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Abstract

Bootstrap techniques (also callestampling computation techniques) have in-
troduced new advances in modeling and model evaluétidn [18hg resampling
methods to construct a series of new samples which are basthe @riginal data
set, allows to estimate the stability of the parameters p&taes such as conver-
gence and asymptotic normality can be checked for any péatiobserved data
set. In most cases, the statistics computed on the genetatedets give a good
idea of the confidence regions of the estimates. In this papedebate on the
contribution of such methods for model selection, in theeadfeedforward neural
networks. The method is described and compared with theleae-out resam-
pling method. The effectiveness of the bootstrap methadussthe leave-one-out
methode, is checked through a number of examples.
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1 Multilayer Perceptrons (MLP)

Suppose a set of independent observations of a continuous varighlteat we have to
explain from a set op explanatory variablegr:, zo, . . ., z,). We want to use the non
linear models called/ultilayer Perceptrons. These models are nowadays commonly
used for non linear regression, forecasting, pattern n@itiog, and are particular ex-
amples of artificial neural networks. In such a network,siare organized in successive
layers with links connecting one layer to the following oig=e Cheng et Titterington
[2] or Hertzet al [8] for details or references.

We consider in the following a multilayer perceptron (MLPittwp inputs, one
hidden layer withH hidden units and one output layer. The model can be andlytica
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expressed in the following form : the outpytis given by :

H P
Yy = ¢o | wo + Z wpP(by, + ijhl’j) +e 1)

h=1 j=1

wheree is the residual term, with zero mean, variaa@e(with normal distribution or
not),

y IS a continuous variable,

¢o is the identity output function

¢ is (in most cases) the sigmoid :

1
9(z) = 1+ exp(—z)’
Let® = (wo, w1, ..., wa,w11,...,wpr) be the parameter vector of the network
and lety(x; 8) be the computed value for an inpyt= (z1,...,x,) and a parameter

vector@. There aref (p + 1) + H + 1 parameters to estimate.

Classically, if there are numerous data, the first step etBi the division of the
supplied data into two sets :taining set and atest set. The so-called training set :

{(®1;91)s s (@msym); (1 < i <mym <n)}

is used to estimate the weights of the model by minimizingraor éunction :

S (i y(a6))°

=1

using optimization techniques such as gradient descenjugate gradient or quasi-
Newton methods.

The resulting least squares estimato#a$ denoted by, and the resulting lack of
fit for the training set is théearning error :

1 m R 2
MSE, = — (i— 1-;0). 2
— g vi = y(x:; ) &)
The training set is used to derive the parameters of the mamtklthe resulting
model is tested on the test set. A good regression methoddvgmirieralize well on
examples that have not been seen before, by learning thelyindgunction without
the associated noise. Thest error can be defined by :

1 s 2
i=m-+1

Most optimization techniques (that are variants of gratieethods) provide local

minima of the error function and not a global one. Practycalifferent learning con-

ditions (initialization of weights, learning adaptatioarpmeter, sequential order in the



sample presentation,...) give different solutions tha difficult to compare. It is not
easy to know if a minimum is reached, because the decrease afrtor function is
slow, an over-learning phenomenon can occur, etc...Feetheasons, numerous stop-
ping and validation techniques are proposed, see for exaBygbwiak [1], or Hertzt

al [g].

For multilayer perceptrons, the choice of a model is eqeivato the choice of
the architecture of the network. If one has to select a model among a lot of them,
an exhaustive (but not realistic) method would consist iplesng the whole set of
possible models, and in testing all these models on the givanlem. The estimation
of the performances is then a very crucial point, all the nmswesince many factors
intervene to complicate this evaluation. Itis necessabgtoertain that the convergence
has occurred, to have at disposal a good quality criterioictwallows to decide what
is thebest model. In fact it is impossible to try all the possible models, sotstrap
method can be very useful.

2 Bootstrap for parameter estimation

Bootstrap techniques were introduced by Efidn [5] and aneikition techniques based
on the empirical distribution of the observed sample. &et (z1,...,z,) ann-
sample, with an unknown distribution functidf, depending on an unknown real pa-
rameterd. The problem consists in estimating this paramétby a statisticd = s(x)
from the sampler and in evaluating the estimate accuracy, although theilaigion

F is unknown. In order to evaluate this accuraBysamples are built from the initial
samplex, by re-sampling. These samples are calledtstrapped samplesand denoted
by 2*°.

A bootstrapped sample z** = (3%, ..., z*?) is built by a random drawing (with
repetitions) in the initial sample :
b 1.
Py(z]” =x;) = o3 b= (1,...,n)
where Py is the uniform distribution on the original data set= (z1,...,z,). The

distribution function of a bootstrapped sampi# is F, i.e. the empirical distribution

of z . A bootstrap replicate of the estimat®r= s(x) will be 8** = s(x*"). For exam-
ple, for the mean of the sampie the estimator is(z) = £ >°" | z;, and a bootstrap

~n
replicate will bes(z*?) = L 3" | 210,

Then, the bootstrap estimate of the standard deviatighdegnoted by%boot(@)) is
given by

R B
&boot (0*) -
b=

e (e -o0)|

1




and
1 B ~xb
=5 Z 0
b=1
Itis computed by replacing the unknown distribution fuooti# with the empirical

distributionF. In conjonction with these re-sampling procedures, hygsithtests and
confidence regions for statistics of interest can be cootstdu

In the following, the method we propose as a tool to select &iodel is similar to
the bootstrap method, since it relies on re-sampling teghes, but it is non parametric.

3 Bootstrap applied to selection model for ML Ps

Let By be a data set of size,

Bo = {(z1;51),--., (Tn;yn); (1 < i < n)}

wherex; is thei-th value of ap-vector of explanatory variables angis the response
to x;. From the original data sé, (calledinitial base), one generateB bootstrapped
bases3;,1 < b < B, (i.e. B uniform drawings of: data points ir3, with repetitions).

For any generated data g&f, an estimator of the MLP parameter veapdenoted by

0 b, is found by application of the backpropagation algorit@jfpr example, but any
minimization algorithm can be used. So the bootstrap pnaicedrovidesB replica-

tions®"" for model [1).

Then we usd3; as a test base, and evaluate for each 1,..., B and each =
1,...,nthe residual estimate :
" A %b
thsm =y —y(xi;0 ).
The study of the histogramms of these estimated residualwssato evaluate the
distribution of the error terna, to control itswhiteness, etc. For each bootstrapped

samples;, b =1,..., B, (that is for eacté*b), the sum of squares of the residuals on
the test bas#, is computed :

n

TSSE Z etest i

i=1

as well as the mean of the squares of the residuals on theassiBh:

TMSE(b) =

Etest N

S|
i

So, we get a vectdr M S E whose mean value is :

B
1
Hooot = 55 ; TMSE(b) )



and standard deviation is :
1/2

B
Oboot = 1 ; TMSE :LLboot)2 . (5)

These two values measure the residual variance of the model, estimated from the
bootstrapped samples, and the stability of the parameter vector estimations. So this
technique allows to evaluate a model from only one samplhfait splitting it into a
training base and a test base, which decreases the numbataafiskd for the estima-
tion).

1. To generateB samples of sizen by random drawings with repetitions in
the initial base{By} = {(x1,v1),...,(zn,yn)}. Let us denote byB;} =
{(z3,y5%), ..., (2P, y2®)} theb—th bootstrapped sample= 1,.. ., B.

2. For each bootstrapped sample,= 1,...,B, to estimated by minimizing
Sl — y(zr®; 0)]2, we getd™”

3. The bootstrap standard deviation is given by:
1/2

B
> (TMSE®) = poot)®|
b=1

Oboot =

B-1

where

B
1
Hooot = 55 ; TMSE(b).

Table 1: Re-sampling algorithm (bootstrap procedure) tse€dmputeusoo: aNdopoor
(typically 20 < B < 200).

To choose between several architectutés Mo, .. ., these computations are re-
peated for each of them, and the best one will be this one #sathe best compromise
(the ideal would be to simultaneously minimizg,.: andos..:). The approach is sum-
marized in tabl€]l.

Two main disadvantages must be outlined

e thecomputer ssimulationtime: if n orp is high, computation time can be very long
even with second-order optimization techniques as BFGiSt siill remains less
than computing time for empirical exploration

o the repetition of extremal data: the risk exists to select a re-sampling data set



for which iterative methods will converge with difficulty. uB ignoring these
repetitions could introduce a bias.

Many other re-sampling procedures have been proposed sidtistical literature:
cross-validation, Jackkniffe, leave-one-out, etc . . .|lSamamoto[[7] and Borowiak 1]
for details.

4 Examples

We wish to illustrate the bootstrap method on two examplél simulated data. The
third example is an application of our method on a real dataFs® each example, we
built B = 50 bootstrapped samples and three models with different aathres are
compared, in order to choose the best one.

A comparison is made with the leave-one-out method, witise based on data
bases replication, but in a different way. We use an unifoistridution on the orig-
inal data to leave one observation. Hence, we train the MLB3og 50 data bases
replications withn — 1 observations, and we compute the valiigd S E(b) using the
observation that we left as a test base. We use the gafoeboth methods to be able
to compare them using the same number of replications. Wa gettor7’ M SE and
compute its meap,,, and its standard deviatian,,, as before.

4.1 Examplel: Linear model

Consider the problem of fitting a linear model :
y:00—|—01$1+02I2—|—...+9PIP—|—6.
We simulate a data s& = (xgi), xéi), yi),i =1,...,500 by putting :
xgi) =1, a:éi) = i%, yi =2+ O.7x§i) + O.5a:éi) + €

wheree; is a random variable which possesses the distributigf, 4), (4 is the vari-
ance). We consider three models :

e ModelM; : p =2,y =60y + 6121 + 0222 + € : true model
e ModelMy:p=1,y =6y + 0121 + ¢
o ModelMs i p =3,y = 0p + 6121 + 025 + 0325 + €, with 21 = i% andf; = 1

We comput@upoot (M;), tioo(M;) (EQA), 000t (M;) andoy,.(M;) (EqB) for each
model, the results are in Tab.2. With the bootstrap methedsee that the best model is
the modelM; i.e. the true model. With the leave-one-out method we caomatlude,
because there is no significant differences betweers thalues of .., and of y,,.
Notice that the meap,,, is over-estimated and that,, has an ordet0 times greater
thanopeot.



4.2 Example2: Non-linear modeling with simulated data

We use E{J1 with sigmoid transfert functigrto simulate a data set :

Bo= 2\, 25 y), i=1,...,500

by computingy; as a noisy output of a multilayer perceptron, defined by :

p = 2 input variables,

Ty ~ N(02, 4),

zy ~ N(—0.1,0.25),

there are one hidden layer and 4 neurones on the hidden layer,

0 = (0.5,-0.1,0.2,0.5,-0.4,0.2,0.1,3,0.3,2,0.5,0.1,0.2,2,0.2,3,0.1), as de-
fined in sectionl,

€ possesses a distributidvi(0, 0.04).

We consider three models :

e Model M, : two inputs, one hidden layer with 2 hidden neurons

e Model M, : two inputs, one hidden layer with 4 hidden neurons : true @hod
e Model Mg : two inputs, one hidden layer with 6 hidden neurons

We comput@upoot (M;), tioo(M;) (EQE), 000t (M;) andoy,.(M;) (EqB) for each
model. Talp.P shows the results. Boostrap method showsihbesst model is the model
M. Itis not the true model, but it is the best. It is not so sugipg since the Multilayer
Perceptrons are always over-parametrized, and that tharelinicity of the multilayer
perceptron function which can model a given function. With keave-one-out method,
we cannot conclude, because it eliminates the true modeldamot separate the first
and the third models.

4.3 Example 3: Non linear model with real data

In this section, we study a real data set to set the efficiefidiiedo model selection
method that we propose.

The power peak control in the core of nuclear reactors iscgggdl The problem has
already been studied in the past, namely by Gaudier [6], vamstcucted a neuronal
model with 22 input variables, 2 hidden layers, (the first with 26 neurons, the other
with 40 neurons). The model accounts for physical localirabf uranium bars and
diffusion processes, and was set to reproduce the classikcallus code, while winning
in terms of computing time.

e Model My 22 inputs, two hidden layers with respectively 26 and 4Qlbid
neurons

e Model M35: 22 inputs, two hidden layers with respectively 26 and 35aid
neurons



e Model M3y: 22 inputs, two hidden layers with respectively 26 and 3Qaid
neurons

For each model, we compuig,o: (M), 100 (M;) (EQE),0p00t (M;) @andoe, (M;)
(EqlB) .

The bootstrap method (Tab.2) shows that the mddg] seems to be the best, (its
residual variance is the smallest for a similar valuggf,;). The leave-one-out method
confirms our conclusion in this case. Bail,,: << 00, fOr each model, which is
important to ensure the stability of the model. In that céseould be necessary to

study other architectures different from the three that eaetconsidered.

Bootstrap Leave-one-oit
MOdel Mboot | Oboot Hioo | Oloo
My || 3.9525 0.0155 4.76268 6.49886
Exp1l M, || 3.9020 0.5985 4.81903 6.54536
Ms 3.9475 0.4259 4.73803 6.54557
M, || 0,04277 0.00019 0.04999 0.06807
Exp 2 M, || 0.04271 0.00029 0,05303 0.07553
Mg 0.04277 0.00028 0.04895 0.06772
Ms3o || 0,0473 0.0052 0.03961 0.05347
Exp 3 M35 || 0.0599 0.0069 0.05132 0.07873
Myo || 0.0492 0.0049 0.04763 0.08161

aWe use50 data bases replications for every training

Table 2: Summary table : Comparison results of bootstrafhateand leave-one-out
method.

We remark that in all the cases,,.: << 000, SO the estimation of the variance of
the model is much more precise with the bootstrap methodulithrthe leave-one-out
method.

5 Conclusion

These examples indicate that our technique is better theetetve-one-out method.
The bootstrap method can be used for a great variety of gihgat We have applied
it for many other cases, and the results seem to be very stitegeto help for model

selection.
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