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Abstract

Using Kalman techniques, it is possible to perform optinsineation in linear Gaussian state-
space models. We address here the case where the noiseifiiyoabsity functions are of unknown
functional form. A flexible Bayesian nonparametric noisedeldased on Dirichlet process mixtures
is introduced. Efficient Markov chain Monte Carlo and Sedizmonte Carlo methods are then
developed to perform optimal batch and sequential estimati such contexts. The algorithms are
applied to blind deconvolution and change point detectlexperimental results on synthetic and

real data demonstrate the efficiency of this approach irouarcontexts.
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Bayesian nonparametrics, Dirichlet Process Mixture, Mai®hain Monte Carlo, Rao-Blackwellization,
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I. INTRODUCTION
Dynamic linear models are used in a variety of applicatisanging from target tracking, system
identification, abrupt change detection, etc. The modedsdafined as follows :
x; = Axpo1+ Crug + Gypvy 1)
zy = Hixi+wy 2)
wherexg ~ N (uo, Xo), x; is the hidden state vectat; is the observationy; andw; are sequences
of mutually independent random variables such thtai'kg' FY and wy - pw, A; and H; are the

known state and observation matricag,is a known inputC} the input transfer matrix and; is the

state transfer matrix. Let us dencig; = (a;,a;41,...,a;) for any sequenc¢a,}. The main use of
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model [1)42) is to estimate the hidden stategiven the observations, .; (filtering, with a forward
recursion) orz,.p for ¢ < T (smoothing, with a forward-backward recursion).

It is a very common choice to assume that the noise probaliéhsity functions (pdfsy’, and
F,, are Gaussian, with known parameters, as this enables thefusalman filtering/smoothing.
In such a framework, Kalman techniques are optimal in theseseari minimizing the mean squared
error. There are, however, a number of cases where the @ausssumption is inadequate, e.g. the
actual observation noise distribution or the transitiorsa@re multimodal (in Sectidn VI, we provide
several such examples). In this paper, we address the praifl@ptimal state estimation when the
probability density functions of the noise sequences afmown and need to be estimated on-line
or off-line from the dataThis problem takes place in the class of identificatioiviestion of linear

models with unknown statistic noises.

A. Proposed approach

Our methodologﬂrelies on the introduction of a Dirichlet Process MixtureéP(d), which is used to
model the unknown pdfs of the state noigeand measurement noise. DPMs are flexible Bayesian
nonparametric models which have become very popular irsstatover the last few years, to perform
nonparametric density estimation [2—4]. Briefly, a redlaa of a DPM can be seen as arfinite
mixture of pdfs with given parametric shape (e.g., Gaugsidrere each pdf is denotef{-|#). The
parameters of the mixture (mixture weights and locationthef)’s) are given by the random mixture
distribution G(#), which is sampled from a so-calldirichlet Process A prior distribution, denoted
Go(#) must be selected over tites (e.g., Normal-Inverse Wishart for the DPM of Gaussianseca
wheref contains the mean vector and the covariance matrix), whéenteights follow a distribution
characterized by a positive real-valued parametdror smalla, only a small fraction of the weights
is significantly nonzero, whereas for large many weights are away from zero. Thus, the parameter
a tunes the prior distribution of components in the mixturétheut setting a precise number of
components. Apart from this implicit, powerful clusteripgoperty, DPMs are computationally very
attractive due to the so-callgeblya urn representationvhich enables straightforward computation

of the full conditional distributions associated to theel#tvariables).

B. Previous works

Several algorithms have been developed to estimate naisstist in linear dynamic systems [5-8].

However, these algorithms assume Gaussian noise pdfs @niihown mean and covariance matrix).
Preliminary results were presented in Caron et al. [1].
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As will be made clearer in the following, this is a special €ad our framework: if the scaling
coefficienta tends to0, the realizations of the DPM of Gaussian pdfs converge itridigion to a
single Gaussian with parameter prior distribution giveriligy base distributiortzo. Algorithms have
also been developed to deal with non-Gaussian noiseshdititis, such as student-t [9];stable [10]
or mixture of Gaussians [11]. These works are based on a givien parametric shape of the pdf
which we do not assume in this paper.

Though many recent works have been devoted to DPMs in vadongexts such as economet-
rics [12], geoscience [13] and biology [14, 15], this powérlass of models has never been used
in the context of linear dynamic models (to the best of ounkiedge). In this paper, we show that
DPM-based dynamic models with unknown noise distributioas be defined easily. Moreover, we
provide several efficient computational methods to perf@ayesian inference, ranging from Gibbs

sampling (for offline estimation) to Rao-Blackwellized pele filtering for online estimation.

C. Paper organization

This paper is organized as follows. In Sectioh Il, we redadl basics of Bayesian nonparametric
density estimation with DPMs. In Sectignllll we present thaamic model with unknown noise
distributions. In Sectiof IV we derive an efficient Markovaain Monte Carlo (MCMC) algorithm to
perform optimal estimation in the batch (offline) case. Ict®m[\, we develop a Sequential Monte
Carlo (SMC) algorithm/Particle filter to perform optimaliesation in the sequential (online) case. All
these algorithms can be interpreted as Rao-Blackwellizethods. In Sectioh VI, we discuss some
features of these algorithms, and we relate them to othstiegiapproaches. Finally, in Sectibnl VI,
we demonstrate our algorithms on two applications: blindodeolution of impulse processes and a
change point problem in biomedical time series. The lagi@®cs devoted to conclusions and future

research directions.

[I. BAYESIAN NONPARAMETRIC DENSITY ESTIMATION

In this section, we review briefly Bayesian nonparametricsity estimatioH. We introduce Dirich-
let processes as probabilistic measures on the space oalpligh measures, and we outline its

discreteness. Then, the DPM model in presented.

2There are many ways to understand 'nonparametric’. In thjgep we follow many other papers in the same vein [2—
4], where 'nonparametric’ refers to the fact that the pdf mtierest cannot be defined by a functional expansion with a

finite-dimensional parameter space.
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A. Density estimation

Letyq,...,y, be a statistically exchangeable sequence distributed with
yi ~ F() 3)

where~ meansdistributed according toWe are interested here in estimatifg-) and we consider

the following nonparametric model

- [ rvi0)as) (4)

wheref € O is called the latent variable or cluster variabfg;|0) is the mixed pdf andz(-) is the
mixing distribution. Within the Bayesian framework, it issumed that(-) is a Random Probability
Measure (RPM) [4] distributed according to a prior disttiba (i.e., a distribution over the set of

probability distributions). We will select here the RPM wlléw a Dirichlet Process (DP) prior.

B. Dirichlet Processes

Ferguson [16] introduced the Dirichlet Process (DP) as daiiity measure on the space of
probability measures. Given a probability measis¢-) on a (measurable) spaCg, .A) and a positive
real numbew, a probability distributiorG(-) distributed according to a DP of base distributiGg(-)
and scale factow, denotedG(-) ~ DP(Gy(-), «), satisfies for any partitiondy, ..., A, of 7 and any
k

(G(A1),...,G(Ag)) ~ D (aGy(A1), ...,aGo(Ag)) (5)

whereD is a standard Dirichlet distribution, classically definedd set of random variabl€s,, .., b,) ~
D(ag, ..,ap) by

D(ag, .., ap) = EO”HW*&Zm (6)

wherel is the gamma function, and,(v) is the Dirac delta functlon, which is zero wheneveg w.

From the definition in Eq[{5), it is easy to show that for evéhe T

E[G(B)] = Go(B) (7)

var[G(B)] = Gol(B) (11+_O[GO(B)) (8)

An important property is that the realizations of a Diridhtgocess araliscrete with probability
one. One can show th& admits the so-callegtick-breakingrepresentation, established by Sethu-

raman [17]:

G() = > mou, () 9)
j=1
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with U; ~ Go(-), 7 = 8; [[1—; (1 — 4) and 3; ~ B(1,a) where B denotes the beta distribution.
In the following, we omit(-) in G(-) and other distributions, to simplify notations. Using Ed), (it

comes that the following flexible prior model is adopted floe unknown distribution?”
F(y) =Y _ mifyIU;). (10)
j=1

Apart from its flexibility, a fundamental motivation to uskeet DP model is the simplicity of the
posterior update. Lety, ..., 0, ben random samples frorfs

0:|G " G (11)

whereG ~ DP(Gy, «) then the posterior distribution d@|6,., is also a DP

o 1 -
Gl0y.,, ~ DP G oo, , 12
101: (a+n O+a+n;9’° a+n) (12)

Moreover, it can be shown that the predictive distributioomputed by integrating out the RP®,
admits the followingPolya urnrepresentation [18]

1 n
Y8, + ——Go. (13)
a—l—nk:l a+n

Therefore, conditionally on the latent variables, sampled previously, the probability that a new

en—i-l‘el:n ~

sample is identical to an existing one is overgt-, whereas, with probability.<-, the new sample
is distributed (independently) according @&). It should be noted that sever@l’s might have the
same value, thus the number of “alive” clusters (denat€q that is, the number of distinct values
of 0y, is less tham.

The scaling coefficientx tunes the number of “alive” clusterd/. For largen, Antoniak [19]
showed thaff [M|a, n] ~ alog(1+ ). As « tends to zero, most of the samplgsshare the same

value, whereas whea tends to infinity, thed,, are almost i.i.d. samples frofd,.

C. Dirichlet Process Mixtures

Using these modeling tools, it is now possible to refornautiie density estimation problem using
the following hierarchical model known as DPM [19]:
G ~ DP(Gg,«,), and,fork=1,...,n
|G ~ G, (14)
Yi|Ok ~ f(:|0k)
It should be noted that DPMs can model a wide variety of pdispdrticular, assuming Gaussian
f(-|0x), the parameter contains both the mean and the covariandedepending orizg, the corre-

sponding DPM may have components with large/small varignce
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D. Estimation objectives

The objective of DPM-based density estimation boils dowegtmating the posterior distribution
p(01.n|y1.n), because the probabilitz can be integrated out analytically by using the Polya urn
representation. Although DPMs were introduced in the #@sse models were too complex to handle
numerically before the introduction of Monte Carlo simidat based methods. Efficient MCMC
algorithms [2, 3,20-22] as well as Sequential Importance@iag [23, 24] enable to sample from
p(01..|y1.n). However, these algorithms cannot be applied to our classaafels, which is presented

below, because the noise sequenceandw; are not observed directly.

I11. DYNAMIC LINEAR MODEL WITH UNKNOWN NOISE DISTRIBUTION

The linear dynamic model defined in Eqld ([}-(2) relies oa tmknown noisegv,;} and {w;}

distributions, which are assumed to be DPMs in this paper.

A. DPM noise models

For both {v;} and {w.}, the pdf f(:|0) is assumed here to be a Gaussian, dengtédy,>?)
and NV (uj’, X}") respectively. The base distributiofi§ and G{ are assumed to be normal inverse
Wishart distributions [25] denote@f = NZW (ug, g, vy, AY) and Gy = NIW (uf, k', v§, AY).
The hyperparameterg” = {ug, x§, v, Ay} and ¥ = {uf, ky, vy, Ay} are assumed fixed but
unknown. Finally, the scale parametersand«™ are also assumed fixed and unknown. Overall, the
sets of hyperparameters are denatéd= {a, ¥}, ¢¥ = {a¥, "} andg = {¢", " }. For the sake
of presentation clarity, we assume that these hyperpaeasnate known, but in Subsectibn TV-B, we
address the case of unknown hyperparameters by defining @mmal a specific estimation procedure.

To summarize, we have the following models

G®|¢¥ ~ DP(GY, a®), G¥|¢¥ ~ DP(GY, a®), (15)
and fort =1,2, ...
071G "< G, v |Gw " Gv,
ii.d. ii.d. (16)
vi|0F N (kg B). w03~ N (g, BP).

where 0y = {uy, XV} (resp.6y = {u’,X}{"}) is the latent cluster variable giving the mean and
covariance matrix for that cluster, ag = {67,0;"}. This model is written equivalently ag;, ~

FY(v;) andw; ~ F*(wy;) where F'¥ and F are fixed but unknown distributions written as
FP () = [ N (v D)6 (. D), an

Fo(w) = [ N (w1 Z)6 (1) (18)
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In other words,F¥ and ' are countable infinite mixtures of Gaussian pdfs of unknoarameters,

and the mixing distribution&? andG® are sampled from Dirichlet processes.

B. Estimation of the state parameters

In this work, our objective is to estima@” andG" as well as the latent variabld$,} and state
variable{x,} at each time, conditional on the observatioqsg, }. In practice, only the state variable is
of interest -G", G* and{#,} arenuisanceparameters. Ideally, one would like to estimate online the
sequence of posterior distributiop&xo.;|z1.¢, ¢) ast increases or the offline posteripfxo.r|z1.7, ¢),
whereT is the fixed length of the observation sequengce. Thanks to the Polya urn representation,
it is possible to integrate out analytically’ andG™ from these posteriors. The parametéys and
01.7 remain and the inference is based updry.;, 01.:|z1.¢, ¢) or p(xo.7, 01.7|21.7, »). The posterior

p(X0:¢, 01:t|21.¢, @) satisfies for any
P(X0:t, 01:4|21:4, @) = P(X0:t|01:4, Z1:4, §) (014|214, D). (19)
Conditional upord;, Eqg.’s [1)-[2) may be rewritten as
x; = Fyxp—1 + uy(0y) + Gyvi(6;) (20)
7y = Hyxy + pyf + wi(0r) (21)

where u}(6;) = Cyu; + Gy and p’ are known inputsyv;(6;) and w;(6;) are centered white
Gaussian noise of known covariance matritésand¥}’, respectively. Thug(xo.¢|01.¢, z1.¢, @) (resp.
p(x0.7|01.7,21.7, ¢)) IS @ Gaussian distribution whose parameters can be cothpsieg a Kalman
filter (resp. smoother) [26] for giveé.; (respéi.r).

One is generally interested in computing the marginal MMmesestimate?tM';”,SE = E [x¢|z1.+]
(with ¢ =t ort' =1T)

ﬁwﬁ = /ti(Xt791:t’|let'7¢>)d(Xt791:t’)
= /ti(xt|91:t’ s 2147, O)P(O1:00 | 210, 9)d(X¢, O1:00) (22)
= /§t|t'(91:t/)p(91:t/|Z1:t/,¢)d91:t'
wherex,(601.1) (respXyr(01.7)) is the mean of the Gaussialx;|01.1, z1.1, #) (respp(x¢|01., z1.1, 9))-
Both x,,(61.;) and X, (f1.) are computed by the Kalman filter/smoother, see Secfiohsnii\a
below.

Computing these estimates still requires integrationt.wthe 6's, see Eq.[(22). This kind of

integral is not feasible in closed-form, but it can be compubumerically by using Monte Carlo
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integration [27]. Briefly, assume that a set &f weighted sample:@@g’;i}izl,”,w with WeighISwf)

are distributed according to(0;.¢|z1., ¢), then e.g.p?g”';”SE is computed as

N
R~ wi %y, (61) (23)
=1

In Eq. (Z3), the main difficulty consists of generating theighted samplei@@}izl,...7]\; from the
marginal posteriop(61.:|z1.¢, ¢) (and similarly, fromp(0;.7|z1.7, ¢) in the offline case).

« Foroffline (batch) estimation (¢t = T"), this can be done by MCMC by building a Markov chain
of samples{9§’;)T}i:1,,,,7N with target distributiorp(61.7|z1.7, ¢) (in that casewf) =1/N). The
MCMC algorithms available in the literature to estimatesta®ayesian nonparametric models —
e.g. [3,21] — are devoted to density estimation in casesawtnerdata are observed directly. They
do not apply to our case because here, the sequgrggsand {w,} are not observed directly.
One only observesz:}, assumed to be generated by the dynamic mddel{1)-(2). tbeb¥i
proposes an MCMC algorithm dedicated to this model.

« Foronline (sequential) estimation samples can be generated by sequential importance samplin

as detailed in Sectidn]V.

IV. MCMC ALGORITHM FOR OFFLINE STATE ESTIMATION

In this Section, we consider the offline state estimationo@iined above, this requires to compute
estimates from the posterip(xo.r, 61.7|2z1.7), where we recall that, = {67,0}"} = {u}, 27, uy’, X1}
is the latent variable as defined above. We first assume tadtyiperparameters are fixed and known
(Subsectiom 1V-A), then we let them be unknown, with giveiopdistributions (Subsectidn 1ViB).

A. Fixed and known hyperparameters

In this subsection, the hyperparameter veg¢iis assumed fixed and known. The marginal posterior
p(01.7|z1.7, ) can be approximated through MCMC using the Gibbs sample} fi2&sented in
Algorithm 1 below.

Algorithm 1: Gibbs sampler to sample frop(61.7|z1.7, ¢)

« Initialization: Fort=1,...,T, sample@t(l) from an arbitrary initial distribution, e.g. the prior.
o lterationi, i1 =2,...,N'+ N:
— Fort=1,...,T, sample?ﬁi) ~ p(9t|z1:T,0(_i,)f,¢) Wheree(_i,)f = {Qf), ..,eﬁ?l,e,ﬁi‘f), ..,Qéf_l)}

To implement Algorithm 1, one needs to sample from the caowdd pdf p(6;|z1.7,0—+, ¢) for

each of theN’ + N iterations (includingN’ burn-in iterations). From Bayes'’ rule, we have
p(Ot|z1.7, 01, @) o< p(z1:7[01:7)p(0]0—1, D). (24)
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wherep(60:|0_¢, ¢) = p(6710",, ¥ )p(0;°16™,, ¢*). From the Polya urn representation, these two terms
are written as (forw, replacev with w below):

v

T
v v v 1 v
p(07]0%,, %) = AT 1 Z doy (07) +
k=1,k#t

a

m(@o(@ %°), (25)

Thus p(6;|z1.7,0—+, ¢) can be sampled from with a Metropolis-Hastings (MH) stepemehthe
candidate pdf is the conditional prig(6;|0_,, ¢). The acceptance probability is thus given by

. " _ CQ(i)* 69(1)
p(0? 0%y = min <1,p<z1'T| . (Z—.;) (26)
p(z1rl0; 7, 024)

Whereef)* is the candidate cluster sampled frgit®,|6_., ¢).

The computation of the acceptance probability requiretopute the IikeIihoo@(zl:T\H,f"), 0(_12).
This can be done if(7") operations using a Kalman filter. However, this has to be done =
1,...,T and one finally obtains an algorithm of computational comipyeO(72). Here, we propose
to use instead the backward-forward recursion developdé8dj to obtain an algorithm of overall
complexity O(T"). This algorithm uses the following likelihood decompasitiobtained by applying

conditional probability rules t@(z;.¢—1,z¢, zi+1.7|01.7)
p(z1:7101.1) :p(zlzt—l|91:t—1)p(zt|91:t>Zl:t—l)/ P(Ze1.7|Xt, O 1.7)D (Xt | 2124, 010 )dxe  (27)
X
with
p(@er/xi—1, bur) = / (@11, Brr (2, 1] Bo, X1 )y (28)
X

The first two terms of the r.h.s. in EJ._{27) are computed by ravdiod recursion based on the

Kalman filter [28]. The third term can be evaluated by a baakiwacursion according to Ed.(28).

It is shown in [28] that if [, p(zs.7|x¢—1, 0p7)dx;—1 < co then T p?z(:;ﬂit;yfgcht_l is a Gaussian
distribution w.r.t.x;_1, of meanm;_l‘t(etq) and covariancé?t’_l‘t(et:T). Even if p(z.7|xt—1, 0r.7)
is not integrable irx;_4, the quantitiesf’t’:ll| (Or.7) andPt’:ll| t(et;T)m;_” ,(0y.7) satisfy the backward
information filter recursion (see Appendix). Based on HGl)(2he densityp(6;|z1.7,0—_¢, @) is

expressed by

p(O¢|z1.7,0—1) o p(9t\9—t,¢)p(zt\91:t,zlzt—1)/ P(Ze41.7|X¢, O 1.7)D(Xe| 2121, 010 ) A, (29)
X

Algorithm 2 summarizes the full posterior sampling proaedut is the step-by-step description

of Algorithm 1 that accounts for the factorization of theelikhood given by Eq.[(27).

Algorithm 2: MCMC algorithm to sample fromp(61.7|z1.7, ¢)
Initialization 7 = 1

o FOort=1,...,7T, sample@t(l).

lterationé, i =2,...,N'+ N
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« Backward recursiarFort =T, .., 1, compute and storBt";il(et(i_l?%) andPt";il(Ht(fr_l:l)T)m;| . +1(0§i_1:1%

o Forward recursionFort =1,..,T
— Perform a Kalman filter step with = H,Si_l), storei”t(eg_l, 0?‘1)) andEt‘t(QﬁZ_l, 9,5"_1)).
— Metropolis-Hastings step :
« Sample a candidate cluster
0" ~ p(0:10"). 9) (30)

« Perform a Kalman filter step wits, = 0%, storeﬁt‘t(eg_l, ") andEt‘t(eg_l, ")

x Compute

. - ) 9(1)* 9(1)
p(0,6%) = min <1,p (27| o (Z—,;) (31)
p(z1r|0;7,07)

« With probability p(6\”, 6%, seto!”) = 6", otherwiseg” = ¢!~

State post-Sampling (for non-burn-in iterations only)

o Fori=N'+1,..,N' + N, compute?ct‘T(eﬁ)T) =E (Xt|9§f)T,Zl:T> for all ¢ with a Kalman

smoother.

It can be easily established that the simulated Markov cr{aﬁ;} is ergodic with limiting
distribution p(61.7|z1.7). After N’ burn-in, the N last iterations of the algorithm are kept, and the

MMSE estimates of); andx; for all ¢t = 0,...,T are computed as explained in Subsecfion1lI-B,

using
N'4+N N'4+N
OMMSE _ l Z Q(i) ZMMSE _ i 3 T(@(i) ) (32)
" N i=N'+1 t " N i=N'+1 e

B. Unknown hyperparameters

The hyperparameters in vectorhave some influence on the correct estimation of the DPNs
and F™. In this subsection, we include them in the inference by ©Emgg them as unknowns with

prior distributions:

ol ~ g(%, g), ol ~ g(%, g), (33)
Y ~po(¥’), ¥~ po(¥*) (34)

wheren andv are known constants ang is a pdf with fixed and known parameters. The posterior
probability p(a” |x1.7, 01.7, 21.7, V", ™) reduces tgp(a’|M",T) whereM" is the number of distinct
values taken by the clustef$.,.. As shown in [19], this pdf can be expressed by

s(T, M?)(a®)M"

a’| MY, T) x
PO T o )

p(a?) (35)
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where thes(T', k) are the absolute values of Stirling numbers of the first kivd. can sample from
the above pdf with a Metropolis-Hasting step using the pilamma pdi(a) = G(3, %) as proposal
(and similarly fora*). Other methods have been proposed that allow direct sag)@ee for example
West [29], and Escobar and West [21].

The posterior probability (" |x1.7, 01.7, z1.7, ¥, ™) reduces tp(¢"|67.1,.) whereéy ;,. is the

set of distinct values taken by the clustéis,. It is expressed by

p(Y° |x1.1, 0.1, 217, &%, ) o< po (v HGU o ') (36)

We can sample from this pdf with a Metropolis-Hasting stemgishe prior Gamma pdpg (") as

proposal whenever direct sampling is not possible.

V. RAO-BLACKWELLIZED PARTICLE FILTER ALGORITHM FOR ONLINE STATE ESTIMATION

Many applications, such as target tracking, reqoinéine state estimation. In this case, the MCMC
approach is inadequate as it requires availability of th&reeataset to perform state estimation. In
this section, we develop the online counterpart to the MCM@cedure presented in Sectionl IV: a
sequential Monte Carlo method (also known as patrticle Yileeimplemented, to sample on-line from
the sequence of probability distributiodp(xo.¢,01.4|z1.¢), t = 1,2,...}. Here, the hyperparameter
vector ¢ is assumed to be known, therefore it is omitted in the foligyviOnline hyperparameter
estimation is discussed in Section \VII.

As explained in Subsectidn1iB, we need to sample frp(fi;.;|z1.¢), becausep(xg.+|61.t,21.¢)
can be computed using Kalman techniques. (The samplinggdue is indeed a generalization of the
Rao-Blackwellized particle filter [30] to DPMs.) At time p(x;, 01.¢|z1.¢) iS approximated through a

set of N particleseﬁt), - ,9§{f> by the following empirical distribution
Py (xt. O1elzre) = Zwt (13 Rup (070), S (612) (37)

The parameterﬁt‘tw@) andEt‘t(Hg) are computed recursively for each parti¢lesing the Kalman

filter [26]. In order to build the algorithm, we note that
p(0141z1:4) o< p(01; 1 |Z1:4—1)p(2e|01.1, Z1.4—1)P(0; | 1t 1) (38)

where 4
p(z)08) 214 1) = p(z]0”,0%)_ | 214 1)

= N(Zt§ Zlt—1 (98&)7 St\t—l (9@))
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and
Ziyjy— 1(9()) Hi |:th15 1t— 1(9§2 D)+ Coug + Gy ()] + pg w @ (39)
St (08)) = Hy [ Sy 1(00) ) BT + Gz V6T | T 4y ©

The Rao-Blackwellized Particle Filter (RBPF) algorithnmopeeds as follows.

Algorithm 3: Rao-Blackwellized Particle Filter to sample fromid;.+|z1.¢)
At time 0.

e Fori=1,..,N, sample( é%,zé‘%) ~ po(Xo[0, Lo|0)-

° Setw(()) — %

At each timet (¢t > 1), do fori=1,...,N
° Sampleg(l) ~ (9t|9§l1)5 15 Z1: t)
« Compute{x;; 1(‘9%1 10 Z)) 2t|t_1(9§2_175§’))7§t\t(9§2_1,5?)),Et\t(%z_lﬁ?))} by using a
Kalman filter step from{xt_l‘t_l(egfz_l), zt_l‘t_l(eﬁz_l), @Z), z:)}
e Fori=1,..., N, update the weights according to
~ (i) (@) p(Zt|9§2_1>gt(l),zlzt—l)p(gt(l)|9@—1)
W % W 301000
q(0;7161,; 1, Z1:t)

wtm

S

(40)

« ComputeS = " lwt ) and fori=1,...,N, setwf) —

« ComputeNgt = [Zf\il (w§i)>2]_l

o If Nes < n, then resample the particles — that is, duplicate the pestiwith large weights are
remove the particles with small weights. This results in & et of particles denote@fi) with
weightsw|” = &

« Otherwise, rename the particles and weights by removing'she

Particle filtering convergence results indicate that théawee of the Monte Carlo estimates depends
highly on the importance distribution selected. Here, thieditionally optimal importance distribution
is q(9t|91 410 Z1) = (9t|91t 1,Z1:t), see [30]. However, it cannot be used, as the associated
importance weights do not admit a closed-form expreHsimmractlce the evolution pgf(d;|0:1.+—1)
was used as the importance distribution.

From the particles, the MMSE estimate and posterior comaganatrix ofx; are given by

XyyoE = Zwt 1¢(0 (41)
Ztlt_zwt [Et\t 1:4) +(§t\t(9§f)) QWSE)(Xﬂt(@()) QWSE)T] (42)

3When using the optimal importance distribution, the wesgbbmputation requires the evaluation of an integral with

respect tof;. It is possible to integrate analytically w.r.t. the clusteeansy” and x*, but not w.r.t. the covariances.
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VI. APPLICATIONS

In this section, we present two applications of the above ehaahd algoritth& We address,
first, blind deconvolution, second, change point deteditiobiomedical time series. In each case, we

assume that the statistics of the state noise are unknownmadelled as a DPM.

A. Blind deconvolution of impulse processes

Various fields of Engineering and Physics, such as imagduteiy, spectroscopic data analysis,
audio source restoration, etc. require blind deconvalutile follow here the model presented in [31]
for blind deconvolution of Bernoulli-Gaussian processesich is recalled below.

1) Statistical Model:Let H = ( 1 hy .. hg ) = ( 1 h ) andx; = ( Ve Vg1 .. Vs )T.
The observed signaj is the convolution of the sequense with a finite impulse response filtd¥,

observed in additive white Gaussian noise The observation model is then
Zt = HXt + wy (43)

wherew; ~ N(0,02) with o2 is the assumed known variance of. The state space model can be
written as follows:
x; = Fxi_1 + Gug (44)

0  Oixz . . . .
where F = t , G = , Omxn IS the zero matrix of sizen x n and I, is

Opx1  Ir Orx1
the identity matrix of sizen x m. The state transition noisg is supposed to be independent from

wy, and distributed according to the mixture
vy ~ AFY + (1= N)dy (45)

whered is the Dirac delta function d and FV is a DPM of Gaussians defined in EG.J(17). In other
words, the noise is alternatively zero, or distributed aditm to a DPM of Gaussians.

For simplicity reasons, we introduce latent Bernoulli gatesr; € {0,1} such thar(r, =1) = A
andvg|(ry = 1) ~ f(:167), v|(re = 0) ~ dp. Consider the cluster variablgl defined byy; = 67
if » = 1 andy; = (0,0) (i.e. parameters corresponding to the delta-mass) i 0, that is,

@f ~ AFY + (1 = A)d(0)- By integrating outF”, one has

ey ~ Ap(pf s, e = 1) 4+ (1 = A)d(0,0) (46)

4See Caron et al. [1] for an application on a regression prable
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wherep(ef|¢?;, 7 = 1) is the Polya urn representation on the g€ = {¢ € ¢”;|¢ # d0,0)} Of
sizeT’ given by
T/
Zk;:l,k;ﬁt Ogy + "Gy
av + T’

or| (0 re =1) ~ (47)

The probability A is considered as a random variable with a beta prior dengity = 5((, )

where( andr are known parameters. The random variablean be marginalized out in Eq._(46)

(I(Q{fit) b(wgt)
i |y ~ —— — (ol e =1) + —— —0 (48)
e~ S T bty P e = D ey e,y 00
where
T
a(p?ls) = ¢+ Z % (49)
k=1 k4t
T
b ) =T+ Y. (1—m) (50)
k=1 k=t

wherer; = 0 if ¢} = (0,0) andr, = 1 otherwise.
The hyperparameters ate = (o, h) (the hyperparameters of the base distributi®f are as-
sumed fixed and known). These hyperparameters are assunuhravith prior distributiorp(¢) =

p(a’)p(h), where
n v

p(a”) = 9(57 5)7 p(h) = N(0,0%5n) (51)

wheren, v and Xy, are known. Conditional oxg.;, the following conditional posterior is obtained
straighforwardly
p(h|xoy, z1.7) = N'(m, 07,54, (52)

where

T
/=1 -1 § : /
Zh = Zh + Vi—1:4—LVi_1:4—1
t=1
T

m = Eil Z Vi-1:t—L (Zt - Ut)
t=1

Sample5x62 can be generated from the Gaussian pOStQF((xro;t\goiT(i),zlzT,qﬁ(i_l)) with the
simulation smoother [32]. This algorithm complexityG§T").

The aim is to approximate by MCMC the joint posterior pdi 1.7, v1.7, ¢|z1.7). This is done
by implementing Algorithm 3 for the cluster variable, whasethe other variables are sampled by

Metropolis-Hastings or direct sampling w.r.t their coratial posterior.
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2) Simulation results:This model has been simulated with the following parametérs= 120,
L=3h= ( 15 05 —0.2 ) A=04,02 =0.1,F = 0.7N(2,.5)+0.3N(—1,.1), £p = 100,
n=3,v=3,(=1, 7= 1. The hyperparameters of the base distribution jare= 0, xo = 0.1,

vy = 4,A¢ = 1. For the estimation, 10,000 MCMC iterations are performeilh 7,500 burn-in

iterations. Fig[L (top) displays the MMSE estimatewafr together with its true value. As can be

seen in Fig[lL (bottom), the signal is correctly estimated e residual is quite small. Also, as can

be seen in Figl]2, the estimated pHf is quite close to the true one. In particular, the estimated

pdf matches the two modes of the true pdf. Multiple simuladiovith different starting values were

runned, and the results appeared insensitive to initiédiza This suggest that the MCMC sampler

explores properly the posterior.

Fig. 1.

Xt - Xyt

Estimated signal
— — — True signal

Time index

Residual between the true and estimated signalsl 4

WMWWWWW“MHWWM

o

Time index

L L L L
0 100 200 300 400 500

L L L L
0 100 200 300 400 500

Top picture: True (dashed line) and MMSE estimatetlddine) signalv;.r after 10,000 MCMC iterations (7,500

burn-in). v, is supposed to be eithérwith probability A\, or to be distributed from an unknown pdf” with probability

(1 — ). Bottom picture: residuat: = v: — E[v¢|z1.7] between the true and estimated signals. Although the foligioin

F" is unknown, the state; is almost correctly estimated.

Let ey be the mean squared error (MSE), computed by

T
1
eMSE = - (Vt o VMMSE)Q
T

(53)

To better highlight the performance of the proposed algorjtwe compared our model/algorithm

(denoted M1) with the following models, denoted M2 to M8:

M2.

In this model, the pdf is assumed known and set to the taleevF’” = 0.7A(2,.5) +

0.3N(—1,.1). The model is simply a Jump Linear Model that jumps betweegettmodes
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— — —Real pdf F¥
— Estimated pdf F¥

30

20

Number of values
=
o
T

Fig. 2. (Top) True (dashed line) and estimated (solid lindj p“. The true pdfF" is a mixture of two Gaussians
0.7V (2, .5) +0.3NM(—1,.1). It is supposed to be unknown and jointly estimated with tlagesvector with10, 000 MCMC
iterations (7,500 burn-in) given a vector 20 observationsz,.r. The estimated pdf matches correctly the two modes of
the true distribution. (Bottom) Histogram of the simulateaduesv, sampled fromF™ which a mixture of two Gaussians
0.7NV(2,.5) + 0.3N(—1,.1)

of resp. mean/covariand®, 0), (2,.5) and(—1,.1) with resp. prior probabilitieg1 — \),
0.7A and0.3\.

M3. In this model, the pdf is assumed to be a Gausdidgn.1,2.3). The first two moments of

this Gaussian are the same as those of the truelfidfThe model is also a Jump Linear
Model that jumps between two modes of resp. mean/covariéheg and (1.1,2.3) with
resp. prior probabilitiegl — A) and \.
M4-7. The model described in this article but wiifi fixed to0.1 (M3), 1 (M4), 10 (M5) and100
(M6).

M8. The model described in this article (M1) but with the atva¢ion noise variance?, estimated
with an inverse gamma prier?, ~ iG(u,v) with v = 2 andv = 0.1. os W is sampled with
Gibbs sampling withr2 |xg.7, z1.7, h ~iG(v/,v') andu/ = u+% andy’ = v+% Zle(zt —
Hx;)?.

The algorithm used for M2 and M3 is the Gibbs sampler with ekl forward recursion given
in [28]. For the same set of observations, each MCMC algorittas been run with 10,000 iterations
and 7,500 burn-in iterations. MMSE estima,t%ﬁ"SE and MSEe ;g are computed for each model.
20 simulations have been performed; for each model, the raepdrstandard deviation of the MSE'’s

over the 20 simulations are reported in Tab. .
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Fig. 3. Evolution ofa® @ in function of Gibbs sampler iteration i. The value @f is initialized at 100.

. . . .
0 2000 4000 6000 8000 10000

Iterations
1
S
g o
-1 . . . .
0 2000 4000 6000 8000 10000
Iterations
0 T T T T
S _O.ZWWWWWM
=
0.4 . . . .
0 2000 4000 6000 8000 10000

Iterations
Fig. 4. Evolution of the three components of the vedié? in function of Gibbs sampler iteration i. It is initialized a

[0 0 0]. The value converges toward the true value= [-1.5 0.5 — 0.2].

Tab. I. Comparison of our model/algorithm with other models
Simulation / Model| M1 M2 M3 M4 M5 M6 M7 M8

Mean 0.240| 0.217] 0.290| 0.915| 0.254| 0.253| 0.314| 0.438
Standard deviation| 0.067| 0.058| 0.085| 0.818| 0.062| 0.086| 0.222| 0.421

Our model/algorithm (M1) gives MSE that is only 10% more thlaat of the model with fixed pdf
(M2) even though the pdf is not exactly estimated. If the obeton noise variance? is unknown

and has to be estimated (M8), this has an impact on the egimaltthe state vector still the sampler
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converge more slowly to the true posterior. If the unknowi igdset to be a Gaussian with large
variance (M3), the MSE is 17% larger than with our approadie €stimation ofx” improves the
estimation of the state vector: MSEs are higher for models?™#herea” is set to a fixed value.
This is especially true fon” = 0.1. With this small value, the sampler proposes new clusterg ve

rarely and converges very slowly to the true posterior.

B. Change-point problems in biomedical time series

Let now consider a change-point problem in biomedical timmges. The following problem has
been discussed in [33] and [11]. Let consider patients whibrBeently undergone kidney transplant.
The level of kidney function is given by the rate at which cleahsubstances are cleared from the
blood, and the rate can be inferred indirectly from measergmon serum creatinine. If the kidney
function is stable, the response series varies about aararistel. If the kidney function is improving
(resp. decaying) at a constant level then the responses stg@ays (resp. increases) linearly.

1) Statistical model:The linear model, formulated by Gordon and Smith [33] is gity

Xt = FXt_l + GVt (54)

2 = Hxy + wy (55)
) 1 1 1

wherex; = (my,m;), wherem, is the level andn, the slope, [’ = , G = , 2t
01 01

is the measured creatinine afb= ( 1 0 ) Measurements are subject to errors due to mistakes in
data transcription, equipment malfunction or blood coriteation. w; follows the following mixture
model

wy ~ AYN(0,07") + (1 = A*)N(0,0%) (56)

where A = 0.98 is the probability that the measurements are correct, ibh dhge the variance is
ol = 107" and oy = 1 otherwise. To capture the effects of jumps in the creatitével, the state

noisev; is supposed to be distributed according to the followingtorix model

Vi ~ A EFY + (]. — )\U)égg (57)

T 0 0
where§ = ( 00 ) ) , AV = 0.15 is the probability of jump in the level ané™
0 0
is a DPM of Gaussians. Contrary to the model in [11], we do refiné fixed jump levels. These

levels, as well as their number, are estimated through theé.DP
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Fig. 5. Measured (cross) and estimated (solid line) creegilevel with 2000 MCMC iterations and 1000 burn-in iteoas.

nge,

Pr(ch:

L
0 20

Time

Fig. 6. Posterior probability of a jump in the creatininedewith 2000 MCMC iterations and 1000 burn-in iterations.

For a threshold set t0.5, the creatinine level experiences jumps at about tif)ex) and 110.

2) Simulation resultsThe last model is applied to the data provided in Gordon anith§88] (and
0
also exploited in [11]). The hyperparameters of the badeiloligion arepo = ko = 100, 1y =

[ 10 — N . o
4, Ny = 2 . For the estimation, 2,000 MCMC iterations (with 1,000 birrriterations)
01

are performed. Fid.]5 presents the estimated creatinired fegether with the measurements. Fip. 6

plots the posterior probability of a jump in the creatinieedl. In particular, the estimated pdf matches
the two modes of the true pdf. Multiple simulations with dint starting values were runned, and the
results appeared insensitive to initialization. This sgighat the MCMC sampler explores properly
the posterior.

The estimation have also been made online with the Rao-Bfeliiked algorithm with 1000

particles. We perform fixed-lag smoothing [34] to estimBte;|z;.++7), whereT is set to10. The
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mean time per iteration is about 1s. The importance funati®ed to sample the latent variablgs
is prior pdf p(67107.,_,). For a detection threshold set @6, the MCMC algorithm detects 3 peaks,
while the RBPF only detects two peaks. The trade-off betwfaése alarm and non detection may

be tuned with the coefficient?.

x10"

Estimated creatinine level
Measure

Reciprocal creatinine

Time

Fig. 7. Measured (cross) and estimated (solid line) cretifevel with a Rao-Blackwellized particle filter with 1000
particles.
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Fig. 8. Posterior probability of a jump in the creatininedewith the Rao-Blackwellized particle filter with 1000 pakes.

For a threshold set t0.5, the creatinine level jumps are detected at about tignaad 110.

VIl. DISCcUSSION

In this section, we discuss several features of the apprpexgosed.

A. About Dirichlet Process-based modeling

DPMs have several main advantages. Firstly, sampling frioenposterior distribution is made

especially easy thanks to the Polya urn scheme. Secondisitreténess of the distributida enables
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straightforward estimation of the “number of componentsithout requiring reversible jump-like

computational approaches. This discreteness has, hgwsawee unexpected effects on inferences,
which are reported in [35] and [36]. For example, the DP tetod&vor a misbalance between the
size of the groups of latent variables associated to the sduséer, and to concentrate the posterior
distribution of the number of groups on a higher value. Diét Processes realize nevertheless
an attractive trade-off between versatile modeling progerand implementation advantages, which

explain their success in various contexts — and our choiaeséothem in this paper.

B. About MCMC algorithms for DPMs

As stated in [3], the “single-site” marginal algorithm usiadthis paper may be stuck in a mode
of the posterior: several noises sampiggresp.w;) are associated to the same cluster vdlifefor
somej in Eq. (9) (respl;7) — in other words, there are matig such thaty = U} for somej (resp
03" = U}7). Since the algorithm cannot change the valugjofor more than ones; simultaneously,
changes t@; occur rarely, as they require passage through a low-prbtyaisitermediate state in
which noisesv, in the same group are not associated to the same clustetelnailve algorithms,
such as those given in [3], clusters are sampled in groupghvavoids this problem at the expense
of an increased computational cost. Nevertheless, we her®ustrated empirically in Sectign]VI

that our MCMC scheme is indeed efficient in the applicatiorespnted.

C. About the hyperparameter estimation in the MCMC alganith

As shown in the applications section, the estimation of tygehparametet. improves the overall
state estimation. It also makes the convergence of the Gilmpler faster. During the first iterations,
the value ofx is high, and the sampler proposes new clusters more eakily.€hables efficient state
space global exploration during the first iterations. Whies 'tgood” clusters have been found, the

value of a decreases, and it eliminates useless clusters.

D. About the convergence of the Rao-Blackwellized parfittker

Because the DPMg" and F'* are static (infinite-dimensional) parameters, the RaaiBiellized
particle filter suffers from an accumulation of errors overd. In other words, the particle filter is not
able to move cluster valuds’’s andU}" after they are initialized. This is a well known problem of
static parameteestimation with particle filters. However, as the static poment is not the estimated
cluster; but its prior distributionG, this accumulation is less critical than with the estimataf

true static parameters.
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In Sectio Y, the hyperparameter vectois assumed fixed, also because this is a static parameter.
It could actually be estimated by implementing one of thetiglar filtering approaches to static
parameter estimation. For example, the approaches in (37a4 based on either kernel density
methods, MCMC steps, or Maximum Likelihood. However, thedgorithms also have important
drawbacks (error accumulation with time @(¢?)). An alternative solution consists of introducing
an artificial dynamic on the hyperparameters [41] but it i$ ayoplicable to our problem: we would

then loose the Polya urn structure given by Eql (13).

E. About related approaches

Our model has some connections with Jump Linear Systems) ([#812543]. In JLS, a discrete
indicator variable switches between a (known) fixed numidedifferent (known) linear Gaussian
models with some (known) prior probability. Our model mayibeerpreted as a JLS whose number
of different models is unknown, mean vector and covarianagirof the linear Gaussian models are
unknowns as well as their prior probabilities. The modeposed in this paper can also be generalized
in the following manner. Denot@, = {F;, Cy, Hy, Gy, iy, X3, i, 3} = {Fi, Cy, Hy, G, 0, } andG,,

a prior distribution org,. The following general hierarchical model
G ~ DP(Gy, ),
Qt|@ ~ G,
x¢|0y,%x¢—1 ~ N(Fixi—1 + Coug + Geul , G 2VG),
ze|0;, % ~ N(Hexy + pi, XF)

(58)

has more flexibility than common JLS: the number of differemtitching models is estimated, as

well as the parameters of these models and their prior pititiesb

F. About observability

In order for the observation noise; pdf to be correctly estimated, some observability constsai

must be ensured. Indeed, the p@it, H) has to be fully observable, that is, the observability matri

H
HF
(59)
j¥j5nz+nz—l
~ 1? OnTan ~
must have rank,. + n, (full rank), whereF = " , H = ( H I, ) n, and
Onzxnm ]ﬁz

n, are resp. the length of the state and observation vectors.
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VIIl. CONCLUSION

In this paper, we have presented a Bayesian nonparametdelrii@at enables state and observation
noise pdfs estimation, in a linear dynamic model. The Dldtiprocess mixture considered here
is flexible and we have presented two simulation-based itthgas based on Rao-Blackwellization
which allows us to perform efficiently inference. The apmtodas proven efficient in applications
— in particular, we have shown that state estimation is p@sséven though the dynamic and
observation noises are of unknown pdfs. We are currentlgsitigating the following extensions
of our methodology. First, it would be of interest to consig@nlinear dynamic models. Second,
it would be important to develop time-varying Dirichlet pess mixture models in cases where the

noise statistics are assumed to evolve over time.

APPENDIX

A. Notations

1 and X are sampled from a Normal inverse Wishart distributi®n of hyperparametersg, o,
0, AQ if

x
N|ENN(N07 )
R0

Y~ W(ro, Agt)

whereW (1p, Ay 1) is the standard Wishart distribution.

B. Backward forward recursion
The quantitiesPt’:ll| (Ou7) andPt’jll‘ ,(Ber)m)_y,(0ir) defined in Sectiol IV-A always satisfy the
following backward information filter recursion.
1) Initialization
Prp(0r) = H{(3%)" Hr
Py (0r)mip - (07) = HT(28) " (21 — 1)

2) Backward recursion. Far="T —1..1,
-1
At = [In, + BT(01) Py (Griayr) B(6is)| (60)

Pyt (Brir) = B Pl Oeenr) (T, =B (1) Aer (01:) BT (9e00) Py Berrr)) Frn

Py Oeerr)myyy (Ger1e) = FL(041) % (In, — Pt,_;__ll‘t_;_l(Ht-l-l:T)B(et-i-l)At-i-l(9t+1:T)BT(9t+l))

% P (Brner) (s Brinr) = i (001)) (61)
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1 -1
Pt/|t (Or1) = Pt,\t—i-l

(Orrr:r) + HY () H, (62)
Py Or)my, (Orr) = Pl Gerir)miy, o Geer) + HY (SP) 7z — i) (83)
where B(6;) = Gyxchol($)T.
For the Metropolis Hasting ratio, we need to compute the @tecee probability only with a

probability constant
p(z1:7101.1) OCp(Zt|91:t>Z1:t—1)/ P(Ze1:7 %, O 1:7)P(Xe |21t O1:4) dXy (64)
X

If Eﬂt(el;t) 7é 0 then |t EXiStg_[ﬂt(el;t) anth‘t(el;t) SUCh thaEﬂt(el;t) = Qﬂt(el;t)Ht|t(91;t)Q£t(el;t).
The matrices),;(01.;) andIl(61.;) are straightforwardly obtained using the singular valueode-
position of Xy, (61.¢). Matrix Il (61.¢) is any x ng, 1 < ny < n, diagonal matrix with the nonzero

eigenvalues ot (6:.;) as elements. Then one has

=

p(z1.7101.:7) X N (Zgje—1(01:¢), Stje—1(01:1)) Ht\t(elt)Qﬂt(elt)Pt/|t+1(9t+l:T)Qt\t(91:t) + 1|

x exp(—3 t|t(‘91t)Pt/|t+1(9t+l~T)Xt|t(‘9 ) — t|t(91t)Pt,‘H_l(9t+1-T)m;|t+1(9t+l:T)
_(mt\t+1(9t+l:T) - xt\t(el:t)) X Pt\t+1(9t+l:T)At|t(91:t) X Pt|t+1(9t+1:T)( t\t—i—l(et'f‘l T) - xt\t(el t)))
(65)
where

-1
A (014) = Que(01:0) |TL (01:0) + Q010 Py (i) Qua(0r:e) | Qplp(6r)  (66)

The quantities?ﬂt(el:t), Sie(01:0), Et|t_1(91:t) and Sy;_(01.¢) are, resp., the one-step ahead filtered
estimate and covariance matrix ©f, the innovation at time, and the covariance of this innovation.

These quantities are provided by the Kalman filter, the systeing linear Gaussian conditional upon
01:¢.
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