
ar
X

iv
:1

00
3.

60
02

v1
  [

m
at

h.
O

C
] 

 3
1 

M
ar

 2
01

0

Portfolio Optimization in a Defaults Model under Full/Partial

Information

Thomas LIM

Laboratoire de Probabilités et
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Abstract

In this paper, we consider a financial market with assets exposed to some risks

inducing jumps in the asset prices, and which can still be traded after default times.

We use a default-intensity modeling approach, and address in this incomplete market

context the problem of maximization of expected utility from terminal wealth for loga-

rithmic, power and exponential utility functions. We study this problem as a stochastic

control problem both under full and partial information. Our contribution consists in

showing that the optimal strategy can be obtained by a direct approach for the loga-

rithmic utility function, and the value function for the power utility function can be

determined as the minimal solution of a backward stochastic differential equation. For

the partial information case, we show how the problem can be divided into two prob-

lems: a filtering problem and an optimization problem. We also study the indifference

pricing approach to evaluate the price of a contingent claim in an incomplete market

and the information price for an agent with insider information.

Keywords Optimal investment, default time, default intensity, filtering, dynamic program-

ming principle, backward stochastic differential equation, indifference price, information

pricing, logarithmic utility, power utility, exponential utility.
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1 Introduction

One of the important problems in mathematical finance is the portfolio optimization

problem when the investor wants to maximize the expected utility from terminal wealth.

In this paper, we study this problem by considering a small investor on an incomplete fi-

nancial market who can trade in a finite time interval [0, T ] by investing in risky stocks and

a riskless bond. We assume that there exist some default times on the market, and each

default time generates a jump of stock prices. The underlying traded assets are assumed to

be some local martingales driven by a Brownian motion and a default indicating process.

In such a context, we solve the portfolio optimization problem when the investors want to

maximize the expected utility from terminal wealth. We assume that in the market there

are two kinds of agents: the insider agents (the agents with insider information) and the

classical agents (they only observe the asset prices and the default times). These situations

are referred as full information and partial information. We will be interested not only

in describing the investor’s optimal utility, but also the strategies which he may follow to

reach this goal.

The utility maximization problem with full information has been largely studied in the

literature. In the framework of a continuous-time model the problem was studied for the

first time by Merton (1971). Using the methods of stochastic optimal control, the author de-

rives a nonlinear partial equation for the value function of the optimization problem. Some

papers study this problem by using the dual problem, we can quote, for instance, Karatzas,

Lehoczky and Shreve (1987) for the case of complete financial models, and Karatzas et

al. (1991) and Kramkov and Schachermayer (1999) for the case of incomplete financial

models, they find the solution of the original problem by convex duality. These papers are

useful to prove the existence of an optimal strategy in the general case, but in practice it is

difficult to find the optimal strategy with the dual method. Some others study the problem

by using the dynamic programming principle, we can quote Jeanblanc and Pontier (1990)

for a complete model with discontinuous prices, Bellamy (2001) in the case of a filtration

generated by a Brownian motion and a Poisson measure, Hu, Imkeller and Muller (2005)

for an incomplete model in the case of a Brownian filtration, and Jiao and Pham (2009) in

the case with a default, in which the authors study the case before the default and the case

after the default.

Models with partial observation are essentially studied in the literature in a complete

market framework. Detemple (1986), Dothan and Feldman (1986), Gennotte (1986) use

dynamic programming methods in a linear gaussian filtering. Lakner (1995, 1998) solves

the optimization problem via a martingale approach and works out the special case of linear

gaussian model. We mention that Frey and Runggaldier (1999) and Lasry and Lions (1999)

study hedging problems in finance under restricted information. Pham and Quenez (2001)

treat the case of an incomplete stochastic volatility model. Callegaro et al. (2006) and

Roland (2007) study the case of a market model with jumps.

We first study the case of full information. For the logarithmic utility function, we use

a direct approach, which allows to give an expression of the optimal strategy depending

uniquely on the coefficients of the model satisfied by the stocks. For the power utility func-
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tion, we look for a necessary condition characterizing the value function which is solution

of the maximization problem. We show that this value function is the smallest solution of

a BSDE. We also give an approximation of the value function by a sequence of solutions

of BSDEs. These solutions are the value functions of the maximization problem restricted

to some bounded subsets of strategies. For the exponential utility function, we refer to the

companion paper Lim and Quenez (2009).

In order to solve the partial information problem, the common way is to use the filtering

theory, so as to reduce the stochastic control problem with partial information to one with

full information as in Pham and Quenez (2001) or Roland (2007). Then we can apply the

results of the full information problem.

The outline of this paper is organized as follows. In Section 2, we describe the model

and formulate the optimization problem. In Section 3, we solve the logarithmic utility func-

tion with a direct approach. In Section 4, we consider the power utility function by giving

a characterization of the value function by a BSDE thanks to the dynamic programming

principle, then we approximate the value function by a sequence of solutions of Lipschitz

BSDEs. In Section 5, we use results from filtering theory to reduce the stochastic control

problem with partial information to one with full information, then we apply the results

of the full information problem to the partial information problem. Finally we study the

indifference price for a contingent claim and the information price linked to the insider

information.

In all this paper, elements of Rn, n ≥ 1, are identified to column vectors, the superscript
′ stands for the transposition, ||.|| the square norm, 1 the vector of Rn such that each

component of this vector is equal to 1. Let U and V two vectors of Rn, U ∗ V denotes

the vector such that (U ∗ V )i = UiVi for each i ∈ {1, . . . , n}. Given a vector X ∈ Rn,

|X|2 denotes the vector of Rn such that |X|2i = |Xi|
2 for each i ∈ {1, . . . , n}. For a

function f : R → R and a vector X ∈ Rn, we denote by f(X) the vector of Rn such that

f(X)i = f(Xi) for each i ∈ {1, . . . , n}. Let X ∈ Rn, diag(X) is the matrix such that

diag(X)ij = Xi if i = j else diag(X)ij = 0.

2 The model

We start with a complete probability space (Ω,F ,P) and a time horizon T ∈ (0,∞). We

assume throughout that all processes are defined on the finite time interval [0, T ]. Suppose

that this space is equipped with two stochastic processes: a n-dimensional Brownian motion

(Wt) and a p-dimensional jump process (Nt) = ((N i
t ), 1 ≤ i ≤ p) with N i

t = 1τi≤t, where

(τi)1≤i≤p are p default times. We make the following assumptions on the default times:

Assumption 2.1. (i) The defaults do not appear simultaneously: P(τi = τj) = 0 for

i 6= j.

(ii) Each default can appear at any time: P(τi > t) > 0.

We denote by F = {Ft, 0 ≤ t ≤ T} the filtration generated by these processes, which

is assumed to satisfy the usual conditions of right-continuity and completeness. We denote
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for each i ∈ {1, . . . , p} by (M i
t ) the compensated martingale of the process (N i

t ) and by

(Λi
t) its compensator in the filtration F. We assume that the compensator (Λi

t) is absolutely

continuous with respect to the Lebesgue measure, so that there exists a process (λi
t) such

that Λi
t =

∫ t

0 λ
i
sds. We can see that for each i ∈ {1, . . . , p}

M i
t = N i

t −

∫ t

0
λi
sds (2.1)

is an F-martingale. We assume that the process (λi
t) is uniformly bounded. It should be

noted that the construction of such process (N i
t ) is fairly standard; see, for example, Bi-

elecki and Rutkowski (2004).

We introduce some sets used throughout the paper:

– L1,+ is the set of positive F-adapted càd-làg processes on [0, T ] such that E[Yt] < ∞

for any t ∈ [0, T ].

– S2 is the set of F-adapted càd-làg processes on [0, T ] such that E[supt∈[0,T ] |Yt|
2] < ∞.

– L2(W ) (resp. L2
loc(W )) is the set of F-predictable processes on [0, T ] such that

E

[

∫ T

0
||Zt||

2dt
]

< ∞ (resp.

∫ T

0
||Zt||

2dt < ∞, P− a.s. ).

– L2(M) (resp. L1
loc(M)) is the set of F-predictable processes on [0, T ] such that

E

[

∫ T

0
λ′
t|Ut|

2dt
]

< ∞ (resp.

∫ T

0
λ′
t|Ut|dt < ∞, P− a.s. ).

We consider a financial market consisting of one risk-free asset, whose price process is

assumed for simplicity to be equal to 1 at each date, and n risky assets with n-dimensional

price process S = (S1, . . . , Sn)′ evolving according to the following model

dSt = diag(St)(µtdt+ σtdWt + βtdNt), 0 ≤ t ≤ T, (2.2)

We shall make the following standing assumptions:

Assumption 2.2. – µ (resp. σ, β) is an Rn (resp. Rn×n, Rn×p)-valued uniformly

bounded predictable stochastic process.

– For all t, the n × n matrix σt is nonsingular, and we assume that σσ′ is uniformly

elliptic, i.e. ǫIn ≤ σσ′ ≤ KIn, P− a.s. for constants 0 < ǫ < K.

– We suppose that the process (St) is positive ∀ t ∈ [0, T ], P− a.s.

Remark 2.1. The assumption σσ′ is uniformly elliptic implies that the predictable Rn-

valued process θt = σ′
t(σtσ

′
t)
−1µt is uniformly bounded.
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An n-dimensional F-predictable process π = (πt)0≤t≤T is called trading strategy if
∫ πi

tXt

Si
t

dSi
t is well defined for each i = 1, . . . , n. For i = 1, . . . , n, the process πi

t describes

the part of the wealth invested in asset i. The number of shares of asset i is given by
πi
tXt

Si
t

.

The wealth process Xx,π of a self-financing trading strategy π with initial capital x satisfies

the equation

Xx,π
t = x exp

(

∫ t

0

(

π′
sµs −

||π′
sσs||

2

2

)

ds+

∫ t

0
π′
sσsdWs

)

p
∏

j=1

(1 + π′
τ jβ

.,j

τ j
N j

t ). (2.3)

For a given initial time t and an initial capital x, the associated wealth process is denoted

by Xt,x,π
s .

Now let U : R → R be a utility function. The optimization problem consists in maxi-

mizing the expected utility from terminal wealth over the class A(x) of admissible portfolios

(which will be defined in the sequel). More precisely, we want to characterize the value

function of this problem, which is defined by

V (x) = sup
π∈A(x)

E

[

U(Xx,π
T )

]

, (2.4)

and we also want to give the optimal strategy when it exists. We begin by the simple case

when U is the logarithmic utility function, then we study the case of power utility function.

3 Logarithmic utility function

In this section, we specify the meaning of optimality for trading strategies by stipulating

that the agent wants to maximize his expected utility from his terminal wealth Xx,π
T with

respect to the logarithmic utility function

U(x) = log(x), x > 0.

Our goal is to solve the following optimization problem (we take n = p = 1 for the sake of

simplicity)

V (x) = sup
π∈A(x)

E
[

log(Xx,π
T )

]

, (3.1)

with A(x) the set of admissible portfolios defined by:

Definition 3.1. The set of admissible trading strategies A(x) consists of all F-predictable

processes (πt) satisfying E
[ ∫ T

0 |πtσt|
2dt

]

+ E
[ ∫ T

0 λt| log(1 + πtβt)|dt
]

< ∞, and such that

πtβt > −1, P− a.s. for any 0 ≤ t ≤ τ .

We can see from (3.1) that V (x) = log(x)+V (1). Hence, we only study the case x = 1.

And for the sake of brevity, we shall denote Xπ
t instead of X1,π

t and A instead of A(1).

Remark 3.1. The condition πtβt > −1, P − a.s. for any 0 ≤ t ≤ τ is stronger than

Xx,π
t > 0, P− a.s. for any 0 ≤ t ≤ T , but it is necessary to be able to write

log(Xπ
t ) =

∫ t

0

(

πsµs −
|πsσs|

2

2

)

ds+

∫ t

0
πsσsdWs +

∫ t

0
log(1 + πsβs)(dMs + λsds). (3.2)
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As in [21], we assume that supπ∈A E[log(Xπ
T )] < ∞.

We add the following assumption on the coefficients to be able to solve the optimization

problem (3.1) directly:

Assumption 3.1. The process (β−1
t ) is uniformly bounded.

With this assumption, we get easily the value function V (x) and the optimal strategy:

Theorem 3.1. The solution of the optimization problem (3.1) is given by

V (x) = log(x) + E

[

∫ T

0

(

π̂tµt −
|π̂tσt|

2

2
+ λt log(1 + π̂tβt)

)

dt
]

,

with π̂ the optimal trading strategy defined by

π̂t =















µt

2σ2
t

−
1

2βt
+

√

(µtβt + σ2
t )

2 + 4λtβ
2
t σ

2
t

2βtσ2
t

if t < τ and βt 6= 0,

µt

σ2
t

if t < τ and βt = 0 or t ≥ τ.

(3.3)

Proof. With (3.2) and Definition 3.1, we get the following expression for V (1)

V (1) = sup
π∈A

E

[

∫ T

0

(

πtµt −
|πtσt|

2

2
+ λt log(1 + πtβt)

)

dt
]

,

which implies that

V (1) ≤ E

[

∫ T

0
ess sup
πtβt>−1

{

πtµt −
|πtσt|

2

2
+ λt log(1 + πtβt)

}

dt
]

. (3.4)

For any t ∈ [0, T ] and any ω ∈ Ω, we have

ess sup
πtβt>−1

{

πtµt −
|πtσt|

2

2
+ λt log(1 + πtβt)dt

}

= π̂tµt −
|π̂tσt|

2

2
+ λt log(1 + π̂tβt),

with π̂t defined by (3.3). Then from inequality (3.4), we can see that

V (1) ≤ E

[

∫ T

0

(

π̂tµt −
|π̂tσt|

2

2
+ λt log(1 + π̂tβt)

)

dt
]

.

It now is sufficient to show that the strategy (π̂t) is admissible. It is clearly the case with

Assumption 3.1. Thus the previous inequality is an equality

V (1) = E

[

∫ T

0

(

π̂tµt −
|π̂tσt|

2

2
+ λt log(1 + π̂tβt)

)

dt
]

,

and the strategy (π̂t) is optimal.

Remark 3.2. Assumption 3.1 can be reduced to

E

[

∫ T

0
|π̂tσt|

2dt
]

+ E
[

∫ T

0
λt| log(1 + π̂tβt)|dt

]

< ∞.
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Remark 3.3. Recall that in the case without default, the optimal strategy is given by

π0
t = µt/σt. Thus, in the case of default, the optimal strategy can be written under the

form

π̂t = π0
t − ǫt,

where ǫt is an additional term given by

ǫt =











µt

2σ2
t

+
1

2βt
−

√

(µtβt + σ2
t )

2 + 4λtβ2
t σ

2
t

2βtσ2
t

si t < τ et βt 6= 0,

0 si t < τ et βt = 0 ou t ≥ τ.

Note that if we assume that βt is negative (resp. βt is positive), i.e. the asset price (St)

has a negative jump (resp. a positive jump) at default time τ , ǫt is positive (resp. ǫt is

negative), i.e. the agent has to invest less (resp. more) in the risky asset than in the case

of a market without default.

4 Power utility

In this section, we keep the notation of Section 3 and we shall study the case of the

power utility function defined by

U(x) = xγ , x ≥ 0, γ ∈ (0, 1).

In order to formulate the optimization problem we first define the set of admissible trading

strategies.

Definition 4.1. The set of admissible strategies A(x) consists of all F-predictable processes

π = (πt)0≤t≤T such that
∫ T

0 ||π′
tσt||

2dt+
∫ T

0 |π′
tβt|λtdt < ∞, P−a.s. and such that π′

τj
β.,j
τj ≥

−1, P− a.s. for each j ∈ {1, . . . , p}.

Remark 4.1. From expression (2.3), it is obvious that the condition π′
τj
β.,j
τj ≥ −1, P−a.s.

for each j ∈ {1, . . . , p} is equivalent to Xx,π
t ≥ 0, P− a.s. for any t ∈ [0, T ].

The portfolio optimization problem consists in determining a predictable portfolio πt =

(π1
t , . . . , π

n
t )

′ which attains the optimal value

V (x) = sup
π∈A(x)

E[(Xx,π
T )γ ]. (4.1)

Problem (4.1) can be clearly written as V (x) = xγV (1). Therefore, it is sufficient to study

the case x = 1. As in [21], we assume that supπ∈A(1) E[(X
1,π
T )γ ] < ∞. To solve the

optimization problem, we give a dynamic extension of the initial problem. For any initial

time t ∈ [0, T ], we define the value function J(t) by the following random variable

J(t) = ess sup
π∈At(1)

E

[

(

Xt,1,π
T

)γ
∣

∣

∣
Ft

]

,

with At(1) the set of F-predictable processes π = (πs)t≤s≤T such that
∫ T

t
||π′

sσs||
2ds +

∫ T

t
|π′

sβs|λsds < ∞, P− a.s. and such that π′
τj
β.,j
τj ≥ −1, P− a.s. for each j ∈ {1, . . . , p}.
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For the sake of brevity, we shall denote Xπ
s (resp. Xt,π

s ) instead of X1,π
s (resp. Xt,1,π

s )

and A (resp. At) instead of A(1) (resp. At(1)). And to simplify the notation, we suppose

in the remainder of this section that n = p = 1, we give the generalization of the results in

Part 4.3.

In the sequel, we will use the martingale representation theorem (see Jeanblanc et al.

(2009)) to characterize the value function J(t):

Lemma 4.1. Any (P,F)-local martingale has the representation

mt = m0 +

∫ t

0
asdWs +

∫ t

0
bsdMs, ∀ t ∈ [0, T ], P− a.s., (4.2)

where a ∈ L2
loc(W ) and b ∈ L1

loc(M). If (mt) is a square integrable martingale, each term

on the right-hand side of the representation (5.11) is square integrable.

4.1 Optimization over bounded strategies

Let us fix k ∈ N. Before studying the value function J(t), we study the value functions

(Jk(t))k∈N defined by

Jk(t) = ess sup
π∈Ak

t

E
[

(Xt,π
T )γ

∣

∣Ft

]

, ∀ t ∈ [0, T ], P− a.s., (4.3)

where Ak
t is the set of strategies of At uniformly bounded by k. This means that the parts

of the wealth invested in the assets have to be bounded by a constant k (which makes sense

in finance, because the ratio of the amount of money invested or borrowed to the wealth

must be bounded according to the financial legislation). We want to characterize the value

function Jk(t) by a BSDE. For that we introduce for any π ∈ Ak the càd-làg process Jπ
t

defined for all t ∈ [0, T ] by

Jπ
t = E

[

(Xt,π
T )γ

∣

∣Ft

]

.

The family ((Jπ
t ))π∈Ak is uniformly bounded:

Lemma 4.2. The process (Jπ
t ) is uniformly bounded by a constant independent of π.

Proof. Fix t ∈ [0, T ]. We have

Jπ
t = E

[

exp
(

γ

∫ T

t

(µsπs −
|σsπs|

2

2
)ds +

∫ T

t

γσsπsdWs

)

(1 + πτβτ1t<τ≤T )
γ
∣

∣

∣
Ft

]

,

since the coefficients µt, σt and βt are supposed to be bounded, we have

Jπ
t ≤ (1 + k |β|∞)γ exp

(

(γ k |µ|∞ + γ2
(k |σ|∞)2

2
)T

)

.

Classically, for any π ∈ Ak the process (Jπ
t ) can be shown to be the solution of a linear

BSDE. More precisely, there exist Zπ ∈ L2(W ) and Uπ ∈ L2(M), such that (Jπ
t , Z

π
t , U

π
t ) is

8



the unique solution in S2 × L2(W )× L2(M) of the linear BSDE with bounded coefficients























− dJπ
t =− Zπ

t dWt − Uπ
t dMt +

{

γπt(µtJ
π
t + σtZ

π
t ) +

γ(γ − 1)

2
π2
t σ

2
t J

π
t

+ λt((1 + πtβt)
γ − 1)(Jπ

t + Uπ
t )

}

dt,

Jπ
T = 1.

(4.4)

Using the fact that for any t ∈ [0, T ], Jk(t) = ess supπ∈Ak
t
Jπ
t , we derive that (Jk(t))

corresponds to the solution of a BSDE, whose generator is the essential supremum over π

of the generators of (Jπ
t )π∈Ak . More precisely,

Proposition 4.1. The following properties hold:

– Let (Yt, Zt, Ut) be the solution in S2×L2(W )×L2(M) of the following Lipschitz BSDE























− dYt =− ZtdWt − UtdMt + ess sup
π∈Ak

{

γπt(µtYt + σtZt) +
γ(γ − 1)

2
π2
t σ

2
t Yt

+ λt((1 + πtβt)
γ − 1)(Yt + Ut)

}

dt,

YT = 1.

(4.5)

Then, for any t ∈ [0, T ], Jk(t) = Yt, P− a.s.

– There exists a unique optimal strategy for Jk(0) = supπ∈Ak E[(Xπ
T )

γ ].

– A strategy π̂ ∈ Ak is optimal for Jk(0) if and only if it attains the essential supremum

of the generator in (4.5) dt⊗ dP− a.e.

Proof. Since for any π ∈ Ak there exist Zπ ∈ L2(W ) and Uπ ∈ L2(M) such that (Jπ
t , Z

π
t , U

π
t )

is the solution of the BSDE

− dJπ
t = fπ(t, Jπ

t , Z
π
t , U

π
t )dt− Zπ

t dWt − Uπ
t dMt ; Jπ

T = 1,

with fπ(s, y, z, u) = γ(γ−1)
2 π2

sσ
2
sy + γπs(µsy + σsz) + λs

(

(1 + πsβs)
γ − 1

)

(y + u). Let us

introduce the generator f which satisfies ds ⊗ dP− a.e.

f(s, y, z, u) = ess sup
π∈Ak

fπ(s, y, z, u).

Note that f is Lipschitz, since the supremum of affine functions, whose coefficients are

bounded by a constant c > 0, is Lipschitz with Lipschitz constant c. Hence, by results of

[36], the BSDE with Lipschitz generator f

− dYt = f(y, Yt, Zt, Ut)dt− ZtdWt − UtdMt ; YT = 1

admits a unique solution denoted by (Yt, Zt, Ut).

By the comparison theorem in case of jumps (see for example Royer (2006)) Yt ≥ Jπ
t ,

∀ t ∈ [0, T ], P − a.s. As this inequality is satisfied for any π ∈ Ak, it is obvious that
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Yt ≥ ess supπ∈Ak Jπ
t , P − a.s. Also, by applying a predictable selection theorem, one can

easily show that there exists π̂ ∈ Ak such that for any t ∈ [0, T ], we have

ess sup
π∈Ak

{

γπt(µtYt + σtZt) +
γ(γ − 1)

2
π2
t σ

2
t Yt + λt((1 + πtβt)

γ − 1)(Yt + Ut)
}

= γπ̂t(µtYt + σtZt) +
γ(γ − 1)

2
π̂2
t σ

2
t Yt + λt((1 + π̂tβt)

γ − 1)(Yt + Ut).

Thus (Yt, Zt, Ut) is a solution of BSDE (4.4) associated with π̂. Therefore by uniqueness

of the solution of BSDE (4.4), we have Yt = J π̂
t and thus Yt = ess supπ∈Ak

t
Jπ
t = J π̂

t ,

∀ t ∈ [0, T ], P− a.s.

The uniqueness of the optimal strategy is due to the strict concavity of the function x 7→

xγ .

4.2 General case

In this part, we characterize the value function J(t) by a BSDE, but the general case

is more complicated than the case with bounded strategies and it needs more technical

tools. Note that the random variable J(t) is defined uniquely only up to P-almost sure

equivalent and that the process (J(t)) is adapted but not necessarily progressive. Using

dynamic control technics, we derive the following characterization of the value function:

Proposition 4.2. (J(t)) is the smallest F-adapted process such that ((Xπ
t )

γJ(t)) is a su-

permartingale for any π ∈ A with J(T ) = 1. More precisely, if (J̄t) is an F-adapted process

such that ((Xπ
t )

γ(J̄t)) is a supermartingale for any π ∈ A with J̄T = 1, then for any

t ∈ [0, T ], we have J(t) ≤ J̄t, P− a.s.

From [21], there exists an optimal strategy π̂ ∈ A such that J(0) = E[(X π̂
T )

γ ]. And with

the dynamic programming principle, we have the following optimality criterion:

Proposition 4.3. The following assertions are equivalent:

i) π̂ is an optimal strategy, that is E[(X π̂
T )

γ ] = supπ∈A E[(Xπ
T )

γ ].

ii) The process ((X π̂
t )

γJ(t)) is a martingale.

The proof of these propositions is given in Appendix A.

By Proposition 4.2, (J(t)) is a supermartingale. Hence E[J(t)] ≤ J(0) < ∞ that for

any t ≥ 0.

Proposition 4.4. There exists a càd-làg modification of J(t) which is denoted by (Jt).

Proof. By Proposition 4.3, we know that J(t) = E[(X π̂
T )

γ |Ft]/(X
π̂
t )

γ , P−a.s.Which implies

the desired result.

This càd-làg process is characterized by a BSDE. More precisely,
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Theorem 4.1. There exist Z ∈ L2
loc(W ) and U ∈ L1

loc(M) such that the process (Jt, Zt, Ut)

is the minimal solution1 in L1,+ × L2
loc(W )× L1

loc(M) of the following BSDE























− dJt =− ZtdWt − UtdMt + ess sup
π∈A

{

γπt(µtJt + σtZt) +
γ(γ − 1)

2
π2
t σ

2
t Jt

+ λt((1 + πtβt)
γ − 1)(Jt + Ut)

}

dt,

JT = 1.

(4.6)

If a strategy π̂ ∈ A is optimal for J0 = supπ∈A E[(Xπ
T )

γ ] then π̂ attains the essential

supremum in the generator of BSDE (4.6) dt⊗ dP a.s.

The proof of this theorem is postponed in Appendix B.

There exists another characterization of the value function Jt as the limit of processes

(Jk
t )k∈N as k tends to +∞, with (Jk

t ) is the value function in the case where the strategies

are bounded by k:

Theorem 4.2. For any t ∈ [0, T ], we have

Jt = lim
k→∞

↑ Jk(t), P− a.s.

The proof of this theorem is given in Appendix C.

This allows to approximate the value function Jt by numerical computation, since the

value functions (Jk
t ) are the solution of Lipschitz BSDEs and the results of Bouchard and

Elie (2008) can be applied.

4.3 Several default times and several assets

In this part, we only give the BSDEs in the case of several default times and several

assets. The proofs are not given, but they are identical to the proofs for n = p = 1.

– BSDE (4.5) is written























− dYt =− Z ′
tdWt − U ′

tdMt + ess sup
π∈Ak

{

γπ′
t(Ytµt + σtZt) +

γ(γ − 1)

2
||π′

tσt||
2Yt

+ [(1+ π′
tβt)

γ − 1](Ytλt + λt ∗ Ut))
}

dt,

YT =1,

– and BSDE (4.6) is written























− dYt =− Z ′
tdWt − U ′

tdMt + ess sup
π∈A

{

γπ′
t(Ytµt + σtZt) +

γ(γ − 1)

2
||π′

tσt||
2Yt

+ [(1+ π′
tβt)

γ − 1](Ytλt + λt ∗ Ut))
}

dt,

YT = 1.

1That is for any solution (J̄t, Z̄t, Ūt) of BSDE (4.6) in L1,+ ×L2
loc(W )×L1

loc(M), we have Jt ≤ J̄t, ∀ t ∈

[0, T ], P− a.s.
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5 The partial information case

The difference between this section and the previous sections is that here we require the

investment process to be adapted to the natural filtration generated by the price process

and the default time process. This requirement means that the only available information

for agents in this economy at a certain time are the prices of the financial assets up to

that time and the default times. The underlying Brownian motion, the drift process and

the compensator process in the system of equations for the asset prices are not directly

observable.

Let (Ω,F ,P) a probability triplet and F = {Ft, 0 ≤ t ≤ T} a filtration in F satisfying

the usual conditions (augmented and right continuous). Suppose that this space is equipped

with (Wt) and (Nt) as in Section 2. We also assume there are one risk-free asset and n

risky assets on the market. As in Section 2, we assume that the price process (St) evolves

according to the following model

dSt = diag(St)(µtdt+ σtdWt + βtdNt), 0 ≤ t ≤ T, (5.1)

moreover we assume that σt = σ(t, St− , t ∧ τ) and βt = β(t, St− , t ∧ τ), with t ∧ τ =

(t ∧ τ1, . . . , t ∧ τp)
′. The known functions σ(t, s, h) and β(t, s, h) are measurable mappings

from [0, T ] × Rn × Rp into Rn×n and Rn×p. We make the hypotheses of Assumption 2.2

and we add the following assumption:

Assumption 5.1. The functions sσ(t, s, h) and sβ(t, s, h) are Lipschitz in s ∈ Rn , uni-

formly in t ∈ [0, T ] and h ∈ Rp.

We now consider an agent in this market who can observe neither the Brownian motion

(Wt) nor the drift (µt) and the process (λt), but only the asset price process (St) and

the default times (τi)1≤i≤p. We shall denote by G = {Gt, 0 ≤ t ≤ T} the P-filtration

augmented by the price process (St) and the default process (Nt). The trading strategies

are defined as in Section 2, but we add the condition that they are G-predictable. We

now want to solve the problem of maximization of expected utility from terminal wealth

for logarithmic, power and exponential utility functions. It is not possible to use directly

the results of the full information case because we do not know the Brownian motion, the

drift and the compensator. Moreover there exists no martingale representation theorem

for the G-martingale. Thus before to study the problem of maximization, we begin by an

operation of filtering as in Pham and Quenez (2001).

5.1 Filtering

Let us define the process ρt = σ−1
t µt, assumed to satisfy the integrability condition

∫ T

0
||ρt||

2dt < ∞, P− a.s. (5.2)

Consider the positive local martingale defined by L0 = 1 and dLt = −Lt ρ
′
tdWt. It is

explicitly given by

Lt = exp
(

−

∫ t

0
ρ′sdWs −

1

2

∫ t

0
||ρs||

2ds
)

. (5.3)
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We shall make the usual standing assumption on filtering theory:

Assumption 5.2. The process (Lt) is a martingale, i.e. E[LT ] = 1.

Under this last assumption, one can define a probability measure equivalent to P on

(Ω,F) characterized by
dQ

dP

∣

∣

∣

Ft

= Lt, 0 ≤ t ≤ T. (5.4)

By Girsanov’s theorem, the n-dimensional process defined by

W̃t = Wt +

∫ t

0
ρsds (5.5)

is a (Q,F)-Brownian motion and the compensated martingale (Mt) is still a (Q,F)-martingale.

The dynamic of (St) under Q is given by

dSt = diag(St)(σ(t, St− , t ∧ τ)dW̃t + β(t, St− , t ∧ τ)dNt). (5.6)

We begin by proving a lemma which will be of paramount importance in the sequel:

Proposition 5.1. Under Assumptions 2.2 and 5.2, the filtration G is the augmented fil-

tration of (W̃ ,N).

Proof. Let FW̃ ,N be the augmented filtration of (W̃ ,N). From (5.6), we have

W̃t =

∫ t

0
σ(s, Ss− , s ∧ τ)−1diag(S−1

t )dSs −

∫ t

0
σ(s, Ss− , s ∧ τ)−1β(s, Ss− , s ∧ τ)dNs,

for all t ∈ [0, T ], which implies that (W̃t) is G-adapted and FW̃ ,N ⊂ G. Conversely, under

the assumptions on the coefficients, by a classical result of stochastic differential equation

(see [31], Theorem V 3.7), the unique solution of (5.6) is FW̃ ,N -adapted, hence G ⊂ FW̃ ,N

and finally G = FW̃ ,N .

We now make the standing assumption on the risk premia process (ρt):

Assumption 5.3. For all t ∈ [0, T ], E|ρt| < ∞.

Since the processes (ρt) and (λt) are not G-predictable, it is natural to introduce the

G-conditional law of the random variables ρt and λt, say

λ̃t = E
[

λt

∣

∣Gt

]

and ρ̃t = E
[

ρt
∣

∣Gt

]

.

Consider the couple of processes (W̄t, M̄t) defined by















W̄t = W̃t −

∫ t

0
ρ̃sds,

M̄t = Nt −

∫ t

0
λ̃sds.

(5.7)

These are the so-called innovation processes of filtering theory. By classical results in

filtering theory (see for example [28], Proposition 2.27), we have:
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Proposition 5.2. The process (M̄t) is a (Q,G)-martingale.

Proof. Since the process (Nt) and the intensity (λ̃t) are G-adapted, the process (M̄t) is

G-adapted. We can write from (2.1)

M̄t = Mt +

∫ t

0
(λs − λ̃s)ds.

By the law of iterated conditional expectation, it is easy to check that (M̄t) is a (Q,G)-

martingale.

Remark 5.1. From Proposition 5.1 and (5.7), the filtration G is equal to the augmented

filtration of (W̃ , M̄), since [M̄ ]t = Nt.

We have also the following property about the process (W̄t):

Proposition 5.3. Under Assumptions 5.2 and 5.3, the process (W̄t) is a (P,G)-Brownian

motion.

Proof. We can write with (5.5)

W̄t = Wt +

∫ t

0
σ(s, Ss, s ∧ τ)−1(µs − µ̃s)ds, (5.8)

where µ̃t = E
[

µt

∣

∣Gt

]

. By Proposition 5.1, W̄ is G-adapted. Moreover, we have [W̄ i, W̄ j]t =

δijt for all t ∈ [0, T ], where δij is the Kronecker notation. By the law of iterated conditional

expectation, it is easy to check that (W̄t) is a G-martingale. We then conclude by Levy’s

characterization theorem on Brownian motion (see, e.g., Theorem 3.3.16 in [18].

Denote by (Λt), the (Q,F)-martingale given by Λt = 1/Lt. We then have

dP

dQ

∣

∣

∣

Ft

= Λt, 0 ≤ t ≤ T.

Let (Λ̃t) be the (Q,G)-martingale given by Λ̃t = EQ

[

Λt

∣

∣Gt

]

. Recall the classical proposition

(see for example [23] or [30]), which gives the expression of (Λ̃t):

Lemma 5.1. Under Assumptions 5.2 and 5.3, we have

Λ̃t = exp
(

∫ t

0
ρ̃′sdW̃s −

1

2

∫ t

0
||ρ̃s||

2ds
)

. (5.9)

Proposition 5.4. The process (M̄t) is a (P,G)-martingale.

Proof. Since dP
dQ

∣

∣

Gt
= Λ̃t, we can apply Girsanov’s theorem and we get that the process

(M̄t) is a (P,G)-martingale.

By means of innovation processes, we can describe from (5.1) and (5.8) the dynamics

of the partially observed default model within a framework of full observation model
{

dSt = µ̃tdt+ σ(t, St− , t ∧ τ)dW̄t + β(t, St− , t ∧ τ)dNt,

dM̄t = dNt − λ̃tdt,
(5.10)

where (µ̃t) and (λ̃t) are G-predictable processes.

Hence, the operations of filtering and control can be put in sequence and thus separated.
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5.2 Optimization problem for the logarithmic and power utility functions

To apply the results of Section 4 and of Lim and Quenez (2009), it is sufficient to have a

martingale representation theorem for (P,G)-martingale with respect to W̄ and M̄ . Notice

it cannot be directly derived from the usual martingale representation theorem since G is

not equal to the filtration generated by W̄ and M̄ .

Lemma 5.2. Any (P,G)-local martingale has the representation

mt = m0 +

∫ t

0
a′sdW̄s +

∫ t

0
b′sdM̄s, ∀ t ∈ [0, T ], P− a.s., (5.11)

where a ∈ L2
loc(W̄ ) and b ∈ L1

loc(M̄). If (mt) is a square integrable martingale, each term

on the right-hand side of the representation (5.11) is square integrable.

The proof of this lemma is postponed in Appendix D.

It is now possible to apply the previous results because the price process evolves ac-

cording to the equation
{

dSt = diag(St)(µ̃tdt+ σtdW̄t + βtdNt),

dM̄t = dNt − λ̃tdt,

where each coefficient isG-predictable, and there exists a martingale representation theorem

for (P,G)-martingale. We get the following characterization for the value functions and the

optimal strategies when they exist.

For the logarithmic utility function, we have:

Theorem 5.1. We assume that β−1
t is uniformly bounded. Then, the solution of the

optimization problem for the logarithmic utility function is given by

V (x) = log(x) + E

[

∫ T

0

(

π̂tµ̃t −
|π̂tσt|

2

2
+ λ̃t log(1 + π̂tβt)

)

dt
]

,

with π̂ the optimal trading strategy defined by

π̂t =























µ̃t

2σ2
t

−
1

2βt
+

√

(µ̃tβt + σ2
t )

2 + 4λ̃tβ2
t σ

2
t

2βtσ2
t

if t < τ and βt 6= 0,

µ̃t

σ2
t

if t < τ and βt = 0 or t ≥ τ.

Therefore, we can see that the optimal portfolio in the case of partial information can

be formally derived from the full information case by replacing the unobservable coefficients

µt and λt by theirs estimates µ̃t and λ̃t.

For the power utility function, we have:

Theorem 5.2. – Let (Ȳt, Z̄t, Ūt) the minimal solution in L1,+ × L2
loc(W̄ )× L1

loc(M̄) of

the BSDE (4.6) with (W, M, µ, λ) replaced by (W̄ , M̄ , µ̃, λ̃), then

Ȳt = ess sup
π∈At

E[(Xt,π
T )γ |Gt], P− a.s.
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– If a strategy π̂ ∈ A is optimal for J0 = supπ∈A E[(Xπ
T )

γ ] then π̂ attains the essential

supremum in the generator of BSDE (4.6) dt⊗ dP a.s.

– Moreover the process (Ȳt) is the nondecreasing limit of the process (Ȳ k
t )k∈N, where

(Ȳ k
t , Z̄

k
t , Ū

k
t ) is the solution in S2×L2(W̄ )×L2(M̄ ) of the BSDE (4.5) with (W, M, µ, λ)

replaced by (W̄ , M̄ , µ̃, λ̃).

5.3 Optimization problem for the exponential utility function and indif-

ference pricing

We can also apply the results of Lim and Quenez (2009) for the exponential utility

function. In this case, we assume that the agent faces some liability, which is modeled by

a random variable ζ (for example, ζ may be a contingent claim written on some default

events affecting the prices of the underlying assets). We suppose that ζ is a non-negative

GT -adapted process (note that all the results still hold under the assumption that ζ is

only lower bounded). Without loss of generality we can use a somewhat different notion

of trading strategy: φt corresponds to the amount of money invested in the assets. The

number of shares i is φi
t/S

i
t . With this notation, under the assumption that the trading

strategy is self-financing, the wealth process (Xx,φ
t ) associated with a trading strategy φ

and an initial capital x is equal to

Xx,φ
t = x+

∫ t

0
φ′
sµ̃sds+

∫ t

0
φ′
sσsdWs +

∫ t

0
φ′
sβsdNs.

Our goal is to solve the optimization problem for an agent who buys a contingent claim ζ

V (x, ζ) = sup
φ∈A(x)

E

[

− exp
(

− γ
(

Xx,φ
T + ζ

)

)]

= exp(−γx)V(0, ζ), (5.12)

where A(x) is defined by:

Definition 5.1. The set of admissible trading strategies A(x) consists of all G-predictable

processes φ = (φt)0≤t≤T , which satisfy
∫ T

0 ||φ′
tσt||

2ds +
∫ T

0 |φ′
tβt|

2λ̃tdt < ∞, P − a.s. and

such that for any φ fixed and any t ∈ [0, T ], there exists a constant Kt,π such that for any

s ∈ [t, T ], we have Xt,π
s ≥ Kt,π, P− a.s.

To solve this problem, it is sufficient to study the case x = 0. For that we give a dynamic

extension of the initial problem as in Section 4. For any initial time t ∈ [0, T ], we define

the value function Jζ(t) by the following random variable

Jζ(t) = ess inf
φ∈At

E

[

exp
(

− γ
(

Xt,0,φ
T + ζ

)

)
∣

∣

∣
Gt

]

,

with At is the admissible portfolio strategies set defined by:

Definition 5.2. The set of admissible trading strategies At consists of all G-predictable

processes φ = (φs)t≤s≤T , which satisfy
∫ T

t
||φ′

sσs||
2ds +

∫ T

t
|φ′

sβs|
2λ̃sds < ∞, P − a.s. and

such that for any φ fixed and any s ∈ [t, T ], there exists a constant Ks,π such that for any

u ∈ [s, T ], we have Xs,π
u ≥ Ks,π, P− a.s.
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We introduce the two following sets:

– S+,∞ is the set of positive G-adapted P-essentially bounded càd-làg processes on

[0, T ].

– A2 is the set of the increasing adapted càd-làg processes K such that K0 = 0 and

E|KT |
2 < ∞.

By applying the results of the companion paper Lim and Quenez (2009), we get the following

characterizations of the value function:

Theorem 5.3. – Let (Ȳt, Z̄t, Ūt, K̄t) the maximal solution2 in S+,∞×L2(W̄ )×L2(M̄)×

A2 of























− dȲt =− Z̄ ′
tdW̄t − Ū ′

tdM̄t − dK̄t + ess inf
φ∈A

{γ2

2
||φ′

tσt||
2Ȳt − γφ′

t(Ȳtµ̃t + σtZ̄t)

−
(

1− e−γφ′

tβt
)

(Ȳtλ̃t + λ̃t ∗ Ūt)
}

dt,

ȲT = exp(−γζ).
(5.13)

then Ȳt = J̄ζ(t), P− a.s.

– J̄ζ(t) = limn→∞ ↓ J̄ζ,k(t), with J̄ζ,k(t) = ess infφ∈Ak
t
E[exp(−γ(Xt,0,φ

T + ζ))|Gt] and

Ak
t is the set of strategies of At uniformly bounded by k.

– Let (Ȳ k
t , Z̄

k
t , Ū

k
t ) is the unique solution in S2×L2(W̄ )×L2(M̄ ) of the following BSDE























− dȲ k
t =− Z̄k′

t dW̄t − Ūk′

t dM̄t + ess inf
φ∈Ak

{γ2

2
||φ′

tσt||
2Ȳ k

t − γφ′
t(Ȳ

k
t µ̃t + σtZ̄

k
t )

− (1− e−γφ′

tβt)(Ȳ k
t λ̃t + λ̃t ∗ Ū

k
t )
}

dt,

Ȳ k
T = exp(−γζ),

(5.14)

then Ȳ k
t = J̄ζ,k(t), P− a.s.

We can now define the indifference pricing of the contingent claim ζ. The Hodges ap-

proach to pricing of unhedgeable claims is a utility-based approach and can be summarized

as follows: the issue at hand is to assess the value of some (defaultable) claim ζ as seen from

the perspective of an investor who optimizes his behavior relative to some utility function,

in our case we use the exponential utility function. The investor has two choices:

– he only invests in the risk-free asset and in the risky assets, in this case the associated

optimization problem is

V (x, 0) = sup
φ∈A(x)

E[− exp(−γ(Xx,φ
T ))],

2That is for any solution (J̄t, Z̄t, Ūt, K̄t) of BSDE (5.13) in S+,∞ × L2(W̄ ) × L2(M̄) × A2, we have

J̄t ≤ Jt, ∀ t ∈ [0, T ], P− a.s.
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– he also invests in the contingent claim, whose price is p̄ at 0, in this case the associated

optimization problem is

V (x− p̄, ζ) = sup
φ∈A(x)

E[− exp(−γ(Xx−p̄,φ
T + ζ))].

Definition 5.3. For a given initial capital x, the Hodges buying price of a defaultable

claim ζ is the price p̄ such that the investor’s value functions are indifferent between holding

and not holding the contingent claim, i.e.

V (x, 0) = V (x− p̄, ζ).

The Hodges price p̄ can be derived explicitly by applying the results of Theorem 5.3. If

the agent buys the contingent claim at the price p̄ and invests the rest of his wealth in the

risk-free asset and in the risky assets, the value function is equal to

V (x− p̄, ζ) = − exp(−γ(x− p̄))J̄ζ(0).

If he invests all his wealth in the risk-free asset and in the risky assets, the value function

is equal to

V (x, 0) = − exp(−γx)J̄0(0).

The Hodges price for the contingent claim ζ is clearly given by the formula

p̄ =
1

γ
ln

( J̄0(0)

J̄ζ(0)

)

.

Remark 5.2. If we restrict the admissible strategies to the bounded set Ak, the indifference

price p̄k can also be defined by the same method. More precisely,

p̄k =
1

γ
ln

( J̄0,k(0)

J̄ζ,k(0)

)

,

where J̄ζ,k(0) is defined in Theorem 5.3.

Note that

p̄ = lim
k→∞

p̄k.

This allows to approximate the indifference price by numerical computation, since the value

functions (J̄ζ,k
t )k∈N are the solution of a Lipschitz BSDE and the results of Bouchard and

Elie (2008) can be applied.

We assume that there are two kinds of agents in the market: the insider agents and the

classical agents. We define the information price d for a contingent claim as the difference

between the buying price for a classical agent and the buying price for an insider agent. The

buying price, if the agent knows the full information, is defined by (see Lim and Quenez

(2009))

p =
1

γ
ln

(J0(0)

Jζ(0)

)

,
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where (Jζ(t), Zt, Ut,Kt) is the maximal solution of BSDE (5.13) with (W̄ , M̄ , µ̃, λ̃) replaced

by (W, M, µ, λ).

Then the benefit of an insider agent who has a full information is the information price

d = p̄− p.

This price can be computed as the limit of the information prices (dk)k∈N, where dk is the

information price if we restrict the admissible strategies to the bounded set Ak

dk =
1

γ

(

ln
( J̄0,k(0)

J0,k(0)

)

− ln
( J̄ζ,k(0)

Jζ,k(0)

))

,

where (Jζ,k(t)) is the solution of BSDE (5.14) with (W̄ , M̄ , µ̃, λ̃) replaced by (W, M, µ, λ).

Then we have

d = lim
k→∞

dk.

Appendix

A Proof of Propositions 4.2 and 4.3

The proof of these propositions is based on the following lemma:

Lemma A.1. The set {Jπ
t , π ∈ At} is stable by supremum for any t ∈ [0, T ], i.e. for any

π1, π2 ∈ At, there exists π ∈ At such that Jπ
t = Jπ1

t ∨ Jπ2

t .

Furthermore, there exists a sequence (πn)n∈N ∈ At for any t ∈ [0, T ], such that

J(t) = lim
n→∞

↑ Jπn

t , P− a.s.

Proof. Let us introduce the set E = {Jπ1

t ≥ Jπ2

t )} which belongs to Ft. Let us define the

strategy π for any s ∈ [t, T ] by the formula πs = π1
s1E + π2

s1Ec. It is obvious that π ∈ At.

And by construction of π, it is clear that Jπ
t = Jπ1

t ∨ Jπ2

t .

The second part of the lemma follows by classical results on the essential supremum (see

[27]).

We first prove that the process ((Xπ
t )

γJ(t)) is a supermartingale for any π ∈ A. For

that it is sufficient to show for any s ≤ t that

E
[

(Xs,π
t )γJ(t)

∣

∣Fs

]

≤ J(s), P− a.s.

By Lemma A.1, there exists a sequence (πn)n∈N of At such that J(t) = lim ↑ Jπn

t , P− a.s.

We define the strategy π̃n by π̃n
u = πu1[s,t](u)+πn

u1]t,T ](u), which is clearly admissible. By

the monotone convergence theorem and using the definition of J(s), one can easily show

that

E
[

(Xs,π
t )γJ(t)

∣

∣Fs

]

= lim
n→∞

↑ E
[

(Xs,π̃n

T )γ
∣

∣Fs

]

≤ J(s), P− a.s.
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Hence, the process ((Xπ
t )

γJ(t)) is a supermartingale for any π ∈ A.

Second, we prove that (J(t)) is the smallest process satisfying ((Xπ
t )

γJ(t)) is a super-

martingale for any π ∈ A. For that we suppose that (J̄t) is an F-adapted process such that

((Xπ
t )

γ(J̄t)) is a supermartingale for any π ∈ A with J̄T = 1. Fix t ∈ [0, T ]. For any π ∈ A,

we have E[(Xπ
T )

γ |Ft] ≤ (Xπ
t )

γ J̄t, P−a.s. This inequality is equivalent to E[(Xt,π
T )γ |Ft] ≤ J̄t.

Which implies

ess sup
π∈At

E
[

(Xt,π
T )γ

∣

∣Ft

]

≤ J̄t, P− a.s. ,

which clearly gives that Jt ≤ J̄t, P− a.s.

At last, we prove the optimality criterion, that is Proposition 4.3. Suppose that the

strategy π̂ is an optimal strategy, hence we have

J(0) = sup
π∈A

E [(Xπ
T )

γ ] = E
[(

X π̂
T

)γ]
.

As the process ((X π̂
t )

γJ(t)) is a supermartingale by Proposition 4.2 and that J(0) =

E[(X π̂
T )

γ ], the process ((X π̂
t )

γJ(t)) is a martingale.

To show the converse, suppose that the process ((X π̂
t )

γJ(t)) is a martingale, then E[(X π̂
T )

γ ] =

J(0). Moreover E[(Xπ
t )

γJ(t)] ≤ J(0) for any π ∈ A by Proposition 4.2. Which implies that

J(0) = sup
π∈A

E [(Xπ
T )

γ ] = E
[(

X π̂
T

)γ]
.

B Proof of Theorem 4.1

The proof of this theorem is based on Propositions 4.2 and 4.3, on Doob-Meyer’s de-

composition and on the martingale representation theorem.

Since the process (Jt) is a supermartingale, it can be written under the following form

by using Doob-Meyer decomposition (see [3]) and the martingale representation theorem

dJt = ZtdWt + UtdMt − dAt, (B.1)

with Z ∈ L2
loc(W ), U ∈ L1

loc(M), and (At) is a nondecreasing F-adapted process and A0 = 0.

From product rule, the derivative of process ((Xπ
t )

γJt) can be written under the form

d((Xπ
t )

γJt) = (Xπ
t−)

γ
(

dAπ
t + dMπ

t

)

,

with Aπ
0 = 0 and







dAπ
t =

[

γπt(µtJt + σtZt) +
γ(γ − 1)

2
π2
t σ

2
t Jt + λt((1 + πtβt)

γ − 1)(Jt + Ut)
]

dt− dAt,

dMπ
t = (γπtσtJt + Zt)dWt + (Ut + ((1 + πtβt)

γ − 1)(Jt + Ut))dMt.
(B.2)

From Proposition 4.2, we have dAπ
t ≤ 0 for any π ∈ A, which implies

dAt ≥ ess sup
π∈A

{

γπt(µtJt + σtZt) +
γ(γ − 1)

2
π2
t σ

2
t Jt + λt((1 + πtβt)

γ − 1)(Jt + Ut)
}

dt.

20



From [21], there exists an optimal strategy π̂ ∈ A to the optimization problem and from

Proposition 4.3, we get

dAt =
[

γπ̂t(µtJt + σtZt) +
γ(γ − 1)

2
π̂2
t σ

2
t Jt + λt((1 + π̂tβt)

γ − 1)(Jt + Ut)
]

dt.

Which imply that

dAt = ess sup
π∈A

{

γπt(µtJt+σtZt)+
γ(γ − 1)

2
π2
t σ

2
t Jt+λt((1+πtβt)

γ − 1)(Jt+Ut)
}

dt. (B.3)

Therefore the process (Jt, Zt, Ut) is a solution of BSDE (4.6).

We now prove that it is the minimal solution. Let (J̄t, Z̄t, Ūt) be a solution of BSDE

(4.6). Let us prove that ((Xπ
t )

γ J̄t) is a supermartingale for any π ∈ A. From the product

rule, we can write the derivative of this process under the form

d
(

(Xπ
t )

γ J̄t
)

= (Xπ
t−)

γ
[

dM̄π
t + dĀπ

t − dĀt

]

, (B.4)

where Āt (resp. M̄t) is given by (B.3) (resp. B.2) with (J,Z,U) replaced by (J̄ , Z̄, Ū ), and

Āπ
0 = 0 and

dĀπ
t =

[

γπt(µtJ̄t + σtZ̄t) +
γ(γ − 1)

2
π2
t σ

2
t J̄t + λt((1 + πtβt)

γ − 1)(J̄t + Ūt)
]

dt.

By integrating (B.4), we get

(Xπ
t )

γ J̄t − J̄0 =

∫ t

0
(Xπ

s−)
γdM̄π

s −

∫ t

0
(Xπ

s )
γ(dĀs − dĀπ

s ).

As dĀs ≥ dĀπ
s , we have

∫ t

0 (X
π
s−
)γdM̄π

s ≥ (Xπ
t )

γ J̄t − J̄0 ≥ −J̄0. It implies that (M̄π
t )

is a supermartingale, since it is a lower bounded local martingale. Hence, the process

((Xπ
t )

γ J̄t) is a supermartingale for any π ∈ A, because it is the sum of a supermartingale

and a nonincreasing process. Proposition 4.2 implies that Jt ≤ J̄t, ∀ t ∈ [0, T ], P − a.s.,

which ends this proof.

C Proof of Theorem 4.2

We first remark that (Jk
t ) satisfies the following property:

Lemma C.1. The process (Jk
t ) is the smallest F-adapted process such that ((Xπ

t )
γJk

t ) is a

supermartingale for any π ∈ Ak with Jk
t = 1.

To prove this lemma, we use exactly the same arguments as in the proof of Proposition 4.2,

since Lemma A.1 is still true with Ak
t instead of At.

Fix t ∈ [0, T ]. It is obvious with the definition of sets At and Ak
t that Ak

t ⊂ At for each

k ∈ N and hence

Jk
t ≤ Jt, P− a.s. (C.1)
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Moreover, since Ak
t ⊂ Ak+1

t for each k ∈ N, it follows that the positive sequence
(

Jk
t

)

k∈N
is

nondecreasing. Let us define the random variable

J̃(t) = lim
k→∞

↑ Jk
t , P− a.s.

It is obvious that the process J̃(t) ≤ Jt, P−a.s. from (C.1) and this holds for any t ∈ [0, T ].

It remains to prove that for any t ∈ [0, T ], Jt ≤ J̃(t), P− a.s. As in the proof of Theorem

4.2 of the companion paper Lim and Quenez (2009), we first prove that the process J̃(t+) is

càd-làg and satisfies J̃(t+) ≤ J̃(t), P− a.s. The process ((Xπ
t )

γ J̃(t+)) is a supermartingale

for any bounded strategy π ∈ A. In the sequel, we shall denote J̄t instead of J̃(t+). We

now prove that J̄t ≥ Jt, ∀ t ∈ [0, T ], P − a.s. Since (J̄t) is a càd-làg supermartingale, it

admits the following Doob-Meyer decomposition

dJ̄t = Z̄tdWt + ŪtdMt − dĀt,

with Z̄ ∈ L2
loc(W ), Ū ∈ L1

loc(M) and (Āt) is a nondecreasing G-adapted process with

Ā0 = 0. As before, we use the fact that the process ((Xπ
t )

γ J̄t) is a supermartingale for any

bounded strategy π ∈ A to give some conditions satisfied by the process (Āt). Let π ∈ A

be a uniformly bounded strategy, the product rule gives

d((Xπ
t )

γ J̄t) = (Xπ
t−)

γ
(

dĀπ
t + dM̄π

t

)

, (C.2)

where (Āπ
t ) and (M̄π

t ) are given by (B.2) with (J, Z, U, A) replaced by (J̄ , Z̄, Ū , Ā).

Let Āt be the subset of uniformly bounded strategies of At. Since the process ((X
π
t )

γ J̄t)

is a supermartingale for any π ∈ Ā, we have

dĀt ≥ ess sup
π∈Ā

{

γπt(µtJ̄t+σtZ̄t)+
γ(γ − 1)

2
π2
t σ

2
t J̄t+λt((1+πtβt)

γ − 1)(J̄t+ Ūt)
}

dt. (C.3)

It is not possible to give an exact expression of Āt as in the previous proof, because we

do not know if π̂ ∈ Ā. But this inequality is sufficient for the demonstration. Now, the

following equality holds dt⊗ dP a.s.

ess sup
π∈Ā

{

γπt(µtJ̄t + σtZ̄t) +
γ(γ − 1)

2
π2
t σ

2
t J̄t + λt((1 + πtβt)

γ − 1)(J̄t + Ūt)
}

=

ess sup
π∈A

{

γπt(µtJ̄t + σtZ̄t) +
γ(γ − 1)

2
π2
t σ

2
t J̄t + λt((1 + πtβt)

γ − 1)(J̄t + Ūt)
}

. (C.4)

We now want to show that ((Xπ
t )

γ J̄t) is a supermartingale for any π ∈ A. Fix π ∈ A (not

necessarily uniformly bounded), we get

(Xπ
t )

γ J̄t − J̄0 =

∫ t

0
(Xπ

s−)
γdM̄π

s +

∫ t

0
(Xπ

s )
γdĀπ

s ,

with (Āπ
t ) and (M̄π

t ) given by (B.2) with (J, Z, U, A) replaced by (J̄ , Z̄, Ū , Ā).

Inequality (C.3) and equality (C.4) imply that dĀπ
t ≤ 0, P− a.s. Therefore, we have

∫ t

0
(Xπ

s−)
γdM̄π

s ≥ (Xπ
t )

γ J̄t − J̄0 ≥ −J̄0.

22



Thus, (M̄π
t ) is a supermartingale, since it is a lower bounded local martingale. As (M̄π

t ) is a

supermartingale and (Āπ
t ) is nonincreasing, the process ((X

π
t )

γ J̄t) is a supermartingale and

this holds for any π ∈ A. Since (Jt) is the smallest process (see Proposition 4.2) satisfying

these properties, we have Jt ≤ J̄t, P− a.s. Which ends the proof.

D Proof of Lemma 5.2

First, recall Bayes formula: for all t ∈ [0, T ] and X ∈ L1(Ω,Ft,P), one has

E
[

X
∣

∣Gt

]

=
EQ

[

ΛtX
∣

∣Gt

]

Λ̃t

. (D.1)

Let (ξt) be the optional projection of the P-martingale (Lt) to G, so

ξt = E
[

Lt

∣

∣Gt

]

.

By applying relation (D.1) to X = Lt, we immediately obtain ξt = 1/Λ̃t and thus

ξt = exp
(

−

∫ t

0
ρ̃′sdW̄s −

1

2

∫ t

0
||ρ̃s||

2ds
)

.

Let (mt) be a (P,G)-local martingale. From Bayes rule, the process (m̃t) given by

m̃t = mtξ
−1
t , 0 ≤ t ≤ T,

is a (Q,G)-local martingale. From Remark 5.1 and Lemma 5.2, there exists a couple of

processes (ãt, b̃t) with ã ∈ L2
loc(W̃ ) and b̃ ∈ L1

loc(M̄ ) such that

m̃t =

∫ t

0
ã′sdW̃s +

∫ t

0
b̃′sdM̄s, 0 ≤ t ≤ T.

By Ito’s formula applied to mt = m̃tξt, definition of (W̄t) and (M̄t) (see (5.7)), we obtain

that

mt =

∫ t

0
a′sdW̄s +

∫ t

0
b′sdM̄s,

with at = ξtãt − m̃tξtρ̃t and bt = ξt− b̃t.
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