Algebraic Bayesian analysis of contingency tables with possibly zero-probability cells

Guido Consonni and Giovanni Pistone
University of Pavia, Italy and Politecnico di Torino, Italy

Abstract

In this paper we consider a Bayesian analysis of contingency tables allowing for the possibility that cells may have probability zero. In this sense we depart from standard log-linear modeling that implicitly assumes a positivity constraint. Our approach leads us to consider mixture models for contingency tables, where the components of the mixture, which we call model-instances, have distinct support. We rely on ideas from polynomial algebra in order to identify the various model instances. We also provide a method to assign prior probabilities to each instance of the model, as well as describing methods for constructing priors on the parameter space of each instance. We illustrate our methodology through a 5×2 table involving two structural zeros, as well as a zero count. The results we obtain show that our analysis may lead to conclusions that are substantively different from those that would obtain in a standard framework, wherein the possibility of zero-probability cells is not explicitly accounted for.

Key words and phrases: Algebraic statistics; Bayes factor; Compatible priors; Exponential family; Log-linear model; Model-instance; Positivity constraint; Structural zero; Toric model.

1. Introduction

The analysis of contingency tables has a well established tradition, both in the frequentist and Bayesian setting. A typical framework for this analysis is represented by the exponential family representation of the sampling distribution, together with the log-linear, or more generally log-affine, model for the expected cell count, see Lauritzen (1996, ch. 4) for a rigorous treatment. Under multinomial sampling, this approach presupposes implicitly that cell-probabilities, equivalently cell-expected counts, are strictly positive. On the other hand, this assumption is not particularly justified from a substantive viewpoint; indeed, as we shall argue below, it might well hide some interesting aspects of modeling.

Typically, the positivity constraint is viewed as problematic when performing

Maximum Likelihood Estimation (MLE) in a log-linear framework if there are some cells having zero counts, see for instance the discussion in Christensen (1997, ch. 8). One usually distinguishes between structural (or "fixed") zeros, and random (or "sampling") zeros. The former arise when the cells are logically forced to have a zero-count. Consider for instance a cross-classification for people where the personal highest educational attainment (Less than high school, High school, College, Postgraduate) is recorded at a given time, and five years later. Clearly it is impossible for someone to have a highest attainment of College on the first time point, and Less than high school or High school five years later; in general every cell that corresponds to lower attainment at the second time period compared to the first time period is a structural zero. On the other hand, random zeros are typically thought to occur either because the sample size, or the corresponding cell probability, or both are "small", as it occurs in sparse contingency tables.

Structural zeros are typically dealt with by removing them altogether from the analysis. One way to do this is through regression models on effect codings, see e.g. Simonoff (2003, sect. 6.4). Random zeros on the other hand require special handling. Essentially one should first identify those cells for which the regular MLE of the cell-probability does not exist, i.e. is zero (this requires special care as such cells need not coincide with those having zero counts), and then remove them from the analysis. In any case the computation of the degrees of freedom for model testing must be done on a case by case basis, and requires some ingenuity. Another difficulty generated by the presence of random zeros is that asymptotic arguments may effectively break down because of the smallsample size, although some computer programs may still provide MLEs when they actually do not exist. For an informative account of the above problems see Haberman (1974), Bishop et al. (1975, sect. 5) and Christensen (1997, sect. 8.3). Recently Eriksson et al. (2006) have provided a polyhedral description of the conditions for the existence of the MLE for a hierarchical log-linear model together with an algorithm for determining if the MLE exists.

In this paper we take the view that modeling of contingency tables should allow explicitly for the possibility of zero-probability cells not only to deal with structural zeros but also with zero-counts whose nature is undecided, in the
sense that their occurrence may be consistent with either a zero probability or a positive probability: we call these cells possibly zero-probability cells.

An early paper that takes a similar view is Lauritzen (1975), although the techniques used there are quite different from the ones that we employ here.

From a modeling perspective, we contend that, for each given model, the usual exponential-family/log-linear representation of the sampling distribution is simply one instance of such model, while several other instances are conceptually consistent with the assumed model, each being essentially a log-linear model with a restricted support. The identification of such instances represent a crucial aspect in the implementation process, and is typically of high complexity.

In our work we rely on ideas from polynomial algebra and the related geometric and combinatorial structure, which have been recently applied to the analysis of some classes of (finitely) discrete statistical models. In particular, Eriksson et al. (2006) deal with hierarchical log-linear models, while Geiger et al. (2006) discuss graphical models.

Our approach falls broadly under the heading of Algebraic Statistics, see Pistone et al. (2001) for an early general account, as well as the pioneering work of Diaconis and Sturmfels (1998). The field is now growing at an impressive speed both in terms of theoretical contributions and applications, see for example the recent monograph by Pachter and Sturmfels (2005). Further useful references are Geiger et al. (2001), who develop the concept of stratified exponential families, as well as Garcia, Stillman and Sturmfels (2005) who carry out the analysis of Bayesian networks from an algebraic statistical perspective. Rapallo (2006) discusses some basic algebraic statistics tools that deal explicitly with models for contingency tables and represents a simple and useful introduction to this paper. Our interest in the use of algebraic methodology for statistical purposes was stimulated by the availability of various symbolic computational software: here we use CoCoA developed and maintained at the University of Genova, Italy. An other option could be the softare 4ti2.

A specific feature of this paper is the combination of methods from algebraic statistics with the Bayesian approach. Specifically, we shall deal with issues like the assignment of a prior on model space, prior elicitation on the parameter space under each model, or instances thereof; together with model choice using
the Bayes factor, see Kass and Raftery (1995) for a review.
The paper is organized as follows: Section 2 contains some basic tools from algebraic statistics that are used in the paper; in Section 3 such tools are applied to a real data-set; Section 4 is the core of the paper, presenting a Bayesian approach testing quasi-independence in two-way contingency tables using a mixture of model-instances, thus accounting for the possible presence of zero-probability cells. Finally, Section 5 summarizes the paper and presents some points for discussion.

2. Algebraic statistical models

Consider a finite state space \mathcal{Q} and a probability distribution on \mathcal{Q}, which we can write as $\{p(x), x \in \mathcal{Q}\}$, with $p(x) \geq 0$ and $\sum_{x \in \mathcal{Q}} p(x)=1$. In particular, we shall deal with multi-way contingency tables identified by a collection of factors $X=\left\{X_{1}, \ldots, X_{F}\right\}$. If \mathcal{I}_{f} denotes the set of levels for the factor $X_{f}, f=1, \ldots, F$, the state space is a product space, i.e $\mathcal{Q}=\times_{f=1}^{F} \mathcal{I}_{f}$.

A \log-linear model assumes that $p(x)>0$ and that $\log p(x)$ belongs to a linear subspace H of $L=\mathbb{R}^{\mathcal{Q}}$, where $\mathbb{R}^{\mathcal{Q}}$ denotes as usual the vector space of real-valued functions on \mathcal{Q}. If H is spanned by $\left\{T_{1}, \ldots, T_{s}\right\}$, where the T_{j} 's are integer valued functions, we can write the log-linear model as

$$
\begin{equation*}
\log p(x)=\sum_{j=1}^{s}\left(\log \zeta_{j}\right) T_{j}(x) \tag{2.1}
\end{equation*}
$$

with $\sum_{x} p(x)=1$. Recall that (2.1) assumes strict positivity of $p(x)$. However the latter is no longer needed if we rewrite (2.1) as

$$
\begin{equation*}
q(x)=\zeta_{1}^{T_{1}(x)} \cdots \zeta_{s}^{T_{s}(x)}, \quad \zeta_{j} \geq 0, \quad j=0, \ldots, s \tag{2.2}
\end{equation*}
$$

where $q(x)$ is the un-normalized probability, so that the parameters $\zeta_{1}, \ldots, \zeta_{s}$ are only subject to non-negativity constraints. Notice that (2.2) is, for each $x \in \mathcal{Q}$, a (monic) monomial in the indeterminates $\zeta_{1}, \ldots, \zeta_{s}$. When x scans \mathcal{Q}, we get a system of binomial equations and so (2.2) could also be called a parametric toric model, borrowing terminology from commutative algebra, see Sturmfels (1996), as suggested in Pistone et al. (2001).

When the cell probabilities are assumed to be strictly positive, then the loglinear model (2.1) and the toric model (2.2) can be easily shown to be equivalent.

A third expression of the same model can be derived by elimination of the indeterminates $\zeta_{1}, \ldots, \zeta_{s}$ in the monomial parameterization of equation (2.2). In fact, if $M=\left[\begin{array}{lll}T_{1}(x) & \cdots & T_{s}(x)\end{array}\right]_{x \in \mathcal{Q}}$ is the design matrix of the log-linear model of equation (2.1), the orthogonal space of its range can be generated by integer valued vectors with zero $\operatorname{sum} K=\left[\begin{array}{lll}k_{1} & \cdots & k_{r}\end{array}\right]$, and equation (2.2) gives for each $j=1, \ldots, r$

$$
\begin{equation*}
\prod_{x} q(x)^{k_{j}(x)}=\prod_{x}\left(\zeta_{1}^{T_{1}(x)} \cdots \zeta_{s}^{T_{s}(x)}\right)^{k_{j}(x)}=\zeta_{1}^{T_{1}(x) \cdot k_{j}(x)} \cdots \zeta_{s}^{T_{s}(x) \cdot k_{j}(x)}=1 \tag{2.3}
\end{equation*}
$$

where the dot symbol "." denotes scalar product.
As the sum of the elements of each $k_{j}, j=1, \ldots, r$, is zero, the sum of the elements of both the positive part k_{j}^{+}and the negative part k_{j}^{-}are equal, so that we could write equation (2.3) as

$$
\begin{equation*}
\prod_{x} q(x)^{k_{j}(x)^{+}}-\prod_{x} q(x)^{k_{j}(x)^{-}}=0, \quad j=1, \ldots, r \tag{2.4}
\end{equation*}
$$

It follows that the toric model (2.2) implies a set of r binomial and homogeneous equations in the un-normalized probabilities $q(x), x \in \mathcal{Q}$.

If the probabilities are assumed to be strictly positive, then the three descriptions, i.e. log-linear (2.1), toric (2.2) and implicit binomial (2.4), are equivalent. We remark that while (2.1) and (2.2) are parametric models, the nature of (2.4) is essentially non-parametric. When the positivity assumption is relaxed, a non trivial situation occurs. The basic fact is that different toric parameterizations can lead to the same implicit binomial, because they are equivalent only on the strictly positive part of the model. However, the implicit binomial equations are satisfied by all limits of the positive cases; thus the implicit binomial is the best expression of the so called extended exponential model, i.e. the exponential model plus all its limits.

We summarize here a few basic facts of the theory of toric statistical models. Given a log-linear model and all its limit points, a specific set of configurations of zero-probability cells arises. This set cannot be recovered by setting to zero some parameters in a generic toric parametric representation, because most of the equivalent toric representations will not produce all possible probabilities of the model in Equation (2.4). However, there exists a "maximal" parametric toric representation, such that all configurations of zero-probability cells compatible
with, i.e. limit of, the initial model are obtained by letting some parameters be zero. Such representation results from the following steps:

1. All toric models compatible with the implicit binomial model (2.4) are characterized by a string of T 's exponents, see (2.2), which is a non-negative integer vector orthogonal to the basis $\left[k_{1} \ldots k_{r}\right]$ of the orthogonal space of the initial design matrix M.
2. The lattice of non-negative integer vectors $t \in \mathbb{N}_{+}^{\mathcal{Q}}$ such that the condition $t \cdot k_{j}=0$ holds for each $j=1, \ldots, r$, has a finite number of generators that can be computed with symbolic software. Here "generator" means that all such vectors are component-wise sums of a finite number of generators, possibly repeated. The minimal set of generators is called minimal Hilbert basis.
3. If the generators are S_{1}, \ldots, S_{u}, then the "maximal" toric model is

$$
\begin{equation*}
q(x)=\zeta_{1}^{S_{1}(x)} \cdots \zeta_{u}^{S_{u}(x)} \quad x \in \mathcal{Q} . \tag{2.5}
\end{equation*}
$$

Here "maximal" means that (2.5) is a (possibly non-identifiable) parameterization of the full implicit binomial model, i.e. the extended model. All members of the implicit model (2.4) with zero-cell probabilities are obtained by letting some ζ_{j} 's be zero. Assume e.g. we let $\zeta_{1}=0$. Then the support of the resulting probability will be the set $\mathcal{Q}_{1}=\left\{x \in \mathcal{Q}: S_{1}(x)=0\right\}$. On such a restricted support, the model will be again toric:

$$
q(x)=\zeta_{2}^{S_{2}(x)} \cdots \zeta_{u}^{S_{u}(x)} \quad x \in \mathcal{Q}_{1} .
$$

or exponential if all the other parameters $\zeta_{2}, \cdots, \zeta_{u}$ are assumed to be strictly positive. In this sense, we say that each toric model is a union of exponential models with different supports. Each one of these models is called an instance of the model.

Current symbolic software allows to compute, for a given parametric model, the set of corresponding implicit binomial descriptions. Moreover, the collection of allowable models obtained by setting some cell probabilities equal to zero can be identified in terms of the functions $T_{j}(x)$, see Geiger et al. (2006) and Rapallo (2006).

3. Example: new cancer incidence and gender

We now turn to the discussion of a real example involving both structural and random zeros. Our analysis aims primarily at illustrating the main features of our method.

The Division of Cancer Prevention and Control of the National Cancer Institute in the United States provides (estimates of) counts of new cases of cancer classified according to various demographic and geographic factors, see Simonoff (2003, p. 226). The following table reports data for different types of cancer separated by gender for Alaska in year 1989.

Type of cancer	Female	Male	Total
Lung	38	90	128
Melanoma	15	15	30
Ovarian	18	$*$	18
Prostate	$*$	111	111
Stomach	0	5	5
Total	71	221	292

Clearly cells $(3,2)$ and $(4,1)$ are structural zeros, while we regard the zero count corresponding to the combination (Stomach, Female) as a possibly zeroprobability cell. A typical assumption that is of interest in this case is that of quasi-independence ($Q I$), corresponding to the standard independence assumption for all cells, excluding those having a structural zero. For this hypothesis, Simonoff (2003, p. 228) finds a p-value between 2% and 3%, depending on the method that is employed. Using a conventional frequentist interpretation, the data thus seem to provide significant evidence against the $Q I$-model, although this evidence is not very strong.

Let $I=\{1,2,3,4,5\}, J=\{1,2\}$ denote the set of levels for the rows and columns respectively, and consider the two-way table with cells in the set $A=$ $I \times J \backslash\{(3,2),(4,1)\}$, i.e. with cells $(3,2)$ and $(4,1)$ missing.

Under the $Q I$-model the un-normalized cell probabilities $q_{i j}$ are given by

$$
\begin{equation*}
q_{i j}=\rho_{i} \psi_{j}, \quad(i, j) \in A \tag{3.1}
\end{equation*}
$$

If the probabilities are strictly positive, one can take the logarithm of (3.1),
obtaining

$$
\log q_{i, j}=\alpha_{i}+\beta_{j}, \quad(i, j) \in A
$$

with $\alpha_{i}=\log \rho_{i}, \beta_{j}=\log \psi_{j}$. Accordingly the design matrix M, together with a suitable choice of an orthogonal matrix K, as described in Step 1 of Section 2,
are

One can check that, under the condition $q_{i j}>0,(i, j) \in A$, the model of quasi-independence in (3.1) is equivalent to the implicit binomial model given by the two constraints

$$
\left\{\begin{array}{l}
q_{11} q_{22}-q_{21} q_{12}=0 \tag{3.2}\\
q_{51} q_{22}-q_{21} q_{52}=0
\end{array}\right.
$$

The above equations are the standard conditions for independence in the two 2×2 tables with rows $\{1,2\}$, respectively $\{2,5\}$. This is equivalent to the independence of the sub-table $\{1,2,5\} \times\{1,2\}$, since independence for an $R \times C$-table is equivalent to the its 2×2 minors being zero.

The maximal design matrix $M_{\text {max }}$ and the model in monomial form, see
(2.5), are

$$
\left.M_{\max }=\begin{array}{ccccccc}
\zeta_{1} & \zeta_{2} & \zeta_{3} & \zeta_{4} & \zeta_{5} & \zeta_{6} & \zeta_{7} \tag{3.3}\\
11 \\
21 \\
31 \\
51 \\
12 \\
22 \\
42 \\
52 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right] \quad\left\{\begin{array}{l}
q_{11}=\zeta_{5} \zeta_{7} \\
q_{21}=\zeta_{3} \zeta_{7} \\
q_{31}=\zeta_{1} \\
q_{51}=\zeta_{4} \zeta_{7} \\
q_{12}=\zeta_{5} \zeta_{6} \\
q_{22}=\zeta_{3} \zeta_{6} \\
q_{42}=\zeta_{2} \\
q_{52}=\zeta_{4} \zeta_{6}
\end{array}\right.
$$

Notice that the cells associated to a structural zero in the same row are parameterized independently from the rest of the table. If we take out these cells, we simply get the full independence model on the sub-table with rows $\{1,2,5\}$.

The instances for the $Q I$-model are computed by considering the $\left(2^{3}-1\right)\left(2^{2}-\right.$ $1)=21$ instances corresponding to independence in the 3×2 sub-table, times the $2^{2}=4$ instances of the two free cells, plus the $\left(2^{2}-1\right)$ instances where the 3×2 sub-table is zero. The total is 87 .

4. Testing quasi-independence in the new cancer data

We provide a Bayesian analysis of these data using the methodology developed in the previous sections. We refer to the model which imposes no restriction on the cell probabilities, save the zero-probability cells $(3,2)$ and $(4,1)$, as the Structural Zero model and label it with the symbol $S Z$. Since the table has 10 probability cells, of which 2 are fixed to be zero, the number of $S Z$-instances is equal to $2^{8}-1=255$ corresponding to all possible combinations of "+" and " 0 " in the 8 free cells, excluding the trivially impossible case of all " 0 ".

Moreover, only two of the above $S Z$-instances are logically consistent with the observed data: that giving a positive probability to all eight free cells; and that giving zero-probability to cell $(5,1)$ only. We label these instances $S Z_{0}$ and $S Z_{1}$, where the subscript refers to the number of zero-probability cells, corresponding to the tables:

	$S Z_{0}$		$S Z_{1}$	
Type of cancer	Female	Male	Female	Male
Lung	+	+	+	+
Melanoma	+	+	+	+
Ovarian	+	0	+	0
Prostate	0	+	0	+
Stomach	+	+	0	+

Similarly, for the given data, it is not difficult to realize that there exists only one logically consistent instance of the quasi-independence model, i.e. that having all positive cell-probabilities (except for the two cells corresponding to structural zeros), which we label $Q I_{0}$ and is schematically equivalent to $S Z_{0}$ above.
4.1. Conventional approach We test the model of quasi-independence against the structural-zero model using a Bayesian approach. In a "conventional setting", wherein no particular provision for zero-probability cells is envisaged, we would simply consider one instance for each of the above two models, namely $S Z_{0}$ and $Q I_{0}$.

Given the cell counts $n=\left(n_{i j}\right)$, a typical analysis would involve the computation of the Bayes factor, see Kass and Raftery (1995), of $Q I_{0}$ versus $S Z_{0}$, i.e.

$$
\begin{equation*}
\operatorname{BF}\left(Q I_{0}: S Z_{0}\right)=\frac{\int f_{Q I_{0}}\left(n \mid \theta_{Q I_{0}}\right) \pi_{Q I_{0}}\left(\theta_{Q I_{0}}\right) d \theta_{Q I_{0}}}{\int f_{S Z_{0}}\left(n \mid \theta_{S Z_{0}}\right) \pi_{S Z_{0}}\left(\theta_{S Z_{0}}\right) d \theta_{S Z_{0}}}=\frac{m_{Q I_{0}}(n)}{m_{S Z_{0}}(n)}, \tag{4.1}
\end{equation*}
$$

where

- $f_{S Z_{0}}$ is the multinomial sampling distribution under $S Z_{0}$, with cell-probabilities $\theta_{S Z_{0}}=\left(\theta_{i j}\right),(i, j) \in A$, and similarly for $f_{Q I_{0}}$ under the quasi-independence model, whose cell-probabilities are denoted by $\theta_{Q I_{0}}$;
- $\pi_{S Z_{0}}$ and $\pi_{Q I_{0}}$ are the prior densities for $\theta_{S Z_{0}}$, respectively $\theta_{Q I_{0}}$;
- $m_{S Z_{0}}$ denote the marginal distribution of n under $S Z_{0}$, and similarly for $m_{Q I_{0}}$.

To obtain the posterior probability of model $Q I_{0}$ one should provide, in addition,
its prior probability $p_{Q I_{0}}=\operatorname{Pr}\left(Q I_{0}\right)$, leading to

$$
\begin{equation*}
\operatorname{Pr}\left(Q I_{0} \mid n\right)=\frac{p_{Q I_{0}} \mathrm{BF}\left(Q I_{0}: S Z_{0}\right)}{p_{Q I_{0}} \mathrm{BF}\left(Q I_{0}: S Z_{0}\right)+p_{S Z_{0}}} \tag{4.2}
\end{equation*}
$$

where $p_{S Z_{0}}=\operatorname{Pr}\left(S Z_{0}\right)=1-p_{Q I_{0}}$.
A Bayesian analysis of this problem would take the prior $\pi_{S Z_{0}}$ to be Dirichlet, i.e.

$$
\begin{equation*}
\theta_{S Z_{0}} \sim \operatorname{Di}(\alpha) \tag{4.3}
\end{equation*}
$$

with $\alpha=\left(\alpha_{i j}\right)$ and $\alpha_{i j}>0$, see e.g. Bernardo and Smith (1994, p. 134-5 and 441) and O'Hagan and Forster (2004, chapter 12). As a consequence, $m_{S Z_{0}}(n)$ is a Multinomial-Dirichlet with distribution

$$
\begin{align*}
& m_{S Z_{0}}(n)=\frac{N!}{\prod_{(i, j) \in A} n_{i j}!} \times \frac{H_{A}(\alpha)}{H_{A}\left(\alpha^{*}\right)} \\
& n=\left(n_{i j}\right), \quad n_{i j}=0,1, \ldots, N, \quad \sum_{i, j} n_{i j}=N \tag{4.4}
\end{align*}
$$

where

$$
H_{T}(y)=\frac{\Gamma\left(\sum_{t \in T} y_{t}\right)}{\prod_{t \in T} \Gamma\left(y_{t}\right)}
$$

and $\alpha^{*}=\alpha+n$.
Consider now the quasi-independence model $Q I_{0}$, and in particular the choice of the prior $\pi_{Q I_{0}}$. This presents some conceptual and practical challenges, that we now try to elucidate. Although, in principle, priors under distinct models need not be related, as they express prior beliefs conditionally on different states of information, it is nevertheless desirable that they should be related at least when models are nested within an encompassing model. Pragmatically, this would simplify the elicitation task, since one would only assign a prior on the parameter under the latter model, and then derive the corresponding priors under each of the remaining models from this single prior. This procedure should also achieve some sort of internal "compatibility" among prior specifications. A general discussion of strategies for building compatible priors under several related models is contained in Dawid and Lauritzen (2001). Further discussion, elaboration and references may be found in Consonni et al. (2005), and in Consonni and Veronese (2006).

Before turning to model $Q I_{0}$, it is expedient to rewrite the joint distribution of the counts $n_{i j},(i, j) \in A$, for the $S Z_{0}$-model as

$$
\begin{equation*}
f_{S Z_{0}}(n \mid \theta)=f_{S Z_{0}, 1}\left(n_{(1)} \mid \theta\right) \times f_{S Z_{0}, 2}\left(n_{(2)} \mid n_{(1)}, \theta\right), \tag{4.5}
\end{equation*}
$$

where

$$
\begin{aligned}
n_{(1)} & =\left(n_{31}, n_{42}, N-n_{31}-n_{42}\right) \\
n_{(2)} & =\left(n_{i j}:(i, j) \in A \backslash\{(3,1),(4,2)\}\right)
\end{aligned}
$$

Since, for $(i, j) \in A$, the joint distribution of $n=\left(n_{i j}\right)$, under $S Z_{0}$, is multinomial with size N and vector of probabilities $\theta=\left(\theta_{i j}\right)$, written $\operatorname{Mu}(N ; \theta)$, it is easy to check that $f_{S Z_{0}, 1}\left(n_{(1)} \mid \theta\right)$ is a $\operatorname{Mu}(N ; \lambda)$ with

$$
\lambda_{1}=\theta_{31}, \lambda_{2}=\theta_{42}, \lambda_{3}=1-\lambda_{1}-\lambda_{2},
$$

while $f_{S Z_{0}, 2}\left(n_{(2)} \mid n_{(1)}, \theta\right)$ is given by $\mathrm{Mu}\left(N-n_{31}-n_{42} ; \gamma\right)$, where

$$
\gamma_{i j}=\frac{\theta_{i j}}{1-\theta_{31}-\theta_{42}}=\frac{\theta_{i j}}{\sum_{(i, j) \in A \backslash\{((3,1),(4,2))\}}}, \quad(i, j) \in A \backslash\{((3,1),(4,2))\}
$$

The parameters λ and γ are variation independent, i.e. their joint range is the product of the two individual ranges.

Under $Q I_{0}$ we must have

$$
\gamma_{i j}=\gamma_{i+} \gamma_{+j}, \quad(i, j) \in A \backslash\{(3,1),(4,2)\},
$$

where

$$
\begin{array}{r}
\gamma_{i+}=\gamma_{i 1}+\gamma_{i 2}, \quad i=1,2,5 \\
\gamma_{+j}=\gamma_{1 j}+\gamma_{2 j}+\gamma_{5 j}, \quad j=1,2 .
\end{array}
$$

Let γ_{R} denote the collection of γ_{i+}, and γ_{C} that of γ_{+j}. Then the distribution of the counts n under $Q I_{0}$ can be written as

$$
\begin{equation*}
f_{Q I_{0}}\left(n \mid \lambda, \gamma_{R}, \gamma_{C}\right)=f_{Q I_{0}, 1}\left(n_{(1)} \mid \lambda\right) f_{Q I_{0}, 2}\left(n_{(2)} \mid n_{(1)} ; \gamma_{R}, \gamma_{C}\right), \tag{4.6}
\end{equation*}
$$

where $f_{Q I_{0}, 1}\left(n_{(1)} \mid \lambda\right)$ is $\mathrm{Mu}\left(N ; \lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ and so coincides with the expression of $f_{S Z_{0}, 1}\left(n_{(1)} \mid \theta\right)$ in (4.5), while $f_{Q I_{0}, 2}\left(n_{(2)} \mid n_{(1)}, \gamma_{R}, \gamma_{C}\right)$ is given by
$f_{Q I_{0}, 2}\left(n_{(2)} \mid n_{(1)} ; \gamma_{R}, \gamma_{C}\right)=\frac{\left(N-n_{31}-n_{42}\right)!}{\prod_{(i, j) \in A \backslash\left\{(3,1),(4,2) n_{i j}!\right\}}} \times \gamma_{1+}^{n_{1+}} \gamma_{2+}^{n_{2+}} \gamma_{5+}^{n_{5+}} \times \gamma_{+1}^{\tilde{n}_{+1}} \gamma_{+2}^{\tilde{n}_{+2}}$
where $\tilde{n}_{+j}=n_{1 j}+n_{2 j}+n_{5 j}$.
One can thus see that under $Q I_{0}$ the joint distribution factors into three terms, one involving λ, one involving γ_{R} and one involving γ_{C}.

Consider now the prior distribution. Given that $\theta_{S Z_{0}} \sim \operatorname{Di}\left(\alpha_{S Z_{0}}\right)$ we first remark that λ and γ, are independent, because of ii) of Lemma 1, see Appendix; as a consequence we also get that λ is independent of the pair $\left(\gamma_{R}, \gamma_{C}\right)$. Furthermore $\gamma \sim \operatorname{Di}\left(\alpha_{i j},(i, j) \in A \backslash\{(3,1),(4,2)\}\right)$, so that $\gamma_{R} \sim \operatorname{Di}\left(\alpha_{R}\right)$ and $\gamma_{C} \sim \operatorname{Di}\left(\alpha_{C}\right)$, where α_{R} and α_{C} are defined in accordance with γ_{R} and γ_{C}, respectively. Assuming independence of γ_{R} and γ_{C} makes the computation of the marginal distribution $m_{Q I_{0}}(n)$ straightforward since we can integrate separately the three terms in (4.6), see also (4.7), each integral being, up to the multinomial coefficient, of type Multinomial-Dirichlet.

Specifically we get

$$
\begin{align*}
m_{Q I_{0}}(n) & =\frac{N!}{\prod_{(i, j) \in A} n_{i j}!} \\
& \times \frac{H\left(\alpha_{31}, \alpha_{42}, \alpha_{+}-\alpha_{31}-\alpha_{42}\right)}{H\left(\alpha_{31}^{*}, \alpha_{42}^{*}, \alpha_{+}^{*}-\alpha_{31}^{*}-\alpha_{42}^{*}\right)} \\
& \times \frac{H\left(\alpha_{1+}, \alpha_{2+}^{*}, \alpha_{5+}\right)}{H\left(\alpha_{1+}^{*}, \alpha_{2+}^{*}, \alpha_{5+}^{*}\right)} \times \frac{H\left(\tilde{\alpha}_{+1}^{*}, \tilde{\alpha}_{+2}\right)}{H\left(\tilde{\alpha}_{+1}^{*}, \tilde{\alpha}_{+2}^{*}\right)}, \tag{4.8}
\end{align*}
$$

where $\alpha_{+}=\sum_{(i, j) \in A} \alpha_{i j}, \tilde{\alpha}_{+j}=\alpha_{1 j}+\alpha_{2 j}+\alpha_{5 j}, \tilde{\alpha}_{+j}^{*}=\alpha_{1 j}+n_{1 j}+\alpha_{2 j}+n_{2 j}+$ $\alpha_{5 j}+n_{5 j}$.
4.2. Allowing for zero-probability cells Phylosophically, we earnestly take the view that each instance of a model must be assigned a-priori a positive probability: in this sense we completely adhere to the principle that Lindley (1985, p.104) names "Cromwell's rule". This leads us naturally to the idea of regarding a model \mathcal{M} as a finite mixture of its instances. This aspect represents a characterizing feature of our approach to the analysis of contingency tables.

We can thus write the mixture representation of \mathcal{M} as

$$
\begin{equation*}
f_{\mathcal{M}}\left(n \mid \theta_{\mathcal{M}}\right)=\sum_{h} q_{\mathcal{M}_{h}} f_{\mathcal{M}_{h}}\left(n \mid \theta_{\mathcal{M}_{h}}\right), \tag{4.9}
\end{equation*}
$$

where $\theta_{\mathcal{M}}$ is the collection of all instance-specific parameters $\theta_{\mathcal{M}_{h}}$ and $q_{\mathcal{M}_{h}}$ is the prior probability attached to instance \mathcal{M}_{h}.

Specializing (4.9) to the $S Z$ and $Q I$ model, and then computing the marginal

Table 4.1: Prior probabilities $q_{S Z_{0}}, q_{S Z_{1}}, q_{Q I_{0}}$ for selected values of ξ

ξ	$q_{S Z_{0}}$	$q_{S Z_{1}}$	$q_{Q I_{0}}$
0.1	0.43	0.05	0.78
0.2	0.17	0.04	0.51
0.3	0.06	0.03	0.23
0.4	0.02	0.01	0.07
0.5	0.00	0.00	0.01

distribution of the data under each model, leads to the Bayes factor

$$
\begin{equation*}
\mathrm{BF}(Q I: S Z)=\frac{q_{Q I_{0}} m_{Q I_{0}}(n)}{q_{S Z_{0}} m_{S Z_{0}}(n)+q_{S Z_{1}} m_{S Z_{1}}(n)} \tag{4.10}
\end{equation*}
$$

Let us now consider in detail the computations that are needed for the evaluation of $\mathrm{BF}(Q I: S Z)$. Let $\xi \in(0,1)$ be the chance that a cell has zero probability, and assume that the allocation of zero probability to each cell takes place independently. Then, we can derive $q_{S Z_{0}}$ and $q_{S Z_{1}}$, and obtain

$$
\begin{align*}
q_{S Z_{0}} & =\frac{(1-\xi)^{8}}{1-\xi^{8}} \tag{4.11}\\
q_{S Z_{1}} & =\frac{\xi(1-\xi)^{7}}{1-\xi^{8}} \tag{4.12}
\end{align*}
$$

Consider now the assignment of $q_{Q I_{0}}$. We recall that we have 87 instances with total probability $C(\xi)$, then

$$
\begin{equation*}
q_{Q I_{0}}=\frac{(1-\xi)^{8}}{C(\xi)} \tag{4.13}
\end{equation*}
$$

Table 4.1 reports the value of $q_{S Z_{0}}, q_{S Z_{1}}, q_{Q I_{0}}$ for selected choices of ξ (for values of ξ above 0.5 , the values are zero to two decimal places).

We now consider the marginal distribution of the data under the $S Z_{1^{-}}$ instance. The conditioning method of Lemma 1, item ii), leads immediately to conclude that $\theta_{S Z_{1}} \sim \operatorname{Di}\left(\alpha_{S Z_{1}}\right)$, where $\alpha_{S Z_{1}}=\left(\alpha_{i j},(i, j) \in A \backslash\{(5,1)\}\right)$, whence $m_{S Z_{1}}$ has an expression analogous to that of $m_{S Z_{0}}$, the only difference being that now the set over which the indexes vary is $A \backslash\{(5,1)\}$.

For given ξ and α, the Bayes factor $\mathrm{BF}(Q I: S Z)$ can now be computed using (4.10). Notice that the multiplicative term $\frac{N!}{\prod_{(i j) \in A} n_{i j}!}$ appears both in the
numerator and denominator of (4.10), and so cancels out (strictly speaking the product for the instance $S Z_{1}$ is over a set that does not contain $(5,1)$: however since $n_{51}=0$ the result is the same whether this value appears or not).

Consider first the assignment of ξ, which represents the chance that a cell has probability zero. Save for the case of a structural zero, it seems reasonable that we should assign a low value to ξ, since the corresponding event should be regarded a priori as a rather unusual circumstance. In view of Table 4.1, setting $\xi=0.1$ seems a sensible choice. Indeed, while the prior probability of model $Q I$ is higher than that of $S Z$, nevertheless the discrepancy between the two values (0.78 against 0.48) is less pronounced for this choice of ξ than for other choices, so that the comparison between the two models is fairer.

We now take into consideration the choice of α. Unless there exists substantive prior information allowing to discriminate a priori between cells, we shall choose the same value $\bar{\alpha}$ for each $\alpha_{i j}$; also low values of $\bar{\alpha}$ are typically recommended, whenever prior information is weak. Natural choices are represented by $\bar{\alpha}=0.5$, corresponding to Jeffreys prior, or $\bar{\alpha}=1$, corresponding to a uniform prior on the simplex.

We now provide a method for the choice of $\bar{\alpha}$, using the technique of the imaginary training sample. This method has been implemented for instance by Spiegelhalter and Smith (1980) to deal with model choice using improper priors. We believe however that the idea can be usefully applied also in the context of proper priors, see Consonni et al. (2005) for a similar elaboration.

Consider for simplicity only the models $S Z_{0}$ and $Q I_{0}$. Suppose we can identify a minimal imaginary training sample that provides maximal support (irrespective of the prior) to model $Q I_{0}$. Then it is reasonable to require that the Bayes factor for these fictitious data should be approximately 1, i.e. the models are "equally likely" in terms of the empirical evidence. To see why this should be the case, notice that, on the one hand the data actually support $Q I_{0}$ very strongly; on the other hand, the sample size is so small that the evidence in favor of either model should be roughly the same. The condition that the Bayes factor should be equal to 1 can be employed to select reasonable values for the hyper-parameters of the prior distribution.

Consider the situation in which we have 1 observation in each cell, for a
total of 8 observations. It is straightforward to verify that this table is perfectly consistent with the $Q I_{0}$-model: in particular the actual and fitted counts (the latter based on ML estimates) coincide. If we fix $\xi=0.1$ as suggested above, the value $\bar{\alpha}=1$ provides a Bayes factor equal to 1.03 , which is quite satisfactory; on the other hand $\bar{\alpha}=0.5$ would give a BF equal to 0.67 . We also experimented with other values of $\bar{\alpha}$ and did not get values of BF close to 1 .

Having set $\xi=0.1$ and $\bar{\alpha}=1$, we now proceed to the analysis of the cancer data. The Bayes factor of $Q I$ against $S Z$ is equal to 0.17 , which is clearly not supporting the hypothesis of quasi-independence. To better assess this value, it is useful to derive the Bayes factor against $Q I$, which is merely the reciprocal of the above, and to further transform it using the logarithm in base 10. In this way we can make use of the scale developed by Jeffreys, see Kass and Raftery (1995) and Robert (2001, p. 228), for the interpretation of the evidence provided by a Bayes factor. Specifically, the evidence against $Q I$ is

- poor if $0<\log _{10} \mathrm{BF}(S Z: Q I)<0.5$,
- substantial if $0.5<\log _{10} \mathrm{BF}(S Z: Q I)<1$,
- strong if $1<\log _{10} \mathrm{BF}(S Z: Q I)<2$,
- decisive if $\log _{10} \mathrm{BF}(S Z: Q I)>2$,
where $\operatorname{BF}(S Z: Q I)=1 / \mathrm{BF}(Q I: S Z)$. As a consequence we get $\log _{10}(1 / 0.17)=$ 0.77 which thus represents substantial evidence against $Q I$, essentially in accord with the frequentist answer which states a p-value between 2% and 3%. It is instructive to verify what would have been the result of a conventional Bayesian analysis, based exclusively on the positive-cell models $S Z_{0}$ and $Q I_{0}$, as opposed to the model based on mixtures developed in this paper. Recall that, in the standard case, the BF would simply be the ratio $m_{Q I_{0}}(n) / m_{S Z_{0}}(n)$. In this case the BF takes the value 0.55 , which is appreciably higher than the value 0.17 obtained with our analysis. More interestingly, when translated to the Jeffreys scale, we obtain $\log _{10}(1 / 0.55)=0.26$ which only represents poor evidence against $Q I$, which is an order of magnitude lower, on the Jeffreys scale, than the one we obtained with our analysis.

4. Discussion

In this paper we have presented a new methodology for the Bayesian analysis of contingency tables that allows explicitly for the possibility of zero-probability cells.

The essential features of our approach are: the notion of extended log-linear model, the support of computational algebraic geometry to enumerate and list all model-instances having varying support, the use of a mixture model to represent the sampling distribution of the cell-counts, a technique to assign prior probabilities to the various model-instances, a method to derive prior distributions on the parameter space of each model-instance starting from a Dirichlet prior under the structural zero model, as well as an elicitation procedure for the corresponding hyper-parameters.

We have illustrated our methodology by means of an application to a real data set involving a cross-classification of types of cancer and gender. The corresponding contingency table presents two structural zeros, and a cell with a zero count. The results we obtain, when testing the hypothesis of quasi independence, show that our methods can lead to conclusions that are substantively different from those based on a standard modeling analysis, which does not explicitly allow for the possibility of zero-probability cells.

In order to apply the algebraic Bayesian approach presented in this paper to large and sparse contingency tables, we believe that a purely "automated" approach can be expected to run into serious computational issues, although technology is rapidly evolving in this area as for instance evidenced, within the field of Maximum Likelihood Estimation, in the recent paper by Erikkson et al. (2006), see also Patcher and Sturmfels (2005) for a variety of high-dimensional applications. A careful choice of prior distribution is often the only sensible way to make the analysis viable, see for instance Diaconis and Rolles (2006) in the context of Markov chains with forced zeros. We therefore believe that a blend of computational algebraic methods and prior information on the set of possiblyzero probability cells is likely to be the best option for the analysis of moderate to large multi-way tables.

Appendix

We summarize below some useful facts about the Dirichlet distribution, see e.g. Bernardo and Smith (1994, pp. 134-5) (notice however that our notation is
slightly different from theirs).
Lemma 1 Let $\theta=\left(\theta_{1}, \ldots, \theta_{s}\right)$, with $0<\theta_{k}<1, k=1, \ldots, s$, and $\sum_{k=1}^{s} \theta_{k}=1$. Assume that $\theta \sim \operatorname{Di}(\alpha)$, with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ and $\alpha_{k}>0$.
i)

$$
\left(\theta_{1}, \ldots, \theta_{r},\left(1-\sum_{l=r+1}^{s} \theta_{l}\right)\right) \sim \operatorname{Di}\left(\alpha_{1}, \ldots, \alpha_{r}, \sum_{l=r+1}^{s} \alpha_{l}\right), \quad r<s .
$$

ii) Let $\theta_{m}^{\prime}=\frac{\theta_{m}}{\sum_{q=1}^{\prime} \theta_{q}}, m=1, \ldots, r, r<s$, then

$$
\left(\theta_{1}^{\prime}, \ldots, \theta_{r}^{\prime}\right) \sim \operatorname{Di}\left(\alpha_{1}, \ldots, \alpha_{r}\right)
$$

and $\left(\theta_{1}^{\prime}, \ldots, \theta_{r}^{\prime}\right)$ is independent of $\left(\theta_{r+1}, \ldots, \theta_{s}\right)$.
iii) Let $\theta_{1}^{*}=\theta_{1}+\ldots+\theta_{i_{1}}, \ldots, \theta_{t}^{*}=\theta_{i_{t-1}}+\ldots+\theta_{s}, \quad 1 \leq t<s$, then

$$
\begin{array}{r}
\left(\theta_{1}^{*}, \ldots, \theta_{t}^{*}\right) \sim \operatorname{Di}\left(\alpha_{1}^{*}, \ldots, \alpha_{t}^{*}\right), \\
\alpha_{1}^{*}=\alpha_{1}+\ldots+\alpha_{i_{1}}, \ldots, \alpha_{t}^{*}=\alpha_{i_{t-1}}+\ldots+\alpha_{s} .
\end{array}
$$

Acknowledgment

Work partially supported by MIUR, Rome, under the projects PRIN 2003138887 and PRIN 2005132307, by the University of Pavia, the University of Genova and Politecnico of Torino. We thank Simplice Dossou-Gbété and Laboratoire de Mathématiques Appliqués UMR CNRS 5142 at Université de Pau et des Pays de l'Adour for providing hospitality and support while part of this article was written. The second author especially thanks H.P. Wynn for many discussions and suggestions. A special thank to Persi Diaconis who provided us with thoughtful feedback. Finally, the careful reading and comments by two referees are gratefully acknowledged.

References

4 ti 2 team. 4 ti 2 - A software package for algebraic, geometric and combinatorial problems on linear spaces. http://www.4ti2.de.

Bernardo, J. M. and Smith, A.F.M. (1994). Bayesian Theory. Wiley, Chichester.

Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975). Discrete Multivariate Analysis. MIT Press. Cambridge, MA.

Brown, L. D. (1986). Foundations of Exponential Families. IMS Lecture NotesMonograph Series 6. Hayward, CA.

Christensen, R. (1997). Log-linear Models and Logistic Regression. Springer, New York.

CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra. http://cocoa.dima.unige.it.

Consonni, G. and Veronese, P. (2006). Prior specifications for the comparison of linear models. Submitted.

Consonni, G., Gutiérrez-Peña, E. and Veronese, P. (2005). Compatible priors for Bayesian model comparison with an application to the Hardy-Weinberg equilibrium model. Under revision for Test.

Dawid, A. P. and Lauritzen, S. L. (2001). Compatible prior distributions. In Bayesian Methods with Applications to Science, Policy and Official Statistics (E. George, ed.). Monographs of Official Statistics, pp. 109-118. Office for official publications of the European Communities: Luxembourg. http://www.stat.cmu.edu/ISBA/index.html.

Diaconis, P. and Rolles, S. W. W. (2006). Bayesian analysis for reversible Markov chains. The Annals of Statistics, 34, 1270-1292.

Eriksson, N., Fienberg, S. E., Rinaldo, A., Sullivant, S. (2006). Polyhedral conditions for the nonexistence of the MLE for hierarchical log-linear models. Journal of Symbolic Computation, 41, 222-233.

Garcia, Stillman and Sturmfels (2005). Algebraic geometry of Bayesian networks. Journal of Symbolic Computation, 39, 331-355.

Geiger, D., Heckerman, D., King, H. and Meek, Ch. (2001). Stratified exponential families: graphical models and model selection, The Annals of Statistics, 29, 505-529.

Geiger, D, Meek, C. and Sturmefels, B. (2006). On the toric algebra of graphical models. The Annals of Statistics, 34, 1463-1492.

Haberman, S. J. (1974). The Analysis of Frequency Data. University of Chicago Press. Chicago.

Kass, R. E and Raftery, A. E (1995). Bayes factors. Journal of the American Statistical Association, 90, 773-795.

Lauritzen, S. L.(1975). General exponential models for discrete observations. Scandinavian Journal of Statistics, 2, 23-33.

Lauritzen, S. L. (1996). Graphical Models. The Clarendon Press Oxford University Press, New York.

Leonard, T. and Hsu J. S. J. (1999). Bayesian Methods. Cambridge University Press, Cambridge.

Lindley, D.V. (1985). Making Decisions 2nd Ed. John Wiley \& Sons, London.
O'Hagan A. and Forster, J. (2004). Kendall's Advanced Theory of Statistics, 2B. Bayesian Inference. 2nd edition. Arnold, London.

Patcher, L. and Sturmfels, B. (2005). Algebraic Statistics for Computational Biology. Cambridge University Press, Cambridge, UK.

Pistone, G., Riccomagno, E, Wynn, H. P. (2001) Algebraic Statistics: Computational Commutative Algebra in Statistics. Chapman\&Hall, London.

Rapallo, F. (2006). Toric statistical models: parametric and binomial representations. Annals of the Institute of Statistical Mathematics. Springer DOI 10.1007/s10463-006-0079-z.

Robert, C. P. (2001) The Bayesian Choice. 2nd edition. Springer, New York.
Simonoff, J. S. (2003). Analyzing Categorical Data. Springer, New York
Spiegelhalter, D. J. and Smith, A. F. M. (1980). Bayes factors and choice criteria for linear models. Journal of the Royal Statistical Society B, 42, 215-220.

Sturmfels, B. (1996). Gröbner bases and convex polytopes. American Mathematical Society, Providence, RI.

University of Pavia, Italy
E-mail: guido.consonni@unipv.it

Politecnico di Torino, DIMAT, Corso Duca degli Abruzzi 24, 10129 Torino Italy
E-mail: giovanni.pistone@polito.it

