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Abstract

In this paper, we consider a financial market with assets exposed to some risks
inducing jumps in the asset prices, and which can still be traded after default times.
We use a default-intensity modeling approach, and address in this incomplete market
context the problem of maximization of expected utility from terminal wealth for loga-
rithmic, power and exponential utility functions. We study this problem as a stochastic
control problem both under full and partial information. Our contribution consists in
showing that the optimal strategy can be obtained by a direct approach for the loga-
rithmic utility function, and the value function for the power utility function can be
determined as the minimal solution of a backward stochastic differential equation. For
the partial information case, we show how the problem can be divided into two prob-
lems: a filtering problem and an optimization problem. We also study the indifference
pricing approach to evaluate the price of a contingent claim in an incomplete market
and the information price for an agent with insider information.

Keywords Optimal investment, default time, default intensity, filtering, dynamic program-
ming principle, backward stochastic differential equation, indifference price, information
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1 Introduction

One of the important problems in mathematical finance is the portfolio optimization
problem when the investor wants to maximize the expected utility from terminal wealth.
In this paper, we study this problem by considering a small investor on an incomplete fi-
nancial market who can trade in a finite time interval [0, T'] by investing in risky stocks and
a riskless bond. We assume that there exist some default times on the market, and each
default time generates a jump of stock prices. The underlying traded assets are assumed to
be some local martingales driven by a Brownian motion and a default indicating process.
In such a context, we solve the portfolio optimization problem when the investors want to
maximize the expected utility from terminal wealth. We assume that in the market there
are two kinds of agents: the insider agents (the agents with insider information) and the
classical agents (they only observe the asset prices and the default times). These situations
are referred as full information and partial information. We will be interested not only
in describing the investor’s optimal utility, but also the strategies which he may follow to
reach this goal.

The utility maximization problem with full information has been largely studied in the
literature. In the framework of a continuous-time model the problem was studied for the
first time by Merton (1971). Using the methods of stochastic optimal control, the author de-
rives a nonlinear partial equation for the value function of the optimization problem. Some
papers study this problem by using the dual problem, we can quote, for instance, Karatzas,
Lehoczky and Shreve (1987) for the case of complete financial models, and Karatzas et
al. (1991) and Kramkov and Schachermayer (1999) for the case of incomplete financial
models, they find the solution of the original problem by convex duality. These papers are
useful to prove the existence of an optimal strategy in the general case, but in practice it is
difficult to find the optimal strategy with the dual method. Some others study the problem
by using the dynamic programming principle, we can quote Jeanblanc and Pontier (1990)
for a complete model with discontinuous prices, Bellamy (2001) in the case of a filtration
generated by a Brownian motion and a Poisson measure, Hu, Imkeller and Muller (2005)
for an incomplete model in the case of a Brownian filtration, and Jiao and Pham (2009) in
the case with a default, in which the authors study the case before the default and the case
after the default.

Models with partial observation are essentially studied in the literature in a complete
market framework. Detemple (1986), Dothan and Feldman (1986), Gennotte (1986) use
dynamic programming methods in a linear gaussian filtering. Lakner (1995, 1998) solves
the optimization problem via a martingale approach and works out the special case of linear
gaussian model. We mention that Frey and Runggaldier (1999) and Lasry and Lions (1999)
study hedging problems in finance under restricted information. Pham and Quenez (2001)
treat the case of an incomplete stochastic volatility model. Callegaro et al. (2006) and
Roland (2007) study the case of a market model with jumps.

We first study the case of full information. For the logarithmic utility function, we use
a direct approach, which allows to give an expression of the optimal strategy depending
uniquely on the coefficients of the model satisfied by the stocks. For the power utility func-



tion, we look for a necessary condition characterizing the value function which is solution
of the maximization problem. We show that this value function is the smallest solution of
a BSDE. We also give an approximation of the value function by a sequence of solutions
of BSDEs. These solutions are the value functions of the maximization problem restricted
to some bounded subsets of strategies. For the exponential utility function, we refer to the
companion paper Lim and Quenez (2009).

In order to solve the partial information problem, the common way is to use the filtering
theory, so as to reduce the stochastic control problem with partial information to one with
full information as in Pham and Quenez (2001) or Roland (2007). Then we can apply the
results of the full information problem.

The outline of this paper is organized as follows. In Section 2, we describe the model
and formulate the optimization problem. In Section 3, we solve the logarithmic utility func-
tion with a direct approach. In Section 4, we consider the power utility function by giving
a characterization of the value function by a BSDE thanks to the dynamic programming
principle, then we approximate the value function by a sequence of solutions of Lipschitz
BSDEs. In Section 5, we use results from filtering theory to reduce the stochastic control
problem with partial information to one with full information, then we apply the results
of the full information problem to the partial information problem. Finally we study the
indifference price for a contingent claim and the information price linked to the insider
information.

In all this paper, elements of R, n > 1, are identified to column vectors, the superscript
" stands for the transposition, ||.|| the square norm, 1 the vector of R™ such that each
component of this vector is equal to 1. Let U and V two vectors of R™, U % V denotes
the vector such that (U x V); = U;V; for each i € {1,...,n}. Given a vector X € R",
|X|? denotes the vector of R™ such that |X|? = |X;|? for each i € {1,...,n}. For a
function f : R — R and a vector X € R", we denote by f(X) the vector of R™ such that
f(X); = f(X;) for each ¢ € {1,...,n}. Let X € R", diag(X) is the matrix such that

diag(X);; = X; if i = j else diag(X);; = 0.

2 The model

We start with a complete probability space (2, F,P) and a time horizon T' € (0, 00). We
assume throughout that all processes are defined on the finite time interval [0, T]. Suppose
that this space is equipped with two stochastic processes: a n-dimensional Brownian motion
(W) and a p-dimensional jump process (N;) = ((N}),1 < i < p) with N} = 1,,<;, where
(Ti)1<i<p are p default times. We make the following assumptions on the default times:

Assumption 2.1. (i) The defaults do not appear simultaneously: P(r; = 7;) = 0 for
i ]
(ii) Each default can appear at any time: P(r; > t) > 0.

We denote by F = {F;,0 < t < T} the filtration generated by these processes, which
is assumed to satisfy the usual conditions of right-continuity and completeness. We denote



for each i € {1,...,p} by (M}) the compensated martingale of the process (N}) and by
(A?) its compensator in the filtration F. We assume that the compensator (A?) is absolutely
continuous with respect to the Lebesgue measure, so that there exists a process (i) such
that Al = fg Aids. We can see that for each i € {1,...,p}

t
M;’:N;‘-/ Nds (2.1)
0

is an F-martingale. We assume that the process (i) is uniformly bounded. It should be
noted that the construction of such process (N}) is fairly standard; see, for example, Bi-
elecki and Rutkowski (2004).

We introduce some sets used throughout the paper:

— LY is the set of positive F-adapted cad-lag processes on [0, T] such that E[Y;] < oo
for any ¢ € [0,T].

— 8?2 is the set of F-adapted cad-lag processes on [0, 7] such that E[supsejo,r 1Y;|?] < o0.

— L2(W) (resp. L2 (W)) is the set of F-predictable processes on [0, 7] such that

loc

T T
E[/ HZtH2dt} < oo (resp. / |Z4||?dt < o0, P —a.s.).
0 0

~ L%*(M) (resp. L} (M)) is the set of F-predictable processes on [0, 7] such that

loc

T T
E[/ )\2|Ut|2dt] < oo (resp. / N|Uyldt < o0, P — a.s. ).
0 0

We consider a financial market consisting of one risk-free asset, whose price process is
assumed for simplicity to be equal to 1 at each date, and n risky assets with n-dimensional
price process S = (S!,...,S™) evolving according to the following model

dSt = diag(St)(,utdt + Utth + Btht), 0 <t< T, (22)
We shall make the following standing assumptions:

Assumption 2.2. — 1 (resp. o, B) is an R™ (resp. R™ ™ R"*P)-valued uniformly
bounded predictable stochastic process.

— For all ¢, the n X n matrix o; is nonsingular, and we assume that oo’ is uniformly
elliptic, i.e. eI, < oo’ < KI,, P — a.s. for constants 0 < ¢ < K.

— We suppose that the process (S;) is positive V¢ € [0,T], P — a.s.

Remark 2.1. The assumption oo’ is uniformly elliptic implies that the predictable R™-
valued process 0; = Jl’t(atag)_l p¢ is uniformly bounded.



An n-dimensional F-predictable process m = (m)o<i<7 is called trading strategy if

ﬂtXt dS! is well defined for each i = 1,...,n. For i = 1,...,n, the process 7 describes

the part of the wealth invested in asset i. The number of shares of asset i is given by tXt

The wealth process X7 of a self-financing trading strategy 7 with initial capital x satlsﬁes
the equation

t / 2 t b
o .
XP™ = zexp </ (mips — M)ds —I—/ FngdWs> H(l + ;87 NY). (2.3)
0 0 -
7j=1
For a given initial time ¢ and an initial capital x, the associated wealth process is denoted
by X557,

Now let U : R — R be a utility function. The optimization problem consists in maxi-
mizing the expected utility from terminal wealth over the class A(z) of admissible portfolios
(which will be defined in the sequel). More precisely, we want to characterize the value
function of this problem, which is defined by
V(z)= sup E [U(X;CJW)} , (2.4)

reA(x)
and we also want to give the optimal strategy when it exists. We begin by the simple case
when U is the logarithmic utility function, then we study the case of power utility function.

3 Logarithmic utility function

In this section, we specify the meaning of optimality for trading strategies by stipulating
that the agent wants to maximize his expected utility from his terminal wealth X7 with
respect to the logarithmic utility function

U(z) =log(z), x > 0.

Our goal is to solve the following optimization problem (we take n = p =1 for the sake of
simplicity)

V(z)= sup E[log(X7™)], (3.1)
TeA(x)

with A(x) the set of admissible portfolios defined by:
Definition 3.1. The set of admissible trading strategies A(x) consists of all F-predictable

processes () satisfying E[fOT |meoe[2dt] + E[fOT M| log(1 + mB;)|dt] < oo, and such that
mfe > —1, P—a.s. for any 0 <t < 7.

We can see from (3.1) that V(z) = log(z) 4+ V' (1). Hence, we only study the case z = 1.
And for the sake of brevity, we shall denote X7 instead of X,"™ and A instead of A(1).

Remark 3.1. The condition m8; > —1, P — a.s. for any 0 < ¢ < 7 is stronger than
XPT >0, P—a.s. for any 0 <t < T, but it is necessary to be able to write

t 2 ¢ t
log(X7) :/0 (Wsﬂs B |7Ts;78| )ds—i—/o ﬂsade8+/0 log(1 + ms0s)(dMs + Asds). (3.2)



As in [21], we assume that sup, ¢ 4 E[log(X7T)] < oo.

We add the following assumption on the coefficients to be able to solve the optimization
problem (3.1) directly:
Assumption 3.1. The process (5; ') is uniformly bounded.

With this assumption, we get easily the value function V' (z) and the optimal strategy:

Theorem 3.1. The solution of the optimization problem (3.1) is given by

o

2

Vi) =toate) + 5[ [ (ru o1+ 745)) ],

with T the optimal trading strategy defined by

ft 1 (B + 7)) + 4\B] o}

—5 — o5+ ift <7 and By #0,
'u—; ift<Ttand By =0 o0rt>r.
0i

Proof. With (3.2) and Definition 3.1, we get the following expression for V(1)

g |0 |
V(1) = SupE[/ (m,ut i + At log(1 + Wtﬁt))dt]a
TeA 0

which implies that

‘ 2

T
V(1) < E[/ ess sup {ﬂtut _ Imo + At log(1 + ﬂtﬁt)}dt]. (3.4)
0 mfBe>—1 2
For any t € [0,7] and any w € €, we have

|70 |?
2

04|

ess sup {m,ut - + At log(1 + Wtﬁt)dt} = Tpir — + A log(1 + 74 By),

m B >—1

with 7; defined by (3.3). Then from inequality (3.4), we can see that

T . ‘ﬁtUtP A
V) <E[ [ (Fum - SH- -+ A log(1+ 71)dt
0

It now is sufficient to show that the strategy (7;) is admissible. It is clearly the case with
Assumption 3.1. Thus the previous inequality is an equality

T S o2
v <[ [ (un— P2 1 tog1 + )]

and the strategy (7;) is optimal. O

Remark 3.2. Assumption 3.1 can be reduced to

T T
E[/ \ﬁtat\2dt]+E[/ Nl log(1 + #3)|dt] < o.
0 0



Remark 3.3. Recall that in the case without default, the optimal strategy is given by
70 = us/oy. Thus, in the case of default, the optimal strategy can be written under the
form

ﬁ't = 7T? — €,
where ¢; is an additional term given by
it 1 /(B + 0})? + 4\ Bfof

€t = 2Ut 251& 2,8t0't2
0 sit<7TetfB=0o0ut>r.

sit<rTetf #0,

Note that if we assume that (; is negative (resp. [; is positive), i.e. the asset price (S)
has a negative jump (resp. a positive jump) at default time 7, €; is positive (resp. € is
negative), i.e. the agent has to invest less (resp. more) in the risky asset than in the case
of a market without default.

4 Power utility

In this section, we keep the notation of Section 3 and we shall study the case of the
power utility function defined by

U(x) =27, >0, v€(0,1).

In order to formulate the optimization problem we first define the set of admissible trading
strategies.

Definition 4.1. The set of admissible strategies A(x) consists of all F-predictable processes
7 = (m)o<i<T such that fOT H?TéO’tH2dt—|—f0T |7} Be|\idt < 0o, P—a.s. and such that W/Tjﬂ;j] >
—1, P—a.s. for each j € {1,...,p}.

Remark 4.1. From expression (2.3), it is obvious that the condition W’Tj B'T’jj > -1, P—a.s.
for each j € {1,...,p} is equivalent to X;”™ >0, P — a.s. for any ¢ € [0,T].

The portfolio optimization problem consists in determining a predictable portfolio m =

(7}, ..., 7)" which attains the optimal value
V(e)= sup E[(XE7)). (4.1)
reA(z)

Problem (4.1) can be clearly written as V(x) = 27V (1). Therefore, it is sufficient to study
the case x = 1. As in [21], we assume that SupﬂeA(l)E[(X}p’”)V] < o00. To solve the
optimization problem, we give a dynamic extension of the initial problem. For any initial
time ¢ € [0, 7], we define the value function J(¢) by the following random variable
J() = ess supE[(X;L”)”’(.a] ,
TeAL(1)

with A(1) the set of F-predictable processes m = (ms)i<s<7 such that ftT ||mlos||?ds +
ftT |7l Bs|Asds < 0o, P — a.s. and such that F;_jﬁq'—’j] > —1, P—a.s. for each j € {1,...,p}.

7



For the sake of brevity, we shall denote XT (resp. X.™) instead of X2™ (resp. Xi'™)
and A (resp. A;) instead of A(1) (resp. A¢(1)). And to simplify the notation, we suppose
in the remainder of this section that n = p = 1, we give the generalization of the results in
Part 4.3.

In the sequel, we will use the martingale representation theorem (see Jeanblanc et al.
(2009)) to characterize the value function J(t):

Lemma 4.1. Any (P,F)-local martingale has the representation
t t
my = mg —I-/ asdW —I—/ bsdMs, YVt € [0,T], P — a.s., (4.2)
0 0

where a € L2 (W) and b € L} (M). If (m¢) is a square integrable martingale, each term

loc

on the right-hand side of the representation (5.11) is square integrable.

4.1 Optimization over bounded strategies

Let us fix k € N. Before studying the value function J(¢), we study the value functions
(J*(t))ren defined by

JE(t) = ess SupE[(X%”)“"]:t], Vtel0,T], P—a.s., (4.3)
ﬂGA,’f

where AF is the set of strategies of A; uniformly bounded by k. This means that the parts
of the wealth invested in the assets have to be bounded by a constant k& (which makes sense
in finance, because the ratio of the amount of money invested or borrowed to the wealth
must be bounded according to the financial legislation). We want to characterize the value
function J¥(t) by a BSDE. For that we introduce for any 7 € A the cad-lag process JJ*
defined for all ¢ € [0,T] by

Jf = E[(X5)| 7).

The family ((J[))recqr is uniformly bounded:
Lemma 4.2. The process (JI) is uniformly bounded by a constant independent of .

Proof. Fix t € [0,T]. We have

W T |Us7Ts|2 T y
Jy ZE[GXP (7 t (sms — 5 )ds + t wswdes)(lerTﬁT]lKTgT) ‘E],

since the coefficients u;, o and §; are supposed to be bounded, we have

k|o|so)?
T < (U4 K181 exp (ko + 2 P10 7).

O

Classically, for any 7 € AF the process (J') can be shown to be the solution of a linear
BSDE. More precisely, there exist Z™ € L?(W) and U™ € L?(M), such that (JJ, ZT,U]) is



the unique solution in 8% x L2(W) x L?(M) of the linear BSDE with bounded coefficients

—dJf == ZFAW, — UFdMy + {ym(u ] + o Z5) + 7(72— D 25277
+ (14 mBy) = 1)(JF + Ugf)}dt, (4.4)
Jr =1.
Using the fact that for any t € [0,T], J*(t) = ess SUD,c 45 JT, we derive that (J*(t))

corresponds to the solution of a BSDE, whose generator is the essential supremum over
of the generators of (J{),c 4. More precisely,

Proposition 4.1. The following properties hold:

— Let (Ys, Zy, Uy) be the solution in S? x L2(W) x L*(M) of the following Lipschitz BSDE

-1
—dY, = — Z,dW, — UydM; + esssup {fm(uth Yo Z) + %ﬁa%
reAk

£ (1w — DY+ U bt o)

Yr=1.
Then, for any t € [0,T], J¢(t) =Y;, P — a.s.
— There exists a unique optimal strategy for J*(0) = sup, ¢ ¢ E[(XF)7].

— A strategy 7 € A¥ is optimal for J*(0) if and only if it attains the essential supremum
of the generator in (4.5) dt @ dP — a.e.

Proof. Since for any m € A* there exist Z™ € L*(W) and U™ € L?(M) such that (JF, ZF, UT)
is the solution of the BSDE

— dJT = (¢, JF, ZF  UF)dt — ZFdW; — UFdM, 3 Jj =1,

with f7(s,y,z,u) = @ﬂgazy + Ys(psy + 0s2) + As (1 + 7sB85)” — 1) (y + u). Let us
introduce the generator f which satisfies ds ® dP — a.e.

f(87 y7 z? u) = €55 Sup fﬂ-(S’ y7 z? u)'
reAk
Note that f is Lipschitz, since the supremum of affine functions, whose coefficients are
bounded by a constant ¢ > 0, is Lipschitz with Lipschitz constant ¢. Hence, by results of
[36], the BSDE with Lipschitz generator f

—dYy = f(y,Ys, Zy, Up)dt — Z,dWy — UpdM, 5 Yr =1

admits a unique solution denoted by (Y3, Z;, Uy).
By the comparison theorem in case of jumps (see for example Royer (2006)) Y; > JT,
vVt € [0,T], P — a.s. As this inequality is satisfied for any © € AF, it is obvious that



Y: > esssupcqr Ji', P — a.s. Also, by applying a predictable selection theorem, one can
casily show that there exists © € A* such that for any ¢ € [0, 7], we have

-1
€ess sup {VWt(MtY} + 01 Z;) + %7&20}21@ + (1 +7mBe)T — 1)(Y: + Ut)}
reAk

X —1). X
= v7y (e Ys + 00 Zy) + %WEUEYQ + M((L+78:)Y — )Y, + Uy).

Thus (Y3, Z;,Uy) is a solution of BSDE (4.4) associated with #. Therefore by uniqueness
of the solution of BSDE (4.4), we have Y; = JJ and thus Y; = eSS SUP ¢ 4k Jr = Jf,
Vte[0,T], P—a.s.

The uniqueness of the optimal strategy is due to the strict concavity of the function = —
x7. O

4.2 General case

In this part, we characterize the value function J(t) by a BSDE, but the general case
is more complicated than the case with bounded strategies and it needs more technical
tools. Note that the random variable J(¢) is defined uniquely only up to P-almost sure
equivalent and that the process (J(t)) is adapted but not necessarily progressive. Using
dynamic control technics, we derive the following characterization of the value function:

Proposition 4.2. (J(t)) is the smallest F-adapted process such that ((X[)VJ(t)) is a su-
permartingale for any ™ € A with J(T) = 1. More precisely, if (J;) is an F-adapted process
such that ((XT)7(J;)) is a supermartingale for any © € A with Jp = 1, then for any
t €[0,7], we have J(t) < J;, P — a.s.

From [21], there exists an optimal strategy # € A such that J(0) = E[(XZ)?]. And with
the dynamic programming principle, we have the following optimality criterion:

Proposition 4.3. The following assertions are equivalent:
i) 7 is an optimal strategy, that is E[(XX)7] = sup, 4 E[(XF)7].
ii) The process ((X[)J(t)) is a martingale.

The proof of these propositions is given in Appendix A.

By Proposition 4.2, (J(t)) is a supermartingale. Hence E[J(t)] < J(0) < oo that for
any t > 0.

Proposition 4.4. There exists a cad-lag modification of J(t) which is denoted by (Ji).

Proof. By Proposition 4.3, we know that J(t) = E[(X%)7|F]/(X])?, P—a.s. Which implies
the desired result. O

This cad-lag process is characterized by a BSDE. More precisely,

10



Theorem 4.1. There exist Z € L}, (W) and U € L}, (M) such that the process (Jy, Zy, Uy)

loc

is the minimal solution' in LYt x L%OC(W) X L}OC(M) of the following BSDE
—1
—dJy =— Z;dW; — UpdM; + esssup {th(,utjt + 01 Z4) + %7&20_?%
TeA
F A+ mB)T = D)(J, + Ut)}dt, (4.6)
Jr =1.

If a strategy @ € A is optimal for Jy = suprcq E[(XT)?Y] then 7 attains the essential
supremum, in the generator of BSDE (4.6) dt @ dP a.s.

The proof of this theorem is postponed in Appendix B.

There exists another characterization of the value function .J; as the limit of processes
(JF)ren as k tends to +oo, with (JF) is the value function in the case where the strategies
are bounded by k:

Theorem 4.2. For any t € [0,T], we have

J; = lim 1 J5(t), P —a.s.

k—00

The proof of this theorem is given in Appendix C.

This allows to approximate the value function .J; by numerical computation, since the
value functions (JF) are the solution of Lipschitz BSDEs and the results of Bouchard and
Elie (2008) can be applied.

4.3 Several default times and several assets

In this part, we only give the BSDEs in the case of several default times and several
assets. The proofs are not given, but they are identical to the proofs for n = p = 1.

— BSDE (4.5) is written

—dY; =— Z;dWy — U;dM; + ess %p {vﬂg(Yt,ut +01Zt) + wﬂﬂgaﬂpyf/
e
(L4 m8) = L(Yide + A x Up)
Yy =1,
— and BSDE (4.6) is written
—dY; =— Zl{th — U{th + esses;lp {’Yﬂé(nﬂt + 0 Z;) + 77(72_ o) ||7T£0't||2yt
{1+ 78 = L(Yide + A = Up)

Yr =1.

!That is for any solution (J;, Z;, U;) of BSDE (4.6) in L** x L, (W) x Li,.(M), we have J, < J;, Vt €
[0,T], P—a.s.

11



5 The partial information case

The difference between this section and the previous sections is that here we require the
investment process to be adapted to the natural filtration generated by the price process
and the default time process. This requirement means that the only available information
for agents in this economy at a certain time are the prices of the financial assets up to
that time and the default times. The underlying Brownian motion, the drift process and
the compensator process in the system of equations for the asset prices are not directly
observable.

Let (Q,F,P) a probability triplet and F = {F;,0 < ¢ < T'} a filtration in F satisfying
the usual conditions (augmented and right continuous). Suppose that this space is equipped
with (W;) and (N;) as in Section 2. We also assume there are one risk-free asset and n
risky assets on the market. As in Section 2, we assume that the price process (S;) evolves
according to the following model

dS; = diag(St)(,utdt + o dWy + 5tht), 0<t<T, (51)

moreover we assume that oy = o(t,S;-,t A7) and B = B(t,Si—,t A7), with t A7 =
(t ANT1,...,t ATp)'. The known functions o(t, s, h) and §(t, s, h) are measurable mappings
from [0,7] x R™ x RP into R™*™ and R™*P. We make the hypotheses of Assumption 2.2
and we add the following assumption:

Assumption 5.1. The functions so(t, s, h) and sf(t, s, h) are Lipschitz in s € R , uni-
formly in ¢ € [0,7] and h € RP.

We now consider an agent in this market who can observe neither the Brownian motion
(W) nor the drift (u;) and the process (), but only the asset price process (S;) and
the default times (7;)1<i<p. We shall denote by G = {G;,0 < ¢t < T} the P-filtration
augmented by the price process (S;) and the default process (N;). The trading strategies
are defined as in Section 2, but we add the condition that they are G-predictable. We
now want to solve the problem of maximization of expected utility from terminal wealth
for logarithmic, power and exponential utility functions. It is not possible to use directly
the results of the full information case because we do not know the Brownian motion, the
drift and the compensator. Moreover there exists no martingale representation theorem
for the G-martingale. Thus before to study the problem of maximization, we begin by an
operation of filtering as in Pham and Quenez (2001).

5.1 Filtering

Let us define the process p; = o, L1, assumed to satisfy the integrability condition

T
/0 lpe|2dt < o0, P— a.s. (5.2)

Consider the positive local martingale defined by Ly = 1 and dL; = —L; pidW;. Tt is

t , 1 t 9
Lt:exp<— [ olaw, =5 |l ds). (5.3)
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We shall make the usual standing assumption on filtering theory:
Assumption 5.2. The process (L;) is a martingale, i.e. E[L7] = 1.

Under this last assumption, one can define a probability measure equivalent to P on
(Q, F) characterized by

dQ

dP

By Girsanov’s theorem, the n-dimensional process defined by

=L;, 0<t<T. (5.4)
Fi

t
Wt = Wt +/ pst (55)
0

is a (Q, F)-Brownian motion and the compensated martingale (M) is still a (Q, F)-martingale.
The dynamic of (Sy) under Q is given by

dSy = diag(Sy)(o(t, S,—,t AT)AW; + B(t, Si—, t AT)AN). (5.6)
We begin by proving a lemma which will be of paramount importance in the sequel:

Proposition 5.1. Under Assumptions 2.2 and 5.2, the filtration G is the augmented fil-
tration of (W, N).

Proof. Let FW-N be the augmented filtration of (W, N). From (5.6), we have
t t
Wy = / o(s, 85—, s A7) diag(S;)dS, — / o(s,85,s A7) B(s, 55—, 5 AT)dNs,
0 0

for all ¢ € [0,T], which implies that (Wt) is G-adapted and FWN  G. Conversely, under
the assumptions on the coefficients, by a classical result of stochastic differential equation
(see [31], Theorem V 3.7), the unique solution of (5.6) is F"W-N-adapted, hence G C FW.N
and finally G = FW.N, O

We now make the standing assumption on the risk premia process (p;):
Assumption 5.3. For all t € [0,T], E|p| < 0.

Since the processes (p;) and (A\;) are not G-predictable, it is natural to introduce the
G-conditional law of the random variables p; and A, say

;\t = E[/\t‘gt] and ﬁt = E[pt‘gt] .
Consider the couple of processes (Wt, Mt) defined by
~ ~ ¢
Wy =W; — / psds,
0
i : (5.7)
Mt = Nt — / )\SdS.
0

These are the so-called innovation processes of filtering theory. By classical results in
filtering theory (see for example [28], Proposition 2.27), we have:

13



Proposition 5.2. The process (M;) is a (Q,G)-martingale.

Proof. Since the process (N;) and the intensity (\;) are G-adapted, the process (M) is
G-adapted. We can write from (2.1)

t
Mt = Mt + / (/\s - )\s)dS.
0

By the law of iterated conditional expectation, it is easy to check that (M;) is a (Q,G)-
martingale. O

Remark 5.1. From Proposition 5.1 and (5.7), the filtration G is equal to the augmented
filtration of (W, M), since [M]; = Nj.
We have also the following property about the process (W;):

Proposition 5.3. Under Assumptions 5.2 and 5.3, the process (Wy) is a (P, G)-Brownian
motion.

Proof. We can write with (5.5)
t
Wy = W; + / 0(5,85,8 NT) " (s — fis)ds, (5.8)
0

where ji; = E [ut‘gt]. By Proposition 5.1, W is G-adapted. Moreover, we have [W* W7]; =
d;;t for all t € [0, T, where §;; is the Kronecker notation. By the law of iterated conditional
expectation, it is easy to check that (W;) is a G-martingale. We then conclude by Levy’s
characterization theorem on Brownian motion (see, e.g., Theorem 3.3.16 in [18]. O

Denote by (A;), the (Q,F)-martingale given by Ay = 1/L;. We then have
dPp
— =N, 0<t<T.
407 t, 0t <
Let (A;) be the (Q,G)-martingale given by A, = Eg [At\gt]. Recall the classical proposition
(see for example [23] or [30]), which gives the expression of (A;):

Lemma 5.1. Under Assumptions 5.2 and 5.3, we have
_ t o1t 9
R = exp / Lty — | / 17l Pas). (5.9)
0 0

Proposition 5.4. The process (M;) is a (P, G)-martingale.

Proof. Since % G = Ay, we can apply Girsanov’s theorem and we get that the process
(My) is a (P, G)-martingale. O
By means of innovation processes, we can describe from (5.1) and (5.8) the dynamics

of the partially observed default model within a framework of full observation model
dS; = figdt + o (t, S, ,t A7)dW; + B(t, S, ,t A T)dNy, (5.10)
dM; = dN; — \dt, '

where (ji;) and ()\;) are G-predictable processes.
Hence, the operations of filtering and control can be put in sequence and thus separated.
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5.2 Optimization problem for the logarithmic and power utility functions

To apply the results of Section 4 and of Lim and Quenez (2009), it is sufficient to have a
martingale representation theorem for (P, G)-martingale with respect to W and M. Notice
it cannot be directly derived from the usual martingale representation theorem since G is
not equal to the filtration generated by W and M.

Lemma 5.2. Any (P, G)-local martingale has the representation
t t
my = my +/ al,dWs +/ V.dMs, Vt€[0,T), P—a.s., (5.11)
0 0

where a € L2 (W) and b € L} (M). If (m¢) is a square integrable martingale, each term

loc

on the right-hand side of the representation (5.11) is square integrable.
The proof of this lemma is postponed in Appendix D.

It is now possible to apply the previous results because the price process evolves ac-
cording to the equation

dSy = diag(St)(fudt + o dWi + BidNy),
dM; = dN; — N\dt,

where each coefficient is G-predictable, and there exists a martingale representation theorem

for (P, G)-martingale. We get the following characterization for the value functions and the

optimal strategies when they exist.
For the logarithmic utility function, we have:

Theorem 5.1. We assume that 5[1 is uniformly bounded. Then, the solution of the
optimization problem for the logarithmic utility function is given by

|70 |?
2

V() = log(x) + E| /0 ' (it —

with 7 the optimal trading strategy defined by

+ A log(1 +ﬁtﬁt))dt],

a1 \/(ﬂtﬁt +07)2 + 4\ SEo}

— =+ ift <71 and B #0,
7= 207 2B 26107 '
,u_; ift<tand fp=0o0rt>r.
o

t

Therefore, we can see that the optimal portfolio in the case of partial information can
be formally derived from the full information case by replacing the unobservable coefficients
e and Ay by theirs estimates fi; and ;.

For the power utility function, we have:

Theorem 5.2. ~ Let (Yy, Zy,Uy) the minimal solution in LY x L?

loc

the BSDE (4.6) with (W, M, u, \) replaced by (W, M, ji, 5\), then

(W) x L}, (M) of

Y; = esssup E[(X57)|Gy], P — a.s.
TEA;
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— If a strategy © € A is optimal for Jy = sup,c o E[(XT)Y] then T attains the essential
supremum in the generator of BSDE (/.6) dt & dP a.s.

~ Moreover the process (Y;) is the nondecreasing limit of the process (Y))ren, where
(Y}, ZE, UF) is the solution in S?x L*(W)x L*(M) of the BSDE (}.5) with (W, M, p, \)
replaced by (W, M, fi, 5\)

5.3 Optimization problem for the exponential utility function and indif-
ference pricing

We can also apply the results of Lim and Quenez (2009) for the exponential utility
function. In this case, we assume that the agent faces some liability, which is modeled by
a random variable ¢ (for example, {( may be a contingent claim written on some default
events affecting the prices of the underlying assets). We suppose that { is a non-negative
Gr-adapted process (note that all the results still hold under the assumption that ¢ is
only lower bounded). Without loss of generality we can use a somewhat different notion
of trading strategy: ¢; corresponds to the amount of money invested in the assets. The
number of shares i is ¢}/S;. With this notation, under the assumption that the trading
strategy is self-financing, the wealth process (X} ’¢) associated with a trading strategy ¢
and an initial capital x is equal to

¢ ¢ ¢
X =+ / ¢l fisds + / ¢osdWs + / ¢, B;dNs.
0 0 0
Our goal is to solve the optimization problem for an agent who buys a contingent claim ¢

V(z,Q) = ¢23}()m) E [ — exp < - W(X;sz’ + C))] = exp(—yz)V(0, (), (5.12)

where A(z) is defined by:

Definition 5.1. The set of admissible trading strategies A(x) consists of all G-predictable
processes ¢ = (¢)o<t<7, Which satisfy fOT ||@fo¢|[2ds + fOT |94B8¢|* edt < o0, P — a.s. and
such that for any ¢ fixed and any ¢ € [0,T], there exists a constant K; . such that for any
s € [t, T], we have X{™ > K; ., P — a.s.

To solve this problem, it is sufficient to study the case z = 0. For that we give a dynamic
extension of the initial problem as in Section 4. For any initial time ¢ € [0,7], we define
the value function J¢(¢) by the following random variable

Jo(t) = eggiﬁfE[eXp < - W(Xl}o’d) + C)) ‘gt]v

with A; is the admissible portfolio strategies set defined by:

Definition 5.2. The set of admissible trading strategies A; consists of all G-predictable
processes ¢ = (¢ds)i<s<7, which satisfy ftT ||¢los||>ds + ftT 0L Bs|*Asds < o0, P — a.s. and
such that for any ¢ fixed and any s € [t,T], there exists a constant K, such that for any
u € [s,T], we have X, > K, P — a.s.
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We introduce the two following sets:

— 8T is the set of positive G-adapted P-essentially bounded cad-lag processes on
[0,7].

— A? is the set of the increasing adapted cad-lag processes K such that Ky = 0 and
E|Kr|? < oo.

By applying the results of the companion paper Lim and Quenez (2009), we get the following
characterizations of the value function:

Theorem 5.3. ~ Let (Y, Zy, Uy, Ky) the mazimal solution? in ST x L2(W) x L?(M) x
A2 of

2
—dY, = — Z{dW, ~ UjdN, — dE, +ess inf {%qu;otHzY} b (Vifiz + 0:2y)
— (1= ) (T + Ay + D) ft,

Yr = exp(—().
(5.13)
then Y; = JS(t), P — a.s.

— J(t) = limy,yeo L JOF(E), with JOF(t) = ess inf e 4 E[exp(—v(X%O’(ﬁ +())|G¢] and
Al is the set of strategies of Ay uniformly bounded by k.

~ Let (Y[, ZF,UF) is the unique solution in 8% x L*(W) x L*>(M) of the following BSDE
2
AT = 2 OF it + essint { oo T~ 61T+ 07%)
€
— (1= eI (VR + X+ OF) L,
Y = exp(—0),

(5.14)
then Y = JOF(t), P — a.s.

We can now define the indifference pricing of the contingent claim ¢. The Hodges ap-
proach to pricing of unhedgeable claims is a utility-based approach and can be summarized
as follows: the issue at hand is to assess the value of some (defaultable) claim ¢ as seen from
the perspective of an investor who optimizes his behavior relative to some utility function,
in our case we use the exponential utility function. The investor has two choices:

— he only invests in the risk-free asset and in the risky assets, in this case the associated
optimization problem is

V(z,0) = sup E[—exp(—v(X5?))],
peA(x)

2That is for any solution (J;, Z;, Uy, K¢) of BSDE (5.13) in ST x L*(W) x L*(M) x A?, we have
Je < Ji, YVt €10,T), P—a.s.
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— he also invests in the contingent claim, whose price is p at 0, in this case the associated
optimization problem is

V(z—p.C) = sup E[-exp(—v(X7 7%+ ()]
peA(x)

Definition 5.3. For a given initial capital z, the Hodges buying price of a defaultable
claim ( is the price p such that the investor’s value functions are indifferent between holding
and not holding the contingent claim, i.e.

V(z,0) =V (z—p,().

The Hodges price p can be derived explicitly by applying the results of Theorem 5.3. If
the agent buys the contingent claim at the price p and invests the rest of his wealth in the
risk-free asset and in the risky assets, the value function is equal to

V(z —p,¢) = —exp(—y(z —p))J*(0).

If he invests all his wealth in the risk-free asset and in the risky assets, the value function
is equal to
V(x,0) = —exp(—vz).J°(0).

The Hodges price for the contingent claim ( is clearly given by the formula

1 <J0(0)>'

5= —1In(=
P=5 K0

Remark 5.2. If we restrict the admissible strategies to the bounded set A*, the indifference
price p¥ can also be defined by the same method. More precisely,

1. /J%(0)
g L
7= (o))
where J(0) is defined in Theorem 5.3.

Note that

p= lim pr.

k—o0
This allows to approximate the indifference price by numerical computation, since the value
functions (J; ’k)keN are the solution of a Lipschitz BSDE and the results of Bouchard and
Elie (2008) can be applied.

We assume that there are two kinds of agents in the market: the insider agents and the
classical agents. We define the information price d for a contingent claim as the difference
between the buying price for a classical agent and the buying price for an insider agent. The
buying price, if the agent knows the full information, is defined by (see Lim and Quenez
(2009))

1 (JO(O)>’

=1
P=5 " 0)
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where (J¢(t), Z;, Uy, K;) is the maximal solution of BSDE (5.13) with (W, M, fi, A) replaced
by (W, M, i, A).
Then the benefit of an insider agent who has a full information is the information price

d=p—p.

This price can be computed as the limit of the information prices (d*)ey, where d* is the
information price if we restrict the admissible strategies to the bounded set A*

70,k JCk
# = (10 i (150)

where (JSF(t)) is the solution of BSDE (5.14) with (W, M, fi, A) replaced by (W, M, ju, \).
Then we have

d= lim d".
k—o0
Appendix

A Proof of Propositions 4.2 and 4.3

The proof of these propositions is based on the following lemma:

Lemma A.1. The set {J], m € A} is stable by supremum for any t € [0,T], i.e. for any
7!, 72 € Ay, there exists m € Ay such that JF = J,ZT1 V Jt’rQ.
Furthermore, there exists a sequence (")nen € Ay for any t € [0,T], such that

J(t) _nlLH;oTJt , P—a.s.
Proof. Let us introduce the set E = {JJ f> J{FQ)} which belongs to F;. Let us define the
strategy 7 for any s € [t,T] by the formula 74 = 711 g + 721 ge. It is obvious that 7 € A;.
And by construction of 7, it is clear that J[ = JJ Y JI .

The second part of the lemma follows by classical results on the essential supremum (see
[27]). O

We first prove that the process ((X[)YJ(t)) is a supermartingale for any m € A. For
that it is sufficient to show for any s < ¢ that

E[(X;™)J(t)|Fs] < J(s), P—a.s.

By Lemma A.1, there exists a sequence (7"),en of A; such that J(¢) = lim + JF", P — a.s.
We define the strategy 7" by 7y = m, 1[5 (u) + 7y 1y 79 (u), which is clearly admissible. By
the monotone convergence theorem and using the definition of J(s), one can easily show
that

E[(X;™)J (1) F] = lim 1 E[(X7 VIF] < J(s), P—as.
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Hence, the process ((X[)7J(t)) is a supermartingale for any 7 € A.

Second, we prove that (J(t)) is the smallest process satisfying ((X77)?J(t)) is a super-
martingale for any 7 € A. For that we suppose that (J;) is an F-adapted process such that
((XF)7(Jy)) is a supermartingale for any m € A with Jr = 1. Fix ¢t € [0,T]. For any 7 € A,
we have E[(XT)7|F] < (XT)7J;, P—a.s. This inequality is equivalent to E[(Xl}”)ﬂ]—'t] < J;.
Which implies

esssupE[(erp’”)V‘}"t] <Jy, P—as.,
TEA:

which clearly gives that J; < J;, P — a.s.

At last, we prove the optimality criterion, that is Proposition 4.3. Suppose that the
strategy 7 is an optimal strategy, hence we have

J(0) = swp E[(XF)"] = E[(XF)"]

As the process ((X[)7J(t)) is a supermartingale by Proposition 4.2 and that J(0) =
E[(XX)7], the process ((X]7)7J(t)) is a martingale.

To show the converse, suppose that the process ((X7)?.J(t)) is a martingale, then E[(X7)7] =
J(0). Moreover E[(X[)7J(t)] < J(0) for any 7 € A by Proposition 4.2. Which implies that

J(0) = sup E[(XF)"] = E[(XF)"]

B Proof of Theorem 4.1

The proof of this theorem is based on Propositions 4.2 and 4.3, on Doob-Meyer’s de-
composition and on the martingale representation theorem.

Since the process (J;) is a supermartingale, it can be written under the following form
by using Doob-Meyer decomposition (see [3]) and the martingale representation theorem
dJy = ZydWy + Upd My — d A, (B.1)

with Z € L? (W), U € L} (M), and (A;) is a nondecreasing F-adapted process and Ag = 0.

loc loc
From product rule, the derivative of process ((X/)7.J;) can be written under the form

d((XT) ) = (X[)V(dAF + dM{),

with AT = 0 and

—1
dA? = [ywt(utJt + O'tZt) + %W?O’?Jt + /\t((l + Wtﬁt)ﬁ/ — 1)(:]15 + Ut):| dt — dAt,

thﬂ = (’YTI’tO'tJt + Zt)th + (Ut + ((1 + Ftﬂt)'Y _ 1)(Jt + Ut))th
(B.2)
From Proposition 4.2, we have dA] < 0 for any 7 € A, which implies

—1
dAt > ess sup {ywt(,utJt + O'tZt) + %W?O’?Jt + /\t((l + Wtﬁt)fy — 1)(Jt + Ut)}dt
TeA
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From [21], there exists an optimal strategy 7 € A to the optimization problem and from
Proposition 4.3, we get

. —1
dA; = [’Yﬂt(,utjt + 01 Zys) + 0 =1

T AR0R T+ M1+ 70B) = 1) (e + U di.

Which imply that
dA, — { Yy =1 o 5 vy
t = ess Slllp yme(peJy + 01 Zy) + 9 T Je+ M((L+mB)7 = 1)(Jy + Uy) pdt. (B.3)
TE

Therefore the process (Jy, Zy, Uy) is a solution of BSDE (4.6).

We now prove that it is the minimal solution. Let (.J;, Z;,U;) be a solution of BSDE
(4.6). Let us prove that ((X[)7J;) is a supermartingale for any 7 € A. From the product
rule, we can write the derivative of this process under the form

4 ((XTY" 7 = (XE )" [dNIF + daAF — A, (8.9
where A; (resp. M) is given by (B.3) (resp. B.2) with (J, Z,U) replaced by (J, Z,U), and
AT = 0 and
0

y

dAT = [fm(utjt + 0 Z) + ’Y(’YT_wfafjt X ((1+mB)Y — D) (Jp + Uy) | dt.

By integrating (B.4), we get
(7~ o= [ Xzt - [ ad, - ).
0 0

As dAg > dAT, we have fg(X;[)VdM;r > (XT)'Jy, — Jo > —Jo. It implies that (M])
is a supermartingale, since it is a lower bounded local martingale. Hence, the process
((X])7J;) is a supermartingale for any m € A, because it is the sum of a supermartingale
and a nonincreasing process. Proposition 4.2 implies that J; < J;, ¥Vt € [0,T], P — a.s.,
which ends this proof.

C Proof of Theorem 4.2

We first remark that (JF) satisfies the following property:

Lemma C.1. The process (JF) is the smallest F-adapted process such that (X[)VJF) is a
supermartingale for any ™ € A* with JF = 1.

To prove this lemma, we use exactly the same arguments as in the proof of Proposition 4.2,
since Lemma A.1 is still true with AF instead of A;.

Fix ¢t € [0,T]. It is obvious with the definition of sets A; and A¥ that AF C A; for each
k € N and hence
JE<J, P—a.s. (C.1)
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Moreover, since A} C Af“ for each k € N, it follows that the positive sequence (Jf)
nondecreasing. Let us define the random variable

ken 8

J(t) = Jim JE P —a.s.

It is obvious that the process J(t) < J;, P—a.s. from (C.1) and this holds for any ¢ € [0, 7).
It remains to prove that for any t € [0,7], J; < J(t), P — a.s. As in the proof of Theorem
4.2 of the companion paper Lim and Quenez (2009), we first prove that the process J (t1) is
cad-lag and satisfies J(t+) < J(t), P — a.s. The process ((X7)?J(t1)) is a supermartingale
for any bounded strategy © € A. In the sequel, we shall denote .J; instead of .J (tT). We
now prove that J; > J;, Vt € [0,T], P — a.s. Since (J;) is a cad-lag supermartingale, it
admits the following Doob-Meyer decomposition

dJy = Zy dWy + UdM; — dA,,

with Z € L2 (W), U € L}, .(M) and (A;) is a nondecreasing G-adapted process with
Ag = 0. As before, we use the fact that the process ((X[7)7.J;) is a supermartingale for any
bounded strategy 7 € A to give some conditions satisfied by the process (4;). Let 7 € A

be a uniformly bounded strategy, the product rule gives
d((X[)VT) = (X)) (dAT + dMY), (C.2)

where (A7) and (M]) are given by (B.2) with (J, Z, U, A) replaced by (J, Z, U, A).
Let A; be the subset of uniformly bounded strategies of A;. Since the process ((X[)7.J;)
is a supermartingale for any m € A, we have

~ _ _ 1 _ o
dAy > esssup {"}/T{'t(utjt +o01Z) + %W?O’?Jt + (L +mB)" = 1) (Jp + Ut)}dt. (C.3)
TeEA

It is not possible to give an exact expression of A; as in the previous proof, because we
do not know if # € A. But this inequality is sufficient for the demonstration. Now, the
following equality holds dt ® dP a.s.

_ _ 1 _ L
ess sup {"}/T{'t(utjt +o017;) + %W?O’?Jt + (1 +mB) — 1)(J + Ut)} =
TeA

_ _ 1 _ L
ess S;llp {WWt(MtJt + 04 Zy) + 77(72 )7Tt20’t2=]t + (M +7mBe)” = 1)(J + Ut)}- (C.4)
TE

We now want to show that ((X[)7.J;) is a supermartingale for any = € A. Fix 7 € A (not
necessarily uniformly bounded), we get

t t
(XTY'Ji— Jo = /0 (X7 )VaNIT + /0 (XTYdAT,

with (AT) and (M]) given by (B.2) with (J, Z, U, A) replaced by (J, Z, U, A).
Inequality (C.3) and equality (C.4) imply that dAT < 0, P — a.s. Therefore, we have

t
| sy ants = gy - gy =~
0
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Thus, (M]) is a supermartingale, since it is a lower bounded local martingale. As (M) is a
supermartingale and (A7) is nonincreasing, the process ((X[7)7.J;) is a supermartingale and
this holds for any = € A. Since (J;) is the smallest process (see Proposition 4.2) satisfying
these properties, we have J; < J;, P — a.s. Which ends the proof.

D Proof of Lemma 5.2
First, recall Bayes formula: for all ¢ € [0,7] and X € L'(Q, 7;,P), one has

Eq[AX|G:]

B[x|q] - =2

Let (&) be the optional projection of the P-martingale (L¢) to G, so

& = E[Li|Gi].

By applying relation (D.1) to X = L;, we immediately obtain & = 1/A; and thus

t~ _ 1 t ~
ft:exp(—/o p;dWS—§/0 Hpstds).

Let (m;) be a (P, G)-local martingale. From Bayes rule, the process (m;) given by
iy =m& ", 0<t<T,

is a (Q,G)-local martingale. From Remark 5.1 and Lemma 5.2, there exists a couple of
processes (dy, b;) with @ € L}, (W) and b € L}, (M) such that

loc

t t
mt:/ d;dWs+/ V.dMs, 0<t<T.
0 0

By Ito’s formula applied to m; = &, definition of (W;) and (M) (see (5.7)), we obtain
that

t ¢
my :/ aldes +/ bngs,
0 0

with a; = &§ar — me&epe and by = §;- by.
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