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Abstract

Recently, a novel adaptive wave model for financial option pricing has been proposed
in the form of adaptive nonlinear Schrödinger (NLS) equation [1], as a high-complexity
alternative to the linear Black–Scholes–Merton model [2, 3]. Its quantum-mechanical ba-
sis has been elaborated in [4]. Both the solitary and shock-wave solutions of the nonlinear
model, as well as its linear (periodic) quantum simplification are shown to successfully fit
the Black–Scholes data, and define the financial Greeks. This initial wave model (called
the Ivancevic option pricing model) has been further extended in [5], by providing the
new NLS solutions in the form of rogue waves (one-rogon and two-rogon solutions). In
this letter, I propose a new financial research program, with a goal to develop a general
wave-type model for realistic option-pricing prediction and control.
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1 Introduction

Recently, a novel adaptive wave model for financial option pricing has been proposed in the
form of adaptive nonlinear Schrödinger (NLS) equation [1], as a high-complexity alternative
to the linear Black–Scholes-Merton model [2, 3]. The new option-pricing model, representing
a controlled Brownian motion, comes in two flavors: (i) for the case of constant volatility, it
is defined by a single adaptive NLS equation, while for the case of stochastic volatility, it is
defined by an adaptive Manakov system of two coupled NLS equations.

The adaptive wave model with stock price s, volatility σ and interest rate r has been
formally defined in [1, 4] as a complex-valued, focusing NLS equation, defining the time-
dependent option–price wave function ψ = ψ(s, t), whose absolute square |ψ(s, t)|2 represents
the probability density function (PDF) for the option price in terms of the stock price and
time. In natural quantum units, this adaptive (1+1)–NLS equation (called the Ivancevic
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option pricing model):1

i∂tψ = −1

2
σ∂ssψ − β|ψ|2ψ, (i =

√
−1), (1)

where β = β(r, w) denotes the adaptive market-heat potential, so the term V (ψ) = −β|ψ|2
represents the ψ−dependent potential field. In the simplest nonadaptive scenario β is equal
to the interest rate r, while in the adaptive case it depends on the set of adjustable synaptic

weights {wi
j} as: β(r, w) = r

∑n
i=1w

i
1 erf

(

wi

2
s

wi

3

)

.

2 Building the Wave Model for Option Pricing Evolution

The development of the general wave option-pricing model can be summarized as follows.
Firstly, in the case of low interest-rate r ≪ 1, we have β(r) ≪ 1, so V (ψ) → 0, and

therefore equation (1) can be approximated by a quantum-like option wave packet, ‘physically’
associated with a free quantum particle of unit mass. This linear wave packet is a solution
of the linear Schrödinger equation (with zero potential energy, Hamiltonian operator Ĥ and
volatility σ playing the role similar to the Planck constant) [4]:

iσ∂tψ = Ĥψ, where Ĥ = −σ
2

2
∂ss. (2)

The general solution to (2) is usually formulated as a linear combination of de Broglie-
type option plane-waves with the wave number k, linear momentum p = σk, wavelength
λk = 2π/k, angular frequency ωk = σk2/2, and oscillation period Tk = 2π/ωk = 4π/σk2 – all
comprising the option wave-packet :

ψpacket(s, t) =
n
∑

i=0

ciAe
i(ks−ωkt), (with n ∈ N), (3)

where A is the amplitude of the option wave, the angle (ks − ωkt) = (ks − σk2

2 t) represents
the phase of the wave ψk with the phase velocity: vk = ωk/k = σk/2. In addition, the group

velocity of an option wave-packet is given by: vg = dωk/dk. It is related to the phase velocity
vk of a plane wave as: vg = vk − λkdvk/dλk. Closely related is the center of the option wave-
packet (the point of maximum amplitude), given by: s = tdωk/dk. The option wave-packet
has been used used in [4] to successfully fit the Black–Scholes call and put options data.

Secondly, the NLS equation (1) has been exactly solved in [1] using the power series
expansion method of Jacobi elliptic functions. Out of a series of solutions, the two most
important ones (from dynamical perspective) are:

1Physically, the NLS equation (1) describes a nonlinear wave (e.g., in optical fibers or Bose-Einstein con-
densates) defined by the complex-valued wave function ψ(s, t) of real space and time parameters. In the
present context, the space-like variable s denotes the stock (asset) price.
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1. The envelope shock-wave solution (or, ‘dark soliton’):2

ψshock(s, t) = ±
√

−σ
β

tanh(s− σkt) ei[ks−
1

2
σt(2+k2)], and (4)

2. The envelope solitary-wave solution (or, ‘bright soliton’):

ψsoliton(s, t) = ±
√

σ

β
sech(s− σkt) ei[ks−

1

2
σt(k2−1)]. (5)

The adaptive NLS–PDFs of the combined shock-wave type (4) and soliton type (5) have
been used in [1] to successfully fit the Black–Scholes call and put options data. Besides, the
adaptive NLS–based Greeks (Delta, Rho, Vega, Theta and Gamma) have been defined, as
partial derivatives of the shock-wave solution (4).

Thirdly, two new wave-solutions of the NLS equation (1) have been provided in [5], in the
form of rogue waves,3 using the deformed Darboux transformation method developed in [8].

1. The one-rogon solution:

ψ1rogon(s, t) = α

√

σ

2β

[

1− 4(1 + σα2t)

1 + 2α2(s− σkt)2 + σ2α4t2

]

ei[ks+σ/2(α2
−k2)t], σβ > 0,

(6)
where α and k denote the scaling and gauge.

2. The two-rogon solution:

ψ2rogon(s, t) = α

√

σ

2β

[

1 +
P2(s, t) + iQ2(s, t)

R2(s, t)

]

ei[ks+σ/2(α2
−k2)t], σβ > 0, (7)

where P2, Q2, R2 are certain polynomial functions of s and t.

2A shock wave is a type of fast-propagating nonlinear disturbance that carries energy and can propagate
through a medium (or, field). It is characterized by an abrupt, nearly discontinuous change in the character-
istics of the medium. The energy of a shock wave dissipates relatively quickly with distance and its entropy
increases. On the other hand, a soliton is a self-reinforcing nonlinear solitary wave packet that maintains its
shape while it travels at constant speed. It is caused by a cancelation of nonlinear and dispersive effects in
the medium (or, field).

3Rogue waves are also known as freak waves, monster waves, killer waves, giant waves and extreme waves.
They are found in various media, including optical fibers [6]. The basic rogue wave solution was first presented
by Peregrine [7] to describe the phenomenon known as Peregrine soliton (or Peregrine breather).
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3 New Financial Research Program

I propose a new financial research program as follows.
Firstly, define the general adaptive wave model for option pricing evolution as a (linear)

combination of the previously defined particular solutions to the adaptive NLS-equation (1).
The five wave-components of this general model are:

1. the linear wave packet ψpacket(s, t), given by (3);

2. the shock-wave ψshock(s, t), given by (4);

3. the soliton ψsoliton(s, t), given by (5);

4. the one-rogon ψ1rogon(s, t), given by (6); and

5. the two rogon ψ2rogon(s, t) (7).

Formally, the general adaptive wave model is defined by:

ψgeneral(s, t) = A1

n
∑

i=0

cie
i(ks−ωkt) (8)

± A2

√

−σ
β

tanh(s− σkt) ei[ks−
1

2
σt(2+k2)]

± A3

√

σ

β
sech(s− σkt) ei[ks−

1

2
σt(k2−1)]

+ A4α

√

σ

2β

[

1− 4(1 + σα2t)

1 + 2α2(s− σkt)2 + σ2α4t2

]

ei[ks+σ/2(α2
−k2)t]

+ A5α

√

σ

2β

[

1 +
P2(s, t) + iQ2(s, t)

R2(s, t)

]

ei[ks+σ/2(α2
−k2)t],

where Ai, (i = 1, ..., 5) denote adaptive amplitudes of the five waves, while the other param-
eters are defined in the previous section.

Secondly, we need to find the most representative financial index or contemporary markets
data that clearly show in their evolution both the efficient markets hypothesis [9] and adaptive

markets hypothesis [10]. Once we find such a representative data, we need to fit it using our
general wave model (8) and the powerful Levenberg-Marquardt fitting algorithm. I remark
here that, based on my empirical experience, the general wave model (8) is capable of fitting
any financial data, provided we use appropriate number of fitting coefficients (see [1, 4] for
technical details).

Once we have successfully fitted the most representative market data we will have a model
that can be used for prediction of many possible outcomes of the current global financial storm.
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