1.19 (0.02) 1.12 (0.03) 1.08 (0.03) 1.06 (0.04)

f̂
(MMSE)
j 1.19 (0.01) 1.18 (0.01) 1.17 (0.01) 1.18 (0.01) 1.16 (0.01) 1.20 (0.02) 1.18 (0.03) 1.16 (0.02) 1.20 (0.02)

σ̂fj 0.24 (5.1E-3) 0.24 (4.4E-3) 0.23 (5.0E-3) 0.26 (5.8E-3) 0.25 (5.6E-3) 0.25 (5.7E-3) 0.40 (0.01) 0.49 (0.02) 0.68 (0.02)

[q̂0.05, q̂0.95] [0.66,1.48] [0.74,1.54] [0.67,1.42] [0.65,1.47] [0.74,1.50] [0.74,1.50] [0.22,1.54] [0.35,1.95] [0.1,2.50]

Ave[A (θ1:2J , fj)] 0.21 0.21 0.19 0.22 0.25 0.21 0.22 0.20 0.24

σ2
j 1 1 1 1 1 1 1 1 1

σ̂
2(CL)
j 1.02 (0.29) 0.75 (1.44) 0.51 (1.02) 0.49 (0.91) 0.71 (1.18) 0.72 (1.89) 0.25 (1.84) 0.31 (1.40) 0.25 (0.77)

σ̂
2(MAP )
j 0.58 (0.06) 0.96 (0.06) 0.54 (0.05) 0.78 (0.05) 0.78 (0.05) 0.81 (0.04) 0.61 (0.04) 0.79 (0.04) 0.56 (0.04)

σ̂
2(MMSE)
j 1.11 (0.03) 1.18 (0.03) 1.14 (0.04) 1.31 (0.03) 1.29 (0.03) 1.19 (0.02) 1.16 (0.03) 1.14 (0.03) 1.05 (0.02)

σ̂σj
0.83 (0.02) 0.79 (0.02) 0.82 (0.02) 0.80 (0.02) 0.79 (0.02) 0.72 (0.02) 0.77 (0.02) 0.78 (0.02) 0.71 (0.02)

[q̂0.05, q̂0.95] [0.33,2.89] [0.33,2.79] [0.25,2.91] [0.32,2.87] [0.33,2.82] [0.27,2.59] [0.21,2.66] [0.17,2.62] [0.22,2.42]

Ave[A (θ1:2J , σj)] 0.23 0.24 0.24 0.23 0.24 0.24 0.24 0.24 0.25

Table 4: Comparison of Bayesian estimates for the chain ladder factors and variances versus classical estimates, in the case of synthetic data. Numerical standard

errors in estimates are presented in brackets.
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Parameters Year 0 1 2 3 4 5 6 7 8 9 Ĉ
(CL)
i,J − Ci,I−i

f(CL) 0 0

f(MMSE) 0

f(CL) 1 10, 663, 318 15, 126

f(MMSE) 10, 663, 099 14, 907

f(CL) 2 10, 646, 884 10, 662, 008 26, 257

f(MMSE) 10, 646, 386 10, 661, 291 25, 541

f(CL) 3 9, 734, 574 9, 744, 764 9, 758, 606 34, 538

f(MMSE) 9, 734, 765 9, 744, 500 9, 758, 143 34, 074

f(CL) 4 9, 837, 277 9, 847, 906 9, 858, 214 9, 872, 218 85, 302

f(MMSE) 9, 835, 850 9, 846, 669 9, 856, 516 9, 870, 315 83, 400

f(CL) 5 10, 005, 044 10, 056, 528 10, 067, 393 10, 077, 931 10, 092, 247 156, 494

f(MMSE) 10, 005, 302 10, 055, 329 10, 066, 390 10, 076, 456 10, 090, 563 154, 811

f(CL) 6 9, 419, 776 9, 485, 469 9, 534, 279 9, 544, 580 9, 554, 571 9, 568, 143 286, 121

f(MMSE) 9, 400, 832 9, 466, 638 9, 513, 971 9, 524, 436 9, 533, 961 9, 547, 308 265, 286

f(CL) 7 8, 445, 057 8, 570, 389 8, 630, 159 8, 674, 568 8, 683, 940 8, 693, 030 8, 705, 378 449, 167

f(MMSE) 8, 437, 023 8, 545, 017 8, 604, 832 8, 647, 856 8, 657, 369 8, 666, 026 8, 678, 159 421, 947

f(CL) 8 8, 243, 496 8, 432, 051 8, 557, 190 8, 616, 868 8, 661, 208 8, 670, 566 8, 679, 642 8, 691, 971 1, 043, 242

f(MMSE) 8, 236, 916 8, 417, 305 8, 525, 046 8, 584, 722 8, 627, 645 8, 637, 136 8, 645, 773 8, 657, 877 1, 009, 148

f(CL) 9 8, 470, 989 9, 129, 696 9, 338, 521 9, 477, 113 9, 543, 206 9, 592, 313 9, 602, 676 9, 612, 728 9, 626, 383 3, 950, 814

f(MMSE) 8, 467, 380 9, 118, 521 9, 318, 217 9, 437, 490 9, 503, 553 9, 551, 070 9, 561, 577 9, 571, 138 9, 584, 538 3, 908, 970

f̂
(CL)
j 1.4925 1.0778 1.0229 1.0148 1.0070 1.0051 1.0011 1.0010 1.0014 6, 047, 061

σ
(CL)
j 135.253 33.803 15.760 19.847 9.336 2.001 0.823 0.219 0.059 5, 918, 083

f̂
(MMSE)
j 1.4919 1.0769 1.0219 1.0128 1.0070 1.0050 1.0011 1.0010 1.0014

σ
(MMSE)
j 154.221 33.000 16.770 22.397 8.300 2.166 0.720 0.158 0.041

Table 5: Predicted cumulative CL claims Ĉ
(CL)
i,j for actual data and estimated CL reserves Ĉ

(CL)
i,J − Ci,J−i under the classical and Bayesian DFCL models.
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Accident Year i 1 2 3 4 5 6 7 8 9 Total
(
Ci,I−iΓ̂

freq
I−i

)1/2
192 740 2,668 6,831 30,474 68,207 80,071 126,952 389,768 424,361

(
C2

i,I−i△̂
freq
I−i

)1/2
503 1,560 3,059 12,639 25,761 20,776 33,771 41,554 108,547 157,680

(
msepfreq

Ci,J |DI

(
Ĉi,J

))1/2
538 1,727 4,059 14,367 39,904 71,301 86,901 133,580 404,601 452,708

V coi(%) 3.61% 6.76% 11.91% 17.02% 25.61% 25.00% 19.38% 12.81% 9.93% 7.49%
(
Ci,I−iΓ̂

Bayes
I−i

)1/2
134 533 2,307 7,185 27,367 74,235 86,404 129,038 437,482 470,982

(
C2

i,I−i△̂
Bayes
I−i

)1/2
224 894 1,801 4,327 15,819 29,861 32,243 49,198 152,879 211,633

(
msepBayes

Ci,J |DI

(
Ĉi,J

))1/2
261 1,040 2,927 8,387 31,610 80,016 92,224 138,099 463,425 504,934

V coi(%) 1.75% 4.07% 8.59% 10.06% 20.42% 30.16% 21.86% 13.68% 11.86% 8.53%

VaRBayes
0.95

(
Ci,J − E[Ci,J |DI ]|DI

)
554 2,183 5,632 15,820 61,122 152,531 173,665 161,619 816,701 910,757

VaRBayes
0.99

(
Ci,J − E[Ci,J |DI ]|DI

)
726 2,918 7,430 22,515 79,472 201,322 228,448 211,125 1,278,665 1,454,966

(
Ci,I−iΓ̂

cred
I−i

)1/2
192 740 2,668 6,831 30,474 68,207 80,071 126,952 389,769 424,362

(
C2

i,I−i△̂
cred
I−i

)1/2
188 534 1,493 3,391 13,515 27,284 29,674 43,901 129,764 185,015

(
msepcred

Ci,J |DI

(
Ĉi,J

))1/2
269 913 3,057 7,627 33,337 73,462 85,392 134,329 410,802 462,941

V coi(%) 1.81% 3.58% 8.97% 9.04% 21.40% 25.77% 19.04% 12.88% 10.40% 7.82%

Table 6: Comparison of the frequentist’s bootstrap msepfreq, the Bayesian MCMC-ABC msepBayes and the credibility msepcred. The coefficient of variation is as

defined in Wüthrich-Merz [30].
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Figure 1: Estimated Autocorrelation Function (ACF) for parameters F0 and Ξ2
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Figure 4: Box-Whisker plots of parameters F and Ξ with each box marking the 25th, 50th, 75th percentiles.

Top: 200,000 MCMC-ABC samples to estimate posterior for F . The sample mean and mode are denoted

by ’*’ and ’o’ respectively. The classical estimators f̂ (CL) are denoted by △. Bottom: 200,000 MCMC-

ABC samples to estimate posterior for Ξ. The sample mean and mode are denoted by ’*’ and ’o’

respectively. The classical estimators σ̂(CL) are denoted by ’△’.
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Figure 5: Box-Whisker plots of predictive distribution of cumulative ultimate claims C1:J with the box

marking the 25th, 50th, 75th percentiles; see also Table 6. The mean predicted ultimate claims under

a Bayesian approach (using MMSE point estimates) are marked with ’*’, the predicted mode for the

ultimate claims (using MAP point estimates) is marked with ’o’ and the mean predicted ultimate claims

under the DFCL classical method are marked with ’△’.
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