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Parametric estimation for planar random flights

observed at discrete times

Alessandro De Gregorio∗
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Abstract

We deal with a planar random flight {(X(t), Y (t)), 0 < t ≤ T }
observed at n + 1 equidistant times ti = i∆n, i = 0, 1, ..., n. The
aim of this paper is to estimate the unknown value of the parameter
λ, the underlying rate of the Poisson process. The planar random
flights are not markovian, then we use an alternative argument to
derive a pseudo-maximum likelihood estimator λ̂ of the parameter λ.
We consider two different types of asymptotic schemes and show the
consistency, the asymptotic normality and efficiency of the estimator
proposed. A Monte Carlo analysis for small sample size n permits us
to analyze the empirical performance of λ̂.

A different approach permits us to introduce an alternative estima-
tor of λ which is consistent, asymptotically normal and asymptotically
efficient without the request of other assumptions.

Keywords : asymptotic efficiency, discretely observed process, planar
random flight, inference for stochastic process.

1 Introduction

Diffusion processes play a central role in the theory of stochastic processes.
However these models do not give a realistic description of the real move-
ments because the velocity is infinite and their sample paths are nowhere
differentiable. For this reason in literature have been proposed alternative
processes with finite velocity. The first model of this type, introduced by
Goldstein (1951) and Kac (1974), is the telegraph process which describes
the motion of a particle on the real line.

The planar random flights are a possible extension in R
2 of the telegraph

process. We consider the motion in the plane of a particle starting at arbi-
trary point (x0, y0), moving with constant velocity c and taking directions
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uniformly distributed in (0, 2π]. The changes of direction are governed by a
homogenous Poisson process with parameter λ > 0. Let N(t) be the number
of Poisson events in the interval [0, t], the position at time t > 0 of a particle
performing a random flight is

X(t) = x0 + c

N(t)+1∑

j=1

(sj − sj−1) cos θj,

Y (t) = y0 + c

N(t)+1∑

j=1

(sj − sj−1) sin θj, (1.1)

where θj are independent random variables uniformly distributed in (0, 2π],
while sj, j = 1, ..., n are the instants at which Poisson events occur (s0 = 0
and sN(t)+1 = t).

The distribution p(x, y; t) of (X(t), Y (t)) is concentrated on the disc

S2
ct = {(x, y) : (x− x0)

2 + (y − y0)
2 ≤ c2t2}.

If the initial direction is maintained until time t, the probability den-
sity p(x, y; t) possesses a singular component, otherwise the distribution lies
inside S2

ct.
Random flights in R

2 have been studied in Stadje (1987), Masoliver et al.
(1993), Kolesnik and Orsingher (2005). De Gregorio and Orsingher (2007)
analyze random flights in R

d, d ≥ 2, and derive their explicit distribution in
the four-dimensional space.

The only references about the statistical inference of random motion at
finite velocity consider estimation problem for the telegraph process. Yao
(1985) estimates the state of the telegraph process under white noise per-
turbation and studies performance of nonlinear filters. Iacus (2001) consid-
ers the estimation of the parameter θ of a non-constant rate λθ(t). More
recently, De Gregorio and Iacus (2006) introduce a pseudo-maximum like-
lihood estimator and a least squares estimator for the parameter λ when
the sample paths of the telegraph process are observed only at equidistant
discrete times. The authors also analyze the same statistical problem for
a geometric telegraph process particularly interesting in view of financial
applications. For a telegraph process observed at discrete times, Iacus and
Yoshida (2006) study the asymptotic (i.e. the mesh decreases to zero and the
horizon interval tends to infinity) properties of two moment estimators and
propose also an estimator consistent, asymptotically normal and efficient.

The aim of this paper is the estimation of the parameter λ when the
process {(X(t), Y (t)), 0 < t ≤ T} is observed at n + 1 equidistant times
0 = t0 < t1 < .. < tn = T , where ti = i∆n = i∆, i = 0, 1, ..., n. We consider
two types of asymptotic framework:

1) ∆n → 0 and n∆n = T → ∞ as n→ ∞;
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2) n→ ∞ with ∆n fixed.
The statistical problem is interesting because the planar random flights

seem to be useful for ecology and biology applications. In fact, Holmes
(1993) and Holmes et al. (1994) consider these models to represent the
displacements of the animals and microorganisms on a surface.

We note that when the planar random flight is observed continuously,
then N(T )/T is the optimal estimator of the parameter λ and our statistical
problem is equivalent to the estimate of a whole Poisson process on [0, T ]
(see Kutoyants (1998)).

The process {(X(t), Y (t)), 0 < t ≤ T} is not markovian. Hence, it is not
possible to explicit the likelihood function of the points observed as product
of the transition densities. This fact implies that we can not use the tools
developed for the diffusion processes (see Sorensen (1997) and Soresen (2004)
for an account of these estimation methods).

The main idea of this paper is to consider the points

(X(i∆n) −X((i − 1)∆n), Y (i∆n) − Y ((i− 1)∆n))

as n independent copies of a random flight up to time ∆n (which is untrue).
In this manner we can build an estimating function from which it is possible
to derive a pseudo-maximum likelihood estimator.

The paper is organized as follows. In Section 2 we describe the random
motion considered here and present some results concerning the process√
X2(t) + Y 2(t) (for example the moments). In Section 3 we introduce a

pseudo-likelihood function Ln(λ) and propose the following estimator

λ̂n = arg max
λ>0

Ln(λ). (1.2)

Under the asymptotic scheme 1) the estimator λ̂n is asymptotically normal
and efficient. Alternatively under the same asymptotic scheme , we present
an estimator asymptotically efficient without additional hypotheses. By
considering the second asymptotic framework in Section 4, we can study the
convergence of the estimator λ̂n by means of the pseudo-likelihood ratio. In
the last section, we analyze the empirical performance of λ̂n by means of a
Monte Carlo analysis.

2 Planar random flights: description and some re-

sults

We consider a particle starting at the arbitrary point (x0, y0) of the plane
R

2, moving with constant finite speed c. The initial direction is a random
variable θ uniformly distributed in (0, 2π]. The changes of direction are gov-
erned by a homogeneous Poisson process with parameter λ > 0. Therefore,
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when a Poisson time occurs the particle takes a new direction uniformly
distributed in (0, 2π], independently from the previous one.

We indicate the position of the particle at time t > 0 with the stochastic
process (X(t), Y (t)), which is called random flight in the plane. At time t
the particle is located in the disc

S2
ct = {(x, y) : (x− x0)

2 + (y − y0)
2 ≤ c2t2}, (2.1)

with probability 1. If no Poisson event occurs the particle reaches the circle
∂S2

ct = {(x, y) : (x− x0)
2 + (y − y0)

2 = c2t2}, with probability

P{(X(t), Y (t)) ∈ ∂S2
ct} = e−λt.

The remaining part of the distribution lies in the interior of (2.1) and
represents the absolute continuous component of the distribution

P {X(t) ∈ dx, Y (t) ∈ dy} . (2.2)

We note that the random flights have trajectories which assume the form
of broken lines where the single steps have random length and are uniformly
oriented in (0, 2π]. However, the total length for any sample paths at time
t is ct.

The density law of (X(t), Y (t)) (see Kolesnik and Orsingher (2005)) is
equal to

p(x, y; t) =
λ

2πc

e−λt+ λ
c

√
c2t2−(x−x0)2−(y−y0)2

√
c2t2 − (x− x0)2 − (y − y0)2

1{(x−x0)2+(y−y0)2<c2t2}

+
e−λt

2πc
δ(c2t2 − (x− x0)

2 − (y − y0)
2), (2.3)

with (x, y) ∈ S2
ct and δ(·),1(·) representing respectively the Dirac’s delta

function and the indicator function.
Now, we present some results concerning the following process

R(t) =
√
X2(t) + Y 2(t), (2.4)

i.e. the euclidean distance from the origin of the space R
2 of the position

reaches by the moving particle at time t > 0.
The following theorem contains our first result.

Theorem 2.1 The absolute continuous component of the process R(t), t >
0, when R(0) =

√
x2

0 + y2
0, is equal to

fR(r, t) =
λ

2πc
re−λt

∫ 2π

0

e
λ
c

√
c2t2−r2−x2

0−y2
0+2r(x0 cos θ+y0 sin θ)

√
c2t2 − r2 − x2

0 − y2
0 + 2r(x0 cos θ + y0 sin θ)

dθ,

(2.5)
with 0 < r < ct. Moreover, under the Kac condition (i.e. c, λ → ∞ in such

a way that c2

λ → 1), we have that (2.5) tends to the law of a standard Bessel
process.
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Proof. We start the proof observing that

P

{
R(t) ≤ r|R(0) =

√
x2

0 + y2
0

}
(2.6)

=
λ

2πc

∫∫

{(x,y):x2+y2≤r2}

e−λt+ λ
c

√
c2t2−(x−x0)2−(y−y0)2

√
c2t2 − (x− x0)2 − (y − y0)2

dxdy

=
λ

2πc

∫ r

0
ρdρ

∫ 2π

0

e−λt+ λ
c

√
c2t2−(x0−ρ cos θ)2−(y0−ρ cos θ)2

√
c2t2 − (x0 − ρ cos θ)2 − (y0 − ρ cos θ)2

dθ

=
λ

2πc

∫ r

0
ρdρ

∫ 2π

0

e−λt+ λ
c

√
c2t2−ρ2−x2

0−y2
0+2ρ(x0 cos θ+y0 sin θ)

√
c2t2 − ρ2 − x2

0 − y2
0 + 2ρ(x0 cos θ + y0 sin θ)

dθ.

By differentiating the probability (2.6) with respect to r, the density
(2.5) emerges.

In order to prove the second part of the theorem, we rewrite the density
(2.5) in the following form

fR(r, t) =
λ

2πc
r

∫ 2π

0

e
−λt+λt

r

1− r2+x2
0+y2

0−2r(x0 cos θ+y0 sin θ)

c2t2

ct

√
1 − r2+x2

0+y2
0−2r(x0 cos θ+y0 sin θ)

c2t2

dθ

=
λ

2πc2t
r

∫ 2π

0

e
− r2+x2

0+y2
0−2r(x0 cos θ+y0 sin θ)

2 c2
λ

t
−...

√
1 − r2+x2

0+y2
0−2r(x0 cos θ+y0 sin θ)

c2t2

dθ. (2.7)

In the last step we have used the expansion
√

1 − w = 1− w
2 − w2

8 − ..., which
is absolutely convergent for |w| < 1.

From (2.7), under the Kac condition, we obtain the following limit

lim
λ,c→∞
c2/λ→1

fR(r, t) =
r

2πt

∫ 2π

0
e−

r2

2t e−
x2
0+y2

0
2t e

r(x0 cos θ+y0 sin θ)
t dθ

=
r

t
e−

r2

2t e−
x2
0+y2

0
2t I0

(
r
√
x2

0 + y2
0

t

)
, (2.8)

by means of the well-known integral representation of the Bessel function

I0(x
√
α2 + β2) =

1

2π

∫ 2π

0
ex(α cos θ+β sin θ)dθ.

Expression (2.8) represents the density function of Bessel process
√
B2

1(t) +B2
2(t),

where B1 and B2 are two independent standard Brownian motion. �
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From Theorem 2.1 we note that for (x0, y0) = (0, 0), the complete dis-
tribution of R(t) becomes

pR(r, t) =
λ

c

r exp{−λt+ λ
c

√
c2t2 − r2}√

c2t2 − r2
1{0<r<ct} (2.9)

+
re−λt

ct
δ(c2t2 − r2).

We note that the density (2.9) coincides with formula (7) in Kolesnik
and Orsingher (2005), when we ignore the angular component.

By taking into account the probability law (2.9), we are able to derive
the moments of R(t).

Theorem 2.2 Let (x0, y0) = (0, 0) and p ≥ 1, we have that

ERp(t) = (ct)pe−λt

{
√
π

(
2

λt

) p−1
2

Γ

(
p+ 1

2

)
I p+1

2
(λt) + 1

}
. (2.10)

Proof. In view of (2.9), we can write

ERp(t) =
λ

c
e−λt

∫ ct

0
rp+1 e

λ
c

√
c2t2−r2

√
c2t2 − r2

dr + (ct)pe−λt. (2.11)

Now, we work out the integral in (2.11). Hence

∫ ct

0
rp+1 e

λ
c

√
c2t2−r2

√
c2t2 − r2

dr

=
∞∑

k=0

1

k!

(
λ

c

)k ∫ ct

0
rp+1(c2t2 − r2)

k−1
2 dr = (r = ct

√
y)

=

∞∑

k=0

1

k!

(
λ

c

)k (ct)p+k+1

2

∫ 1

0
y

p

2 (1 − y)
k−1
2 dy

=

∞∑

k=0

1

k!

(
λ

c

)k (ct)p+k+1

2

Γ
(p

2 + 1
)
Γ
(

k+1
2

)

Γ
(

k+1
2 + p

2 + 1
)

=
√
πΓ
(p

2
+ 1
) ∞∑

k=0

1

k!

(
λt

2

)k (ct)p+1Γ(k)

Γ
(

k+1
2 + p

2 + 1
)
Γ
(

k
2

) = (k = 2m)

=
√
πΓ
(p

2
+ 1
)

(ct)p+1
∞∑

m=0

(
λt

2

)2m 1

2mΓ(m)Γ
(
m+ p+1

2 + 1
)

=

√
π

2
Γ
(p

2
+ 1
)

(ct)p+1

(
2

λt

) p+1
2

∞∑

m=0

1

m!

(
λt

2

)2m+ p+1
2 1

Γ
(
m+ p+1

2 + 1
)

=

√
π

2
Γ
(p

2
+ 1
)

(ct)p+1

(
2

λt

) p+1
2

I p+1
2

(λt). (2.12)
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By inserting (2.12) into (2.11) we obtain the result (2.10). �

Remark 2.1 We observe that

lim
λ→∞

ERp(t) = 0. (2.13)

In other words, if λ grows to infinity the changes of direction increase
and consequently the distance from the origin decreases.

Remark 2.2 We derive from (2.10) the mean value of R(t)

ER(t) = cte−λt{
√
πI1(λt) + 1}. (2.14)

In the particular case p = 2, we can write the square mean in terms of
simple function. In fact, by means of the following relationship

I 3
2
(x) =

√
2

πx3
(x cosh x− sinhx),

we get that

ER2(t) = (ct)2e−λt

{√
π
λt coshλt− sinhλt

(λt)2
+ 1

}

= (ct)2
{√

π
λt(1 + e−2λt) − 1 + e−2λt

2(λt)2
+ e−λt

}
. (2.15)

3 Parametric estimation for planar random flights

We assume that the planar random flight {(X(t), Y (t)), 0 < t ≤ T}, with
(X(0), Y (0)) = (0, 0), is observed only at n + 1 equidistant discrete times
0 = t0 < t1 < ... < tn = T, where ti = i∆n = i∆, i = 0, 1, ..., n.
We use the following notation to simplify the formulas: (X(ti), Y (ti)) =
(X(i∆n), Y (i∆n)) = (Xi, Yi).

The interest is the estimation of the parameter λ whilst the velocity c
is assumed to be known. In other words, we want to estimate the rate of
change of a microorganism which performs a planar random flight, when we
are able to observe its position only at discrete times.

The estimation of c is an uninteresting problem. In fact, if in the interval
(i∆n−1, i∆n] there are not changes of direction, then (Xi −Xi−1)

2 + (Yi −
Yi−1)

2 = c2∆2
n. If ∆n is suitable small, there is high probability of observing

N(ti) −N(ti−1) = 0 and c can be calculated without error.
Analogously to the telegraph process, the random flights are not marko-

vian. For this reason we cannot write the explicit likelihood of the process in
the form of product of transition densities as well as for diffusion processes.
Therefore, we need an alternative argument in the spirit of the paper by De
Gregorio and Iacus (2006).
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Figure 1: Discrete time sampling of the planar random flight. For this
sample path n = 7 and n+ = 6.

We define a pseudo-likelihood function as follows. By taking into account
the distribution (2.3), we introduce the following data dependent function

Ln(λ) = Ln(λ|(X0, Y0), (X1, Y1), ..., (Xn, Yn)) (3.1)

=

n∏

i=1

p((Xi, Yi),∆n; (Xi−1, Yi−1), ti−1)

=
n∏

i=1

{
λ

2πc

exp{−λ∆n + λ
c
√
un,i}

√
un,i

1{un,i>0} +
e−λ∆n

2πc
δ(un,i = 0)

}
,

where un,i = un((Xi, Yi), (Xi−1, Yi−1)) = c2∆2
n− (Xi−Xi−1)

2− (Yi−Yi−1)
2.

The transition densities p((Xi, Yi),∆n; (Xi−1, Yi−1), ti−1) appearing in
(3.1) represent the distribution of a random flight in R

2, initially located
at the point (Xi−1, Yi−1) at time ti−1, which reaches the position (Xi, Yi)
at the instant ti. The function (3.1) is indeed the joint law of the points
(Xi −Xi−1, Yi − Yi−1), which are considered as if they were n independent
copies of the process (X(∆n), Y (∆n)) (i.e. the process (X(t), Y (t)) up to
time ∆n).

The pseudo-likelihood function (3.1) is equivalent to

Ln(λ) =

(
e−λ∆n

2πc

)(n−n+) n+∏

i=1

{
λ

2πc

exp{−λ∆n + λ
c
√
un,i}

√
un,i

}

=
e−λn∆n

(2πc)n

λn+
exp

{
λ
c

∑n+

i=1
√
un,i

}

∏n+

i=1
√
un,i

, (3.2)

where n+ is the number of the planar random flights with at least one change
of direction.
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Remark 3.1 In the expression (3.2), the factor
(

e−λ∆n

2

)n−n+

concerns

the singular part of the densities p((Xi, Yi),∆n; (Xi−1, Yi−1), ti−1), while the
product represents the absolutely continuous components of the distribu-
tions of the random flights. Note that for increasing values of λ, the abso-
lutely continuous component of (3.2) has a bigger weight than the singular
component; viceversa for small values of λ. Figure 1 shows how the two
components of the function Ln(λ) emerge for this scheme of observation.

To define our estimator, we borrow the approach based on estimating
functions. Formula (3.2) yields

Fn(λ) =
d

dλ
logLn(λ) = −n∆n +

1

c

n+∑

i=1

√
un,i +

n+

λ
, (3.3)

and the estimator is obtained by solving Fn(λ) = 0.
By taking into account the function (3.3) we derive the following pseudo-

maximum likelihood estimator for the parameter λ

λ̂n = arg max
λ>0

Ln(λ)

=
cn+

cn∆n −
∑n+

i=1
√
un,i

. (3.4)

It is easy to see that d2

dλ2 logLn(λ) < 0 and the uniqueness of the esti-

mator (3.4) holds. However λ̂n is not a true maximum likelihood estimator
because Ln(λ) is not a true likelihood function. In the section 4 we will
analyze the empirical performance of the estimator (3.4) for small sample
size.

By considering the following asymptotic framework ∆n → 0 and n∆n =
T → ∞ as n→ ∞, we provide the next result for the estimator (3.4).

Theorem 3.1 Let ∆n → 0 and n∆n = T → ∞ as n → ∞, then λ̂n is
consistent, asymptotically normal and efficient.

Proof. If ∆n → 0 and n∆n = T as n → ∞, we have that un,i → 0 and
n+ → N(T ), where N(T ) represents the number of changes of direction
occurred in the interval [0, T ] when the whole trajectory is observed. Thus,
λ̂n tends to the maximum likelihood estimator of a homogeneous Poisson
process

N(T )

T
. (3.5)

Therefore, under the condition n∆n = T → ∞, the pseudo-maximum
likelihood estimator is consistent, asymptotically normal and efficient (see

9



Kutoyants (1998)). �

We introduce an alternative estimator for the parameter λ by means of
the distances

ηi =
√

(Xi −Xi−1)2 + (Yi − Yi−1)2.

By setting

Gn =
1

n∆n

n∑

i=1

1{ηi<c∆n} =
1

n∆n

n∑

i=1

1{N([ti−1,ti))≥1}.

we define the following unbiased estimator

λ̇n = − 1

∆n
log (1 − ∆nGn) . (3.6)

The advantage of λ̇n is that we are able to derive the asymptotic prop-
erties without assumptions on the points (Xi −Xi−1, Yi − Yi−1).

Theorem 3.2 For n∆n = T → ∞ and ∆n → 0 as n → ∞ the estimator
(3.6) is consistent, asymptotically normal and efficient

√
n∆n(λ̇n − λ)

d→ N(0, λ). (3.7)

Proof. We replace the steps contained in the proof presented by Iacus and
Yoshida (2006) for the telegraph process.

First of all we prove consistency and asymptotic normality of Gn. We
observe that

E(Gn) =
1 − e−λ∆n

∆n
= λ+

1

2
λ2∆n + o(∆2

n) → λ

and consistency immediately follows. Now we show the asymptotic normal-
ity of Gn and consider to this scope the quantity

Un =
√
n∆n(Gn − E(Gn))

=
1√
n∆n

n∑

i=1

[
1{ηi<c∆n} − E(1{ηi<c∆n})

]

=
1√
n∆n

n∑

i=1

[
1{N([ti−1,ti))≥1} − (1 − e−λ∆n)

]

=

n∑

i=1

αi

where

αi =
1√
n∆n

[
1{N([ti−1,ti))≥1} − (1 − e−λ∆n)

]
.
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It’s clear that E(αi) = 0 and E(Un) = 0. Moreover

Var(αi) =
1

n∆n
Var(1{N([ti−1,ti))≥1})

=
1

n∆n

{
E(1{N([ti−1,ti))≥1}) − (E(1{N([ti−1 ,ti))≥1}))

2
}

=
1

n∆n

{
e−λ∆n − e−2λ∆n

}

=
1

n
{λ+ o(1)} ,

therefore
Var(Un) = λ+ o(1). (3.8)

The variables αi are independent and the Lindeberg condition is true,
i.e.

n∑

i=1

E
{
1{N([ti−1,ti))≥1}α

2
i

}
→ 0, (3.9)

because for large n it holds true that |αi| ≤ 1√
n∆n

. From condition (3.9)

follows that
Un

d→ N(0, λ). (3.10)

Finally, we can prove the asymptotic normality of λ̇n. Since

f(w) = − 1

∆n
log(1 − w∆n), f ′(w) =

1

1 − w∆n
,

and
λ̇n = f(Gn), λ = f (E(Gn)) ,

then, by so-called δ-method, we have that

√
n∆n(λ̇n − λ) =

√
n∆n(f(Gn) − f(E(Gn)))

=
√
n∆n(Gn − E(Gn))f ′(λ) + op(

√
n∆n|Gn − E(Gn)|)

=
√
n∆n(Gn − E(Gn))

1

1 − λ∆n
+ op(

√
n∆n|Gn − E(Gn)|),

hence for n∆n = T → ∞ and ∆n → 0 as n→ ∞, we obtain that

√
n∆n(λ̇n − λ)

d→ N(0, λ).

�
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4 Large sample properties for the pseudo-maximum

likelihood estimator

To analyze the properties of the estimator (3.4) as n → ∞ with ∆n fixed
(large sample scheme), we use the tools of asymptotic theory of statistical
estimation presented in Ibragimov and Has’minskii (1981).

Let us assume the velocity c known and λ ∈ (λ1, λ2) = Θ with 0 <
λ1 < λ2 < ∞. We need to introduce another hypothesis: the distance ∆n

between two consecutive instants ti, i = 0, 1, ..., n, is such that the following
condition holds

Pλ

{
(X(∆n), Y (∆n)) ∈ intS2

c∆n

}
= 1, (4.1)

where intS2
c∆n

= {(x, y) : x2 + y2 < c2∆2
n}.

In other words between the points (Xi−1, Yi−1) and (Xi, Yi), i = 1, .., n,
the planar random flights have at least one change of direction (or equiva-
lently Pλ{N(i∆n) = 0} = 0, i = 1, ..., n). In general it is obvious that for
increasing values of λ, the minimum value of ∆n satisfying the condition
(4.1) decreases.

Immediately, from (4.1) follows that the singular part of (3.2) vanishes.
In fact we have that

L̃n(λ) =

n∏

i=1

{
λ

2πc

exp{−λ∆n + λ
c

√
un,i}

√
un,i

}

=

(
λ

2πc

)n exp
{
−λn∆n + λ

c

∑n
i=1

√
un,i

}
∏n

i=1
√
un,i

, (4.2)

while the pseudo-maximum likelihood estimator (3.4) becomes

λ̃n =
cn

cn∆n −
∑n

i=1
√
un,i

. (4.3)

We start our analysis observing that the Radon-Nikodym theorem yields

p((Xi, Yi),∆n; (Xi−1, Yi−1), ti−1) =
dPλ

dµ
=

(
λ

2πc

)
exp

(
−λt+ λ

c
√
un,i

)
√
un,i

,

(4.4)
where µ is the Lebesgue measure in the plane. Thus, we can indicate L̃n(λ)
as follows

L̃n(λ) =
dPn

λ

dµn
, (4.5)

where P
n
λ represents the joint probability distribution of n independent

copies of a planar random flight up to time ∆n.
It’s appropriate to remark that we are presenting in this section results

valid only for the parametric model {Pn
λ, λ ∈ Θ}, i.e. the model deriving

from the assumption of i.i.d. observations.
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To simplify the formulas we write p((Xi, Yi),∆n; (Xi−1, Yi−1), ti−1) =
p(λ). Our first result is the following theorem.

Theorem 4.1 Let En be the experiment generated by n independent obser-
vations of (X(∆n), Y (∆n)). Then En is regular with Fisher’s information
equal to

In(λ) =
n

λ2
. (4.6)

Proof. By considering the definition of regular experiment presented in
Ibragimov and Has’minskii (1981), page 65, we must prove that

√
p(λ) is

differentiable in L2 (the space of the square integrable functions) with con-
tinuous derivative in L2

ψ(λ) =

√
p(λ)

2

(
−∆n +

1

c

√
un,i +

1

λ

)
. (4.7)

By setting g(λ) =
√
p(λ) we get that

∫∫

S2
c∆n

(g(λ + h) − g(λ) − hψ(λ))2dxdy (4.8)

= Eλ

{
g(λ+ h)

g(λ)
− 1 − h

2

(
−∆n +

1

c

√
un,i +

1

λ

)}2

= Eλ

{
e
−h∆n

2
+ h

2c

√
un,i+log

q

λ+h
λ − 1 − h

2

(
−∆n +

1

c

√
un,i +

1

λ

)}2

.

Now, by observing that

e
−h∆n

2
+ h

2c

√
un,i+log

q

λ+h
λ = 1 +

h

2

(
−∆n +

1

c

√
un,i +

1

λ

)
+ o(h), (4.9)

we obtain
∫∫

S2
c∆n

(g(λ + h) − g(λ) − hψ(λ))2dxdy = o(|h|2).

The continuity of ψ(λ) is shown by means of the dominated convergence
theorem.

To complete the proof we verify that En possesses finite Fisher’s infor-
mation In(λ) for any λ ∈ Θ. Clearly In(λ) = nI(λ), where I(λ) represents

13



Fisher’s information of a single experiment. Thus, we can write

I(λ) = 4

∫∫

S2
c∆n

|ψ(λ)|2dxdy (4.10)

=
λ

2πc

∫∫

S2
c∆n

e−λ∆n+ λ
c

√
un,i

√
un,i

(
1

λ
− ∆n +

1

c

√
un,i

)2

dxdy

=
λ

2πc

∫∫

S2
c∆n

e−λ∆n+ λ
c

√
un,i

√
un,i

×
((

1

λ
− ∆n

)2

+
un,i

c2
+

2

c

(
1

λ
− ∆n

)
√
un,i

)
dxdy

=
λ

2πc

∫ c∆n

0
dρ

∫ 2π

0
dθ
ρe−λ∆n+ λ

c

√
c2∆2

n−ρ2

√
c2∆2

n − ρ2

×
((

1

λ
− ∆n

)2

+
c2∆2

n − ρ2

c2
+

2

c

(
1

λ
− ∆n

)√
c2∆2

n − ρ2

)
,

where in the last step we have used the transformation in polar coordinates
x = x0 + ρ cos θ, y = y0 + ρ sin θ.

To obtain the explicit value of (4.10) we calculate the following three
integrals

I1 =
λ

2πc

(
1

λ
− ∆n

)2 ∫ c∆n

0
dρ

∫ 2π

0
dθ
ρe−λ∆n+ λ

c

√
c2∆2

n−ρ2

√
c2∆2

n − ρ2

=
λ

c

(
1

λ
− ∆n

)2

e−λ∆n

∫ c∆n

0
dρ
ρe

λ
c

√
c2t2−ρ2

√
c2∆2

n − ρ2

=

(
1

λ
− ∆n

)2

e−λ∆n

(
−e

λ
c

√
c2∆2

n−ρ2
) ∣∣∣

ρ=c∆n

ρ=0

=

(
1

λ
− ∆n

)2 (
1 − e−λ∆n

)
,
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I2 =
λ

2πc3

∫ c∆n

0
dρ

∫ 2π

0
dθρ
√
c2∆2

n − ρ2e−λ∆n+ λ
c

√
c2∆2

n−ρ2

=
λ

c3
e−λ∆n

∫ c∆n

0
ρ
√
c2∆2

n − ρ2e
λ
c

√
c2∆2

n−ρ2
dρ = (z =

√
c2∆2

n − ρ2)

=
λ

c3
e−λ∆n

∫ c∆n

0
z2e

λ
c
zdz = e−λ∆n

{
1

c2
z2e

λ
c
z
∣∣∣
z=c∆n

z=0
− 2

c2

∫ c∆n

0
ze

λ
c
zdz

}

= e−λ∆n

{
∆2

ne
λ∆n − 2

cλ
ze

λ
c
z
∣∣∣
z=c∆n

z=0
+

2

cλ

∫ c∆n

0
e

λ
c
zdz

}

= e−λ∆n

{
∆2

ne
λ∆n − 2∆n

λ
eλ∆n +

2

λ2
e

λ
c
z
∣∣∣
z=c∆n

z=0

}

= ∆2
n − 2∆n

λ
+

2

λ2

(
1 − e−λ∆n

)
,

I3 =
λ

πc2

(
1

λ
− ∆n

)∫ c∆n

0
dρ

∫ 2π

0
dθρe−λ∆n+ λ

c

√
c2∆2

n−ρ2

=
2λ

c2

(
1

λ
− ∆n

)
e−λ∆n

∫ c∆n

0
ρe

λ
c

√
c2∆2

n−ρ2
dρ = (z =

√
c2∆2

n − ρ2)

=
2λ

c2

(
1

λ
− ∆n

)
e−λ∆n

∫ c∆n

0
ze

λ
c
zdz

=

(
1

λ
− ∆n

)
e−λ∆n

{
2

c
ze

λ
c
z
∣∣∣
z=c∆n

z=0
− 2

c

∫ c∆n

0
e

λ
c
zdz

}

=

(
1

λ
− ∆n

)
e−λ∆n

{
2∆ne

λ∆n − 2

λ
e

λ
c
z
∣∣∣
z=c∆n

z=0

}

= 2

(
1

λ
− ∆n

)(
∆n − 1

λ

(
1 − e−λ∆n

))
.

Putting together I1,I2,I3 we have that

I(λ) = I1 + I2 + I3

=
(
1 − e−λ∆n

)( 1

λ2
+ ∆2

n

)
− ∆2

n

=
1

λ2

(
1 − e−λ∆n

(
1 + λ2∆2

n

))
.

By assumption Pλ{N(∆n) = 0} = e−λ∆n = 0 the result (4.6) follows. �

Fisher’s information plays a central role in the Cramér-Rao inequality
and more in general in the parametric inference. Let E

n
λ(·) be the expecta-

tion with respect to the probability measure P
n
λ. For any estimators of the

parameter λ, we have the next result.
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Theorem 4.2 Let Tn be an arbitrary estimator of λ such that E
n
λ|Tn|2 <∞

for any λ > 0. Then
b(λ) = E

n
λTn − λ (4.11)

is differentiable respect to λ in L2. Moreover, the following Cramér-Rao
inequality holds

E
n
λ(Tn − λ)2 ≥

(1 + db(λ)
dλ )2

In(λ)
+ b2(λ). (4.12)

Proof. We note that

E
n
λTn = E

n
λ0

{
Tn

(
λ

λ0

)n

exp

(
−(λ− λ0)n∆n +

λ− λ0

c

n∑

i=1

√
un,i

)}

(4.13)
and show that E

n
λT is differentiable and the equality

d

dλ
E

n
λTn = E

n
λ

{
Tn

(
n

λ
− n∆n +

1

c

n∑

i=1

√
un,i

)}
(4.14)

holds in L2.
For this purpose we interpret d

dλE
n
λTn as the right-hand side of equation

(4.14). It is not difficult to see that

∣∣∣∣∣E
n
λ+hTn − E

n
λTn − h

d

dλ
E

n
λTn

∣∣∣∣∣

2

(4.15)

=

∣∣∣∣∣E
n
λ

{
Tn

[
dPn

λ+h

dPn
λ

− 1 − h

(
n

λ
− n∆n +

1

c

n∑

i=1

√
un,i

)]} ∣∣∣∣∣

2

≤ E
n
λ|Tn|2En

λ

{
e−hn∆n+ h

c

Pn
i=1

√
un,i+n log(1+h/λ) − 1 − h

(
n

λ
− n∆n +

1

c

n∑

i=1

√
un,i

)}2

,

where in the last step we have used the Cauchy-Schwarz inequality.
By inserting the equality

e−hn∆n+ h
c

Pn
i=1

√
un,i+n log(1+h/λ) = 1 + h

(
n

λ
− n∆n +

1

c

n∑

i=1

√
un,i

)
+ o(h),

into (4.15), we can conclude that b(λ) is differentiable in L2-sense.
The validity of the inequality (4.12) follows by standard arguments. �

Remark 3.3 By taking into account an unbiased estimator Tn of the
parameter λ, from (4.12) we get that

E
n
λ(Tn − λ)2 ≥ λ2

n
. (4.16)
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It’s well-known that the Cramér-Rao doesn’t give a good definition of
asymptotic efficiency, because the limit variance may not coincide with the
variance of the limiting distribution. Therefore to investigate the asymptotic
properties of the estimator λ̃n as n → ∞ and ∆n fixed, we reduce our
problem to the study of the normalized pseudo-likelihood ratio

Zn,λ(z) =
dPn

λ+ϕ(n)z

dPn
λ

= (4.17)

=

n∏

i=1

exp

(
ϕ(n)z

c

√
un,i − ϕ(n)z∆n + log

(
λ+ ϕ(n)z

λ

))

= exp

(
ϕ(n)z

c

n∑

i=1

√
un,i − ϕ(n)nz∆n + n log

(
λ+ ϕ(n)z

λ

))
,

where ϕ(n) = ϕ(n, λ) = (In(λ))−1/2. The function (4.17) takes values in the
following set

Un,λ =

{
z : λ+

z√
In(λ)

∈ Θ

}
.

It’s well-known that Zn,λ (deriving from an i.i.d. observation scheme)
admits the representation

Zn,λ(z) = exp

{
z√
In(λ)

n∑

i=1

∂ log p(λ)

∂λ
− |z|2

2
+ φn(z, λ)

}
, (4.18)

with 1√
In(λ)

∑n
i=1

∂p(λ)
∂λ

d→ N(0, 1) and φn(z, λ) → 0 in probability as n →
∞; i.e. P

n
λ is locally asymptotically normal (LAN).

For the function Zn,λ we have the next useful Lemma.

Lemma 4.1 Let K be a compact subset of Θ. We have that:

i) for some constant a = a(K), B = B(K)

sup
λ∈K

sup
|z|<R,|v|<R

|z − v|−2
E

n
λ

∣∣∣Z1/2
n,λ (z) − Z

1/2
n,λ (v)

∣∣∣
2
< B(1 +Ra), (4.19)

with z, v ∈ Un,λ;

ii) for any z ∈ Un,λ

sup
λ∈K

E
n
λZ

1/2
n,λ (z) ≤ e−c|z|2, (4.20)

where c > 0.
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Proof. i) Following the proof of Lemma 1.1, section III in Ibragimov-
Has’minskii (1981) we get that

E
n
λ

∣∣∣Z1/2
n,λ (z) − Z

1/2
n,λ (v)

∣∣∣
2

(4.21)

≤
∣∣∣∣(In(λ))−1

∫ 1

0
In(λ+ ϕ(n)(z + s(v − z))))ds

∣∣∣∣ |z − v|2.

Since

I(λ+ z)

I(λ)
=

(
λ

λ+ z

)2

,

for z > 0 follows
(

λ
λ+z

)2
≤ 1. If z < 0 we can see that

(
1 +

z

λ

)−2
= 1 + (−2)

z

λ
+ o

( z
λ

)
< 3 + o

( z
λ

)
.

Therefore set B = 3 + o
(

z
λ

)
the inequality

sup
λ∈Θ

sup
|z|<R,λ+z∈Θ

∣∣∣∣
In(λ+ z)

In(λ)

∣∣∣∣ ≤ B(1 +Ra), (4.22)

holds.
In view of the relationships (4.22) and (4.21) the proof of the inequality

(4.19) is concluded.
ii) The function ∂

√
p(λ)/∂λ is differentiable in L2, then

∫∫

S2
c∆n

|
√
p(λ+ h) −

√
p(λ)|2dxdy =

∫∫

S2
c∆n

h2

(
∂

∂λ

√
p(λ)

)2

dxdy + o(|h|2)

=
h2

4
I(λ) + o(|h|2).

By taking into account that

0 < inf
λ∈Θ

I(λ) < sup
λ∈Θ

I(λ) <∞,

we have immediately that

∫∫

S2
c∆n

|
√
p(λ+ h) −

√
p(λ)|2dxdy > 0. (4.23)

From (4.23), we derive the inequality

inf
λ∈K

inf
{h:λ+h∈Θ}

∫∫

S2
c∆n

|
√
p(λ+ h) −

√
p(λ)|2dxdy ≥ a|h|2

1 + |h|2 , a > 0,

and Lemma 5.3, Chapter I, in Ibragimov and Has’minskii (1981) permits us
to obtain the condition (4.20). �

Finally, we are able to present the main result of this section.
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Theorem 4.3 Let K be a compact subset of Θ. Then the estimator λ̃n,
defined in (4.3), uniformly in λ ∈ K:

• is consistent;

• converges in distribution as follows

√
In(λ)(λ̃n − λ)

d→ N(0, 1); (4.24)

• has moments such that

lim
n→∞

E
n
λ|
√
In(λ)(λ̃n − λ)|γ = E|ξ|γ , (4.25)

where γ > 0 and ξ ∼ N(0, 1).

Proof. In accordance with the Theorem 1.1 Chapter III, in Ibragimov and
Has’minskii (1981), we prove that the four conditions are satisfied.

The probability measure P
n
λ is uniformly local asymptotic normal, while

it’s easy to see that
lim

n→∞
sup
λ∈K

ϕ2(n, λ) = 0.

The validity of Lemma 4.1 concludes the proof. �

The Theorem 4.3 yields the Hájek-Le Cam asymptotic efficiency of the
estimator λ̃n with respect to a quadratic loss function. In fact, we have that

lim
δ→0

lim
n→∞

sup
|λ−λ0|<δ

E
n
λ

∣∣∣
√
In(λ)(λ̃n − λ)

∣∣∣
2

= 1. (4.26)

5 Monte Carlo analysis

We analyze the empirical performance of the pseudo-maximum likelihood
estimator λ̂n by means of a Monte Carlo analysis with n < ∞ fixed. We
simulate 10000 sample paths of the planar random flights in the interval
[0, T ], with T = 500, for different values of λ and c = 1. For any trajec-
tories we have sampled n = 200, 300, 500, 1000 values subsequently used to
estimate the unknown parameter λ.

The results have been reported in the Table 1. Furthermore in the Table
1 there is a column

√
MSE(λ) derived as follows

√
MSE(λ) =

√√√√ 1

N

N∑

i=1

(λ̂n − λ)2, (5.1)

where N = 10000 is the number of simulations.
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It emerges, as expected, that the mean square error tends to zero when
the sample size increases. Furthermore, it is clear that the true value of the
parameter λ and the mean square error are correlated. In fact, for fixed
n, as the more λ increases the more Poisson events remain hidden to the
observer. The bias assumes small values for all the cases considered and is
constantly equal to 0.002 for λ = 0.1, 0.25, 0.5, 0.75.
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λ Bias
√

MSE(λ) min λ̂n max λ̂n n

0.10 0.002 0.015 0.05 0.15 200
0.002 0.015 0.05 0.16 300
0.002 0.015 0.05 0.15 500
0.002 0.014 0.06 0.15 1000

0.25 0.002 0.026 0.17 0.37 200
0.002 0.025 0.17 0.35 300
0.002 0.024 0.17 0.35 500
0.002 0.023 0.17 0.34 1000

0.50 0.001 0.042 0.37 0.67 200
0.002 0.038 0.36 0.65 300
0.002 0.035 0.36 0.65 500
0.002 0.033 0.36 0.63 1000

0.75 −0.000 0.057 0.56 1.05 200
0.001 0.051 0.56 0.98 300
0.002 0.046 0.60 0.99 500
0.002 0.042 0.62 0.93 1000

1.00 −0.004 0.073 0.76 1.28 200
−0.001 0.064 0.76 1.29 300

0.001 0.056 0.81 1.26 500
0.002 0.050 0.82 1.18 1000

1.50 −0.013 0.106 1.15 1.98 200
−0.003 0.090 1.19 1.92 300

0.001 0.076 1.22 1.78 500
0.001 0.066 1.26 1.78 1000

2.00 −0.031 0.141 1.49 2.53 200
−0.010 0.117 1.57 2.61 300

0.000 0.097 1.67 2.41 500
0.001 0.080 1.69 2.29 1000

Table 1: Empirical performance of the estimator λ̂n defined in (4.3) for
different values of the parameter λ and different sample sizes. The velocity
c assumes value 1. The time horizon T is equal to 500. The results have
been obtained on 10000 Monte Carlo sample paths of the planar random
flights.
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