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Abstract: We find upper bounds for the probability of underestimation
and overestimation errors in penalized likelihood context tree estimation.
The bounds are explicit and applies to processes of not necessarily finite
memory. We allow for general penalizing terms and we give conditions over
the maximal depth of the estimated trees in order to get strongly consis-
tent estimates. This generalizes previous results obtained in the case of
estimation of the order of a Markov chain.
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1. Introduction

In this paper we obtain an exponential upper bound for the underestimation
of the context tree of a variable memory process by penalized likelihood (PL)
criteria and a sub-exponential upper bound for the overestimation event. Our
result applies to processes of not necessarily finite memory that satisfies some
continuity requirements, generalizing the bound obtained in Dorea and Zhao
(2006) for the estimation of the order of a Markov chain by similar methods
(EDC criterion).

The concept of context tree was first introduced by Rissanen (1983) to denote
the minimum set of sequences that are necessary to predict the next symbol in
a finite memory stochastic chain. A particular case of context tree is the set
of all sequences of length k, representing a Markov chain of order k. For that
reason, context trees allow a more detailed and parsimonious representation of
processes than finite order Markov chains do.

In the statistical literature, the processes allowing a context tree representa-
tion are called Variable Length Markov Chains (Bühlmann and Wyner; 1999).

∗This work is part of PRONEX/FAPESP’s project Stochastic behavior, critical phenom-
ena and rhythmic pattern identification in natural languages (grant number 03/09930-9),
CNRS-FAPESP project Probabilistic phonology of rhythm and CNPq project Rhythmic pat-
terns, prosodic domains and probabilistic modeling in Portuguese Corpora (grant number
485999/2007-2).
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This class of models has shown to be useful in real data modeling, as for exam-
ple, for the case of protein classification into families (Bejerano and Yona; 2001;
Leonardi; 2006).

Historically, the estimation of the context tree of a process has been ad-
dressed by different versions of the algorithm Context, introduced by Rissanen
in its seminal paper. This algorithm was proven to be weak consistent in the
case of bounded memory (Bühlmann and Wyner; 1999) and also in the case of
unbounded memory (Ferrari and Wyner; 2003; Duarte et al.; 2006). Recently, in
Galves et al. (2008) it was obtained an upper bound for the rate of convergence
of the algorithm Context in the case of bounded memory processes. A general-
ization of this result to the case of unbounded memory processes was given in
Galves and Leonardi (2008).

The estimation of context trees by PL criteria had not been addressed in the
literature until the recent work by Csiszár and Talata (2006). The reason for
that was the exponential cost of the estimation, due to the number of trees that
had to be considered in order to find the optimal one. In their article, Csiszár
and Talata showed that the Bayesian Information Criterion (BIC), which is a
particular case of the PL estimators (using a penalizing term growing logarith-
mically), is strongly consistent and can be computed in linear time, using a
suitable version of the Context Tree Weighting method of Willems, Shtarkov
and Tjalkens (Willems et al.; 1995; Willems; 1998). Their result applies to un-
bounded memory processes and the depth of the estimated tree is allowed to
grow with the sample size as a sub-logarithmic function. This last condition was
proven to be unnecessary in the case of finite memory processes, as proven in
Garivier (2006). An explicit bound on the rate of convergence of the PL context
tree estimators had remained until now as an open question.

The paper is organized as follows. In Section 2 we introduce some definitions
and state the main result. In Section 3 we present the proofs and in Section 4 we
do some final remarks. Finally, Section 5 constitutes and appendix that contains
some results needed in our proofs and obtained elsewhere in the literature.

2. Definitions and results

In what follows A will represent a finite alphabet of size |A|. Given two integers
m ≤ n, we will denote by wn

m the sequence (wm, . . . , wn) of symbols in A. The
length of the sequence wn

m is denoted by ℓ(wn
m) and is defined by ℓ(wn

m) =
n − m + 1. Any sequence wn

m with m > n represents the empty string and is
denoted by λ. The length of the empty string is ℓ(λ) = 0. In the sequel Aj will
denote the set of all sequences of length j over A.

Given two sequences w = wn
m and v = vk

j , we will denote by vw the sequence
of length ℓ(v) + ℓ(w) obtained by concatenating the two strings. In particular,
λw = wλ = w. The concatenation of sequences is also extended to the case in
which v denotes a semi-infinite sequence, that is v = (. . . , v−2, v−1), denoted by
v = v−1

−∞.
We say that the sequence s is a suffix of the sequence w if there exists a
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sequence u, with ℓ(u) ≥ 1, such that w = us. In this case we write s ≺ w. When
s ≺ w or s = w we write s � w.

Definition 2.1. A set T of finite or semi-infinite sequences is a tree if no
sequence s ∈ T is a suffix of another sequence w ∈ T . This property is called
the suffix property.

We define the height of the tree T as

h(T ) = sup{ℓ(w) : w ∈ T }.

In the case h(T ) < +∞ we say that T is bounded and we denote by |T | the
number of sequences in T . On the other hand, if h(T ) = +∞ we say that the
tree T is unbounded.

Given a tree T and an integer K we will denote by T |K the tree T truncated
to level K, that is

T |K = {w ∈ T : ℓ(w) ≤ K} ∪ {w : ℓ(w) = K and w ≺ u, for some u ∈ T }.

The expression Int(T ) will denote the set of all sequences that are suffixes of
some u ∈ T , that is

Int(T ) = {w : w ≺ u, for some u ∈ T }.

We will say that a tree T is complete if for every semi-infinite sequence w−1
∞

there exists a sequence s ∈ T such that s � w−1
−∞.

Consider a stationary ergodic stochastic chain {Xt : t ∈ Z} over A. Given a
sequence w ∈ Aj we denote by

p(w) = P(Xj
1 = w)

the stationary probability of the cylinder defined by the sequence w. If p(w) > 0
we write

p(a|w) = P(X0 = a|X−1
−j = w) .

In the sequel we will use the simpler notation Xt for the process {Xt : t ∈ Z}.

Definition 2.2. A sequence w ∈ Aj is a context for the process Xt if it satisfies

1. For any semi-infinite sequence x−1
−∞ having w as a suffix

P(X0 = a|X−1
−∞ = x−1

−∞) = p(a|w), for all a ∈ A.

2. No suffix of w satisfies (1).

An infinite context is a semi-infinite sequence w−1
−∞ such that any of its suffixes

w−1
−j , j = 1, 2, . . . is a context.

Definition 2.2 implies that the set of all contexts (finite or infinite) satisfies
the suffix property and hence it is a tree. This tree is called the context tree of
the process Xt and will be denoted by T0.
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Remark 2.3. In this paper we will also consider i.i.d. processes. We will assume
that these processes are compatible with a particular tree, given by the set {λ}.

Define the sequence {αk}k∈N as

α0 := inf
w∈T0,a∈A

{ p(a|w) },

αk := inf
u∈Ak

∑

a∈A

inf
w∈T0,w≻u

{ p(a|w) }. (2.4)

Assumption 1. From now on we will assume the process Xt satisfies

1. α0 > 0 and
2. α :=

∑

k∈N
(1 − αk) < +∞.

The positivity assumption over α0 implies that the context tree of the process
Xt is complete, i.e., any semi-infinite sequence w−1

−∞ belongs to T0 or has a suffix
that belongs to T0. The second assumption is related to the loss of memory of
a process of infinite order. (see Galves and Leonardi (2008) for more details).

In what follows we will assume x1, x2, . . . , xn is a sample of the process Xt.
Let d(n) < n be a function taking integer values and growing to infinity with
n. This will denote the maximal height of the estimated context trees (and will
be denoted simply by d). Then, given a sequence w, with 1 ≤ ℓ(w) ≤ d, and a
symbol a ∈ A we denote by Nn(w, a) the number of occurrences of symbol a

preceded by the sequence w, starting at d + 1, that is,

Nn(w, a) =

n
∑

t=d+1

1{xt−1
t−ℓ(w) = w, xt = a}. (2.5)

On the other hand, Nn(w) will denote the sum
∑

a∈A Nn(w, a).

Definition 2.6. We will say that the tree T is feasible if it is complete, h(T ) ≤
d, Nn(w) ≥ 1 for all w ∈ T and any string w′ with Nn(w′) ≥ 1 either belongs
to T , is a suffix of some w ∈ T or has a suffix w that belongs to T .

We will denote by Fd(xn
1 ) the set of all feasible trees. Then, given a tree

T ∈ Fd(xn
1 ), the maximum likelihood of the sequence x1, . . . , xn is given by

P̂ML,T (xn
1 ) =

∏

w∈T

∏

a∈A

p̂n(a|w)Nn(w,a), (2.7)

where the empirical probabilities p̂n(a|w) are given by

p̂n(a|w) =
Nn(w, a)

Nn(w)
. (2.8)

Here and in the sequel we use the convention 00 = 1, for example in the case of
Nn(w, a) = 0 in expression 2.7. Note that by Definition 2.6, as Nn(w) ≥ 1 for
any w ∈ T , it is not necessary to give an extra definition of p̂n(a|w) in the case
Nn(w) = 0.
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Given a sequence w, with Nn(w) ≥ 1, we will denote by

P̂ML,w(xn
1 ) =

∏

a∈A

p̂n(a|w)Nn(w,a).

Hence, we have

P̂ML,T (xn
1 ) =

∏

w∈T

P̂ML,w(xn
1 ).

Let f(n) be any positive function such that f(n) → +∞, when n → +∞, and
n−1f(n) → 0, when n → +∞. This function will represent the generic penalizing

term of our estimator, replacing the function |A|−1
2 log n in the classical definition

of BIC (Csiszár and Talata; 2006). A function satisfying these conditions will
be called penalizing term.

Definition 2.9. Given a penalizing term f(n), the PL context tree estimator
is given by

T̂ (xn
1 ) = arg min

T ∈Fd(xn

1
)

{− log P̂ML,T (xn
1 ) + |T |f(n) }. (2.10)

As can be seen, the computation of the estimated context tree using its raw
definition would imply a search for the optimal tree on the set of all feasible
trees. This was the biggest drawback of this approach, because the size of this
set grows extremely fast as a function of the maximal height d. Fortunately,
there is a way of computing the PL estimator without exploring the set of all
trees, as shown by Csiszár and Talata (2006). The details of this algorithm are
given in the Appendix and will be used in the proof of our main result.

Let K ∈ N. Define the underestimation event with respect to the truncated
tree T0|K by

UK
n =

⋃

w∈Int(T0|K)

{w ∈ T̂n(xn
1 )}

and the overestimation event by

OK
n =

⋃

w≻v∈T0,ℓ(v)<K

{w ∈ T̂n(xn
1 )}.

We are ready to present the main result in this paper. It establishes upper
bounds for the probability of occurrence of the underestimation and overesti-
mation events.

Theorem 2.11. Let x1, x2, . . . be a sample of the stationary ergodic stochastic
process Xt having context tree T0 and satisfying Assumption 1. For any con-
stant K ∈ N there exist an integer n0 and positive constants c1, c2, c3 and c4

depending on the process Xt such that for any n ≥ n0

(a) P
[

UK
n ] ≤ c1 e−c2(n−d);

(b) P
[

OK
n ] ≤ c3|A|d e−c4f(n)(α2

0
/|A|)d/d.
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Corollary 2.12. For any penalizing term f(n) and any function d(n) such that
for any constant c > 0,

∑

n∈N

|A|d(n) exp[−
f(n)cd(n)

d(n)
] < +∞ (2.13)

we have that there exists an integer n0 depending on the process Xt such that
T̂n(xn

1 )|K = T0|K for any n ≥ n0.

3. Proof of Theorem 2.11

Using Definition 5.5 and Lemma 5.7 and we see that the tree in (2.10) can be
written as

T̂ (xn
1 ) = {w ∈ ∪d

j=1A
j : Xw(xn

1 ) = 0, Xv(x
n
1 ) = 1 for all v ≺ w}

if Xλ(xn
1 ) = 1, and to {λ} if Xλ(xn

1 ) = 0. Then, for n sufficiently large in order
to guarantee that T0|K will be in Fd(xn

1 ) we have that

UK
n =

⋃

w∈Int(T0|K)

{Xw(xn
1 ) = 0 }

and
OK

n ⊂
⋃

v∈T0,ℓ(v)<K

{Xv(x
n
1 ) = 1 }.

To prove (a) let w ∈ Int(T0|K), then using Definition 5.4 and Lemma 5.6 we
have that

P
[

Xw(xn
1 ) = 0

]

= P
[

∏

a∈A

Vaw(xn
1 ) ≤ e−f(n)

P̂ML,w(xn
1 )

]

and for any a ∈ A

Vaw(xn
1 ) = max

T ∈Fd
aw

(xn

1
)

∏

s∈T

e−f(n)
P̂ML,s(x

n
1 ),

where Fd
aw(xn

1 ) is the set containing all trees T that have the form T = T ′ ∩
{u : u � aw}, with T ′ ∈ Fd(xn

1 ). Then

P
[

Xw(xn
1 ) = 0

]

= P
[

max
T ∈Fd

w
(xn

1
)

∏

s∈T

e−f(n)
P̂ML,s(x

n
1 ) ≤ e−f(n)

P̂ML,w(xn
1 )

]

.

For a tree T ∈ Fd
w(xn

1 ) define the quantity

δT (w) =
∑

a∈A

[

∑

u∈T

p(ua) log p(a|u) − p(wa) log p(a|w)
]

. (3.1)

Using Jensen’s inequality we can see that δT (w) > 0 unless p(a|w) = p(a|u)
for all a ∈ A and all u ∈ T . Therefore, for a sufficiently large n there must be
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a tree T ′
w ∈ Fd

w(xn
1 ) such that δT ′

w
(w) > 0; if not we contradict the fact that

w ∈ Int(T0) and it is not a context in the sense of Definition 2.2. Therefore

P
[

Xw(xn
1 ) = 0

]

≤ P
[

∏

u∈T ′

w

e−f(n)
P̂ML,u(xn

1 ) ≤ e−f(n)
P̂ML,w(xn

1 )
]

.

Now we can apply the logarithm function on both sides inside the probability
obtaining that the right hand side equals

P
[

∑

u∈T ′

w

log P̂ML,u(xn
1 ) − log P̂ML,w(xn

1 ) ≤ (|T ′
w| − 1)f(n)

]

.

Dividing by n− d and subtracting on both sides the term δT ′

w
(w) we have that

for a sufficiently large n such that

|T ′
w|f(n)

n − d
<

δT ′

w
(w)

2

we can bound above the last expression by

P
[

|Ln(w)| >
δT ′

w
(w)

4

]

+
∑

u∈T ′

w

P
[

|Ln(u)| >
δT ′

w
(w)

4

]

,

where for any finite sequence s

Ln(s) =
∑

a∈A

p(sa) log p(a|s) −
Nn(s, a)

n − d
log p̂n(a|s).

Using Corollary 5.9 we can bound above this expression by

3e
1

e |A|2(1 + |T ′
w|) exp

[

−
(n − d)min(δT ′

w
, δ2

T ′

w

)α
2(h(T ′

w
)+1)

0

1024e|A|3(α + α0) log2 α0h(T ′
w)

]

.

We conclude the proof of part (a) by observing that we only have a finite number
of sequences w ∈ Int(T0|K), so we can take

c1 = max
w∈Int(T0|K)

{3e
1

e |A|2(1 + |T ′
w|)}

and

c2 = min
w∈Int(T0|K)

{
min(δT ′

w
, δ2

T ′

w

)α
2(h(T ′

w
)+1)

0

1024e|A|3(α + α0) log2 α0h(T ′
w)

}.

To prove part (b) observe that for any w ∈ T0 with ℓ(w) < K

P
[

Xw(xn
1 ) = 1

]

= P
[

∏

a∈A

Vaw(xn
1 ) > e−f(n)

P̂ML,w(xn
1 )

]

. (3.2)
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Using Lemma 5.6 we have that

∏

a∈A

Vaw(xn
1 ) =

∏

u∈Tw(xn

1
)

e−f(n)
P̂ML,u(xn

1 ).

Then, applying the logarithm function the probability (3.2) is equal to

P
[

∑

u∈Tw(xn

1
)

log e−f(n)
P̂ML,u(xn

1 ) > log e−f(n)
P̂ML,w(xn

1 )
]

(3.3)

= P
[

log P̂ML,w(xn
1 ) −

∑

u∈Tw(xn

1
)

log P̂ML,u(xn
1 ) < (1 − |Tw(xn

1 )|)f(n)
]

.

We know, by the maximum likelihood estimator of the transition probabilities
that

P̂ML,w(xn
1 ) ≥

∏

a∈A

p(a|w)Nn(w,a). (3.4)

Therefore, we can bound above the right hand side of (3.3) by

P
[

∑

a∈A

Nn(w, a) log p(a|w) −
∑

u∈Tw(xn

1
)

log P̂ML,u(xn
1 ) ] < (1 − |Tw(xn

1 )|)f(n)
]

= P
[

∑

a∈A

∑

u∈Tw(xn

1
)

Nn(u, a) log
p(a|u)

p̂n(a|u)
] < (1 − |Tw(xn

1 )|)f(n)
]

.

This equality follows by substituting Nn(w, a) by
∑

u∈Tw(xn

1
) Nn(u, a) and the

fact that p(a|u) = p(a|w) for all u ∈ Tw(xn
1 ), remembering that w ∈ T0. Observe

that

∑

a∈A

∑

u∈Tw(xn

1
)

Nn(u, a) log
p(a|u)

p̂n(a|u)
=

∑

u∈Tw(xn

1
)

Nn(u)
∑

a∈A

p̂n(a|u) log
p(a|u)

p̂n(a|u)

= −
∑

u∈Tw(xn

1
)

Nn(u)D
(

p̂n(·|u) ‖ p(·|u)
)

,

where D is the Kullback-Leibler divergence between the two distributions p̂n(·|u)
and p(·|u) (see the Appendix). Using Lemma 5.2 and dividing by n− d we have
that

P
[

−
∑

u∈Tw(xn

1
)

Nn(u)D
(

p̂n(·|u) ‖ p(·|u)
)

] < (1 − |Tw(xn
1 )|)f(n)

]

≤ P
[

−
∑

u∈Tw(xn

1
)

Nn(u)

n − d

∑

a∈A

[p̂n(a|u) − p(a|u)]2

p(a|u)
] <

(1 − |Tw(xn
1 )|)f(n)

n − d

]

.

As Xw(xn
1 ) = 1 it follows that |Tw(xn

1 )| > 1. On the other hand, Nn(u) ≤ n− d

and f(n) > 0. Therefore, we can bound above the right hand side of the last
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expression by

∑

u∈Tw(xn

1
)

∑

a∈A

P

[

∣

∣p̂n(a|u) − p(a|u)
∣

∣ >

√

f(n)p(a|u)

(n − d)|A||Tw(xn
1 )|

]

.

Hence, using Corollary 5.9 we can bound above this expression by

2 e
1

e |A|d+2 exp
[

−
f(n)α

2(d+1)
0

32e(α + α0)|A|d+3d

]

.

This finishes the proof of Theorem 2.11, by taking

c3 = 2e
1

e |A|2 and c4 =
α2

0

32e(α + α0)|A|3
.

Proof of Corollary 2.12. It follows from the Borel-Cantelli Lemma and Theo-
rem 2.11, by noting that

P[T̂ (xn
1 )|K 6= T0|K ] ≤ P[UK

n ] + P[OK
n ]

and the right hand side is summable in n when condition (2.13) is satisfied.

4. Final Remarks

The present paper presents upper bounds for the rate of convergence of pe-
nalized likelihood context tree estimators. We obtain an exponential bound for
the underestimation event and an under-exponential bound in the case of the
overestimation event. These results generalizes the previous work by Dorea and
Zhao (2006), who obtained similar bounds in the case of the estimation of the
order of a Markov chain, using also penalized likelihood criteria. One question
that still remains open is if these bounds are optimal, as in the case of an es-
timator introduced in Finesso et al. (1996) for the estimation of the order of
a Markov chain. They prove that in the case of their estimator, the constant
appearing in the underestimation bound is optimal, and that the overestimation
bound can not be exponential if the estimator is universal, as in our case. The
answer to these questions are important subjects for future work in this area.

5. Appendix

5.1. The context tree maximizing principle

The following definitions and results were taken from Csiszár and Talata (2006)
and were included for completeness. Definitions 5.4 and 5.5 and Lemmas 5.6

and 5.7 were originally proven for the usual penalizing term f(n) = |A|−1
2 log n,

but can be adapted in a straightforward way to our setting.
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Given two probability distributions p and q over A, the Kullback-Leibler di-
vergence is defined by

D(p‖q) =
∑

a∈A

p(a) log
p(a)

q(a)
, (5.1)

where, by convention, p(a) log p(a)
q(a) equals 0 if p(a) = 0 and +∞ if p(a) > q(a) =

0.

Lemma 5.2. If p and q are two probability distributions over A then

D(p‖q) ≤
∑

a∈A

[p(a) − q(a)]2

q(a)
. (5.3)

Proof. See Csiszár and Talata (2006, Lemma 6.3).

Consider the full tree Ad, and let Sd denote the set of all sequences of length
at most d, that is Sd = ∪d

j=0A
j .

Definition 5.4. Given a sequence w ∈ Sd with Nn(w) ≥ 1, we define recur-
sively, starting from the sequences of the full tree Ad, the value

Vw(xn
1 ) =

{

max{e−f(n)
P̂ML,w(xn

1 ),
∏

a∈A Vaw(xn
1 )}, if 0 ≤ ℓ(w) < d,

e−f(n)
P̂ML,w(xn

1 ), if ℓ(w) = d

and the indicator

Xw(xn
1 ) =











1, if 0 ≤ ℓ(w) < d and
∏

a∈A Vaw(xn
1 ) > e−f(n)

P̂ML,w(xn
1 ),

0, if 0 ≤ ℓ(w) < d and
∏

a∈A Vaw(xn
1 ) ≤ e−f(n)

P̂ML,w(xn
1 ),

0, if ℓ(w) = d.

Definition 5.5. Given w ∈ Sd with Nn(w) ≥ 1, the maximizing tree assign to
the sequence w is the tree

Tw(xn
1 ) = {u ∈ Sd : Xu(xn

1 ) = 0, Xv(xn
1 ) = 1 for all w � v ≺ u}

if Xw(xn
1 ) = 1 and Tw(xn

1 ) = {w} if Xw(xn
1 ) = 0.

For a sequence w ∈ Sd, with Nn(w) ≥ 1, define Fd
w(xn

1 ) as the set containing
all trees T that have the form T = T ′ ∩ {u : u � w}, with T ′ ∈ Fd(xn

1 ).

Lemma 5.6. For any w ∈ Sd with Nn(w) ≥ 1,

Vw(xn
1 ) = max

T ∈Fd
w

(xn

1
)

∏

u∈T

e−f(n)
P̂ML,u(xn

1 ) =
∏

u∈Tw(xn

1
)

e−f(n)
P̂ML,u(xn

1 ).

Proof. See Csiszár and Talata (2006, Lemma 4.4).
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Lemma 5.7. The context tree estimator T̂ (xn
1 ) in (2.10) equals the maximizing

tree assigned to the empty string λ, that is,

T̂ (xn
1 ) = Tλ(xn

1 ).

Proof. See Csiszár and Talata (2006, Proposition 4.3).

From this result it follows that in order to obtain the tree maximizing the
penalized maximum likelihood criteria it is sufficient to assign to each sequence
w ∈ Sd, with Nn(w) ≥ 1, the indicator Xw(xn

1 ) and then to get the maximizing
tree Tλ(xn

1 ). The computational cost of this algorithm is linear in n if d(n) =
o(n), as proven by Csiszár and Talata (2006).

5.2. Exponential inequalities for empirical probabilities

The following result was proven in Galves and Leonardi (2008), we omit its
proof here.

Theorem 5.8. Assume the process Xt satisfies Assumption 1, then for any
finite sequence w, any symbol a ∈ A and any t > 0 the following inequality holds

P( |Nn(w, a) − (n − d)p(wa)| > t ) ≤ e
1

e exp
[ −t2C

(n − d)ℓ(wa)

]

,

where
C =

α0

8e(α + α0)
.

As a consequence of Theorem 5.8 we obtain the following corollary.

Corollary 5.9. For any finite sequence w, with p(w) > 0, any t > 0 and any
sufficiently large n such that Nn(w) ≥ 1 we have

(a) maxa∈A P
(

|p̂n(a|w) − p(a|w)| > t
)

≤ 2 e
1

e |A| exp
[

− (n−d)t2p(w)2α0

32e|A|2(α+α0)ℓ(wa)

]

;

(b) P
[

|Ln(w)| > t
]

≤ 3 e
1

e |A|2 exp
[

−
(n−d)min(t,t2)p(w)2α2

0

64e|A|3(α+α0) log2 α0ℓ(wa)

]

,

where Ln(w) =
∑

a∈A p(wa) log p(a|w) − Nn(w,a)
n−d log p̂n(a|w).

Proof. To prove (a) observe that

p(a|w) =
(n − d)p(wa)

(n − d)p(w)
.

Then, summing and substracting the term Nn(w,a)
(n−d)p(w) we obtain

∣

∣

∣

Nn(w, a)

Nn(w)
−

(n − d)p(wa)

(n − d)p(w)

∣

∣

∣
≤

Nn(w, a)

Nn(w)(n − d)p(w)

∣

∣(n − d)p(w) − Nn(w)
∣

∣

+
1

(n − d)p(w)

∣

∣Nn(w, a) − (n − d)p(wa)
∣

∣.
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Therefore, as Nn(w,a)
Nn(w) ≤ 1 we have

P
(

|p̂n(a|w) − p(a|w)| > t
)

≤ P

(

∣

∣(n − d)p(w) − Nn(w)
∣

∣ >
t(n − d)p(w)

2

)

+ P

(

∣

∣Nn(w, a) − (n − d)p(wa)
∣

∣ >
t(n − d)p(w)

2

)

We can write Nn(w) =
∑

b∈A Nn(w, b) and p(w) =
∑

b∈A p(wb), then the right
hand side of the last expression can be bounded above by the sum

∑

b∈A

P
(

|Nn(w, b) − (n − d)p(wb)| >
t(n − d)p(w)

2|A|

)

+

P
(

|Nn(w, a) − (n − d)p(wa)| >
t(n − d)p(w)

2

)

.

Using Theorem 5.8 we can bound above this expression by

e
1

e (|A| + 1) exp
[

−(n − d)
t2p(w)2C

4|A|2ℓ(wa)

]

.

This finishes the proof of (a). To prove (b) observe that

P
[ ∣

∣Ln(w)
∣

∣ > t
]

≤ P
[ ∣

∣

∑

a∈A

log p(a|w)
(

p(wa) −
Nn(w, a)

n − d

)∣

∣ >
t

2

]

+ P
[ ∣

∣

∑

a∈A

Nn(w, a)

n − d
log

p(a|w)

p̂n(a|w)

∣

∣ >
t

2

]

.

Using Theorem 5.8 we have that

P
[

∣

∣

∑

a∈A

log p(a|w)
(

p(wa) −
Nn(w, a)

n − d

)
∣

∣ >
t

2

]

≤
∑

a∈A

P
[ ∣

∣Nn(w, a) − (n − d)p(wa)
∣

∣ >
(n − d)t

2 |log p(a|w)||A|

]

≤ e
1

e |A| exp
[ −(n − d)t2C

4|A|2 log2 α0ℓ(wa)

]

. (5.10)

On the other hand, using the definition of the Kullback-Leibler divergence,
Lemma 5.2 and part (a) of this Corollary we obtain

P
[

∣

∣

∑

a∈A

Nn(w, a)

n − d
log

p(a|w)

p̂n(a|w)

∣

∣ >
t

2

]

≤ P
[

D(p̂(·|w)||p(·|w)) >
t

2

]

≤
∑

a∈A

P

[

∣

∣p(a|w) − p̂n(a|w)
∣

∣ >

√

tp(a|w)

2|A|

]

≤ 2 e
1

e |A|2 exp
[

−
(n − d)tp(w)2α2

0

64e|A|3(α + α0)ℓ(wa)

]

. (5.11)

Summing (5.10) and (5.11) we obtain the bound in part (b) and we conclude
the proof of Corollary 5.9.
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