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Camassa-Holm equation

Bao-Feng Feng1‡, Ken-ichi Maruno 1§ and Yasuhiro Ohta2

1 Department of Mathematics, The University of Texas-Pan American, Edinburg, TX 78541
2 Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan

Abstract. The link between the short wave model of the Camassa-Holm equation (SCHE)
and bilinear equations of the two-dimensional Toda lattice(2DTL) is clarified. The parametric
form of N-cuspon solution of the SCHE in Casorati determinant is thengiven. Based
on the above finding, integrable semi-discrete and full-discrete analogues of the SCHE are
constructed. The determinant solutions of both semi-discrete and fully discrete analogues of
the SCHE are also presented.

19 February 2010

PACS numbers: 02.30.Ik, 05.45.Yv, 42.65.Tg, 42.81.Dp

To be submitted to :J. Phys. A: Math. Gen.

1. Introduction

In the present paper, we consider integrable discretizations of the nonlinear partial differential
equation

wT XX −2κ2wX +2wXwXX +wwXXX = 0, (1)

which belongs to the Harry-Dym hierarchy [1, 2, 3]. Hereκ is a real parameter and, as shown
subsequently, can be normalized by the scaling transformation whenκ 6= 0. A connection
between Eq.(1) and the sinh-Gordon equation was established in [4]. Whenκ = 0, Eq.(1) is
called the Hunter-Saxton equation and is derived as a model for weakly nonlinear orientation
waves in massive nematic liquid crystals [5]. The Lax pair and bi-Hamiltonian structure
were discussed by Hunter and Zheng [6]. The dissipative and dispersive weak solutions were
discussed in details by the same authors [7, 8].

Equation (1) can be viewed as a short-wave model of the Camassa-Holm equation [9]

wT +2κ2wX −wT XX +3wwX = 2wX wXX +wwXXX . (2)

Following the procedure in [10, 11, 12], we introduce the time and space variables̃T andX̃

T̃ = εT , X̃ = ε−1X ,

where ε is a small parameter. Thenw is expanded asw = ε2(w0 + εw1 + · · ·) with wi

(i = 0,1, · · ·) being functions of̃T andX̃ . At the lowest order inε, we obtain

w0,T̃ X̃X̃ −2κ2w0,X̃ +2w0,X̃ w0,X̃X̃ +w0w0,X̃ X̃X̃ = 0, (3)
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which is exactly Eq.(1) after writing back into the originalvariables. Based on this fact,
Matsuno obtained theN-cuspon solution of Eq.(1) by taking the short-wave limit onthe N-
soliton solution of the Camassa-Holm equation [13, 14].

Note that the parameterκ of Eq.(1) can be normalized to 1 under the transformation

x = κX , t = κT ,

which leads to

wtxx −2wx +2wxwxx +wwxxx = 0. (4)

We call Eq.(4) the short wave model of the Camassa-Holm equation (SCHE). Without loss
of generality, we will focus on Eq. (4) and its integrable discretizations, since the solution of
Eq.(1) with arbitrary nonzeroκ, its integrable discretizations and the corresponding solutions
can be recovered through the above transformation.

The reminder of the present paper is organized as follows. Insection 2, we reveal a
connection between the SCHE and the bilinear form two-dimensional Toda-lattice (2DTL)
equations. The parametric form ofN-cuspon solution expressed by the Casorti determinant
is given, which is consistent with the solution given in [13]. Based on this fact, we propose
an integrable semi-discrete analogue of the SCHE in section3, and further its integrable full-
discrete analogue in section 4. The concluding remark is given in section 5.

2. The connection with 2DTL equations, and N-cuspon solution in determinant form

2.1. The link of the SCHE with the two-reduction of 2DTL equations

In this section, we will show that the SCHE can be derived fromthe bilinear form of two-
dimensional Toda lattice (2DTL) equations

−
(

1
2

D−1D1−1

)

τn · τn = τn+1τn−1 , (5)

whereDx is the HirotaD-derivative defined as

Dn
x f ·g =

(

∂
∂x

− ∂
∂y

)n

f (x)g(y)|y=x ,

and D−1 and D1 represent the HirotaD derivatives with respect to variablesx−1 and x1,
respectively.

It is shown that theN-soliton solution of the 2DTL equations (5) can be expressedas the
Casorati determinant [16, 17]

τn =
∣

∣

∣
ψ(n+ j−1)

i (x1,x−1)
∣

∣

∣

1≤i, j≤N
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ(n)
1 ψ(n+1)

1 · · · ψ(n+N−1)
1

ψ(n)
2 ψ(n+1)

2 · · · ψ(n+N−1)
2

...
...

. . .
...

ψ(n)
N ψ(n+1)

N · · · ψ(n+N−1)
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (6)

with ψ(n)
i satisfying the following dispersion relations:

∂ψ(n)
i

∂x−1
= ψ(n−1)

i ,
∂ψ(n)

i

∂x1
= ψ(n+1)

i .

A particular choice ofψ(n)
i

ψ(n)
i = ai,1pn

i epi
−1x−1+pix1+η0i + ai,2qn

i eqi
−1x−1+qix1+η′

0i , (7)
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automatically satisfies the above dispersion relations.
Applying the two-reductionτn−1 = (∏N

i=1 p2
i )

−1τn+1, i.e., enforcingpi = −qi, i =
1, · · · ,N, we get

−
(

1
2

D−1D1−1

)

τn · τn = τ2
n+1 , (8)

where the gauge transformationτn → (∏N
i=1 pi)

nτn is used. Lettingτ0 = f , τ1 = g andx−1 = s,
x1 = y, the above bilinear equation (8) takes the following form:

−
(

1
2

DsDy −1

)

f · f = g2 , (9)

−
(

1
2

DsDy −1

)

g ·g = f 2 . (10)

Introducingu = g/ f , Eqs.(9) and (10) can be converted into

− (ln f )ys +1= u2 , (11)

−(lng)ys +1 = u−2 . (12)

Subtracting Eq.(12) from Eq.(11), one obtains
ρ
2
(lnρ)ys +1= ρ2 , (13)

by lettingρ = u2.
Introducing the dependent variable transformation

w =−2(lng)ss ,

it then follows
1
2

wy =−ρs

ρ2 ,

or

(lnρ)s =−ρ
2

wy , (14)

by differentiating Eq.(12) with respect tos.
In view of Eq.(14), Eq.(13) becomes

− ρ
2

(ρ
2

wy

)

y
+1= ρ2 . (15)

Introducing the hodograph transformation
{

x = 2y−2(lng)s ,
t = s ,

and referring to Eq.(12), we have

∂x
∂y

= 2−2(lng)ys =
2
ρ
,

∂x
∂s

=−2(lng)ss = w ,

which implies






∂y =
2
ρ

∂x ,

∂s = ∂t +w∂x .
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Thus, Eqs.(14) and (15) can be cast into
{

(∂t +w∂x) lnρ =−wx ,

−wxx +1= ρ2 .
(16)

By eliminatingρ, we arrive at

(∂t +w∂x) ln(−wxx +1) =−2wx ,

or
(∂t +w∂x)wxx −2wx (1−wxx) = 0,

which is actually the SCHE (4).

2.2. The N-cuspon solution of the SCHE

Based on the link of the SCHE with the two-reduction of 2DTL equations, theN-cuspon
solution of the SCHE (4) is given as follows:

w =−2(lng)ss ,

{

x = 2y−2(lng)s ,
t = s ,

g =
∣

∣

∣
ψ( j)

i (y,s)
∣

∣

∣

1≤i, j≤N
,

ψ( j)
i = ai,1p j

i epi
−1s+piy+η0i + ai,2(−pi)

je−pi
−1s−piy+η′

0i . (17)

Moreover, theN-cuspon solution of the SCHE (1) with non-zeroκ is given as follows:

w(y,T ) =−2(lng)ss, (18)
{

X = 2y
κ − 2

κ (lng)s,
T = s

κ ,
(19)

where
g =

∣

∣

∣
ψ( j)

i (y,s)
∣

∣

∣

1≤i, j≤N
,

with
ψ(n)

i = ai,1pn
i epiy+s/pi+ηi0 + ai,2(−pi)

ne−piy−s/pi+η′
i0 .

We remark here that to assure the regularity of the solution,the τ-function is required to be
positive definite. In what follows, we list the one-cuspon and two-cuspon solutions. For
N = 1, theτ-function is

g = 1+ e2p1(y+κT/p2
1+y0) ,

by choosinga1,1/a1,2 =−1, which yields the one-cuspon solution

w(y,T ) =− 2

p2
1

sech2
[

p1(y+κT/p2
1+ y0)

]

,

X =
2y
κ

− 2
κp1

{

1+ tanh
[

p1(y+κT/p2
1+ y0)

]}

.

The profiles of one-cuspon withκ = 1.0 andκ = 0.1 are plotted in Fig. 1.
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Figure 1. Plots for one-cuspon solution forp1 =
√

2 and differentκ: (a) κ = 1.0; (b) κ = 0.1.

Theτ-function corresponding to the two-cuspon solution is

g = 1+ eθ1 + eθ2 +

(

p1− p2

p1− p2

)2

eθ1+θ2 ,

with
θi = 2pi(y+κT/p2

i + yi0), i = 1,2.

Herea1,1/a1,2 =−1 anda2,1/a2,2 = 1 are chosen to assure the regularity of the solution.

3. Integrable semi-discretization of the SCHE

Based on the link of the SCHE with the two-reduction of 2DTL equations clarified in the
previous section, we attempt to construct the integrable semi-discrete analogue of the SCHE.

Consider a Casorati determinant

τn(k) =
∣

∣

∣
ψ(n+ j−1)

i (k)
∣

∣

∣

1≤i, j≤N
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ(n)
1 (k) ψ(n+1)

1 (k) · · · ψ(n+N−1)
1 (k)

ψ(n)
2 (k) ψ(n+1)

2 (k) · · · ψ(n+N−1)
2 (k)

...
...

. . .
...

ψ(n)
N (k) ψ(n+1)

N (k) · · · ψ(n+N−1)
N (k)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

with ψ(n)
i satisfies the following dispersion relations

∆kψ(n)
i = ψ(n+1)

i , (20)

∂sψ
(n)
i = ψ(n−1)

i , (21)

where∆k is defined as∆kψ(k) = ψ(k)−ψ(k−1)
a . In particular, we can chooseψ(n)

i as

ψ(n)
i (k) = pn

i (1− api)
−keξi + qn

i (1− aqi)
−keηi ,

ξi =
1
pi

s+ ξi0 , ηi =
1
qi

s+ηi0 ,
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which automatically satisfies the dispersion relations (20) and (21). The above Casorati
determinant satisfies the bilinear form of the semi-discrete 2DTL equation (the Bäcklund
transformation of the bilinear equation of the 2DTL equation) [17, 18]

(

1
a

Ds −1

)

τn(k+1) · τn(k)+ τn+1(k+1)τn−1(k) = 0. (22)

Applying a two-reduction conditionpi = −qi, i = 1, · · · ,N, which impliesτn−1 ≎ τn+1,
we obtain

−
(

1
a

Ds −1

)

fk+1 · fk = gk+1gk , (23)

−
(

1
a

Ds −1

)

gk+1 ·gk = fk+1gk , (24)

by lettingτ0(k) = fk, τ1(k) = gk.
Letting uk = gk/ fk, Eqs.(23) and (24) are equivalent to

− 1
a

(

ln
fk+1

fk

)

s
+1= uk+1uk , (25)

−1
a

(

ln
gk+1

gk

)

s
+1 = u−1

k+1u−1
k . (26)

Subtracting Eq.(26) from Eq.(25), one obtains

uk+1uk

a

(

ln
uk+1

uk

)

s
+1= u2

k+1u2
k . (27)

Introducing the discrete analogue of hodograph transformation

xk = 2ka−2(lngk)s ,

and

δk = xk+1− xk = 2a−2

(

ln
gk+1

gk

)

s
.

It then follows from Eq.(26)

δk =
2a

uk+1uk
,

or

ρk+1ρk =
4a2

δ2
k

, (28)

by assumingρk = u2
k.

Introducing the dependent variable transformation

wk =−2(lngk)ss ,

Eq.(27) becomes

1
δk

(

ln
ρk+1

ρk

)

s
+1− 4a2

δ2
k

= 0. (29)

Differentiating Eq.(26) with respect tos, we have

1
2a

(wk+1−wk) =− 1
uk+1uk

(lnuk+1uk)s =− 1
2uk+1uk

(lnρk+1ρk)s ,



Integrable discretizations for the short wave model 7

or

(lnρk+1ρk)s =− 2
δk
(wk+1−wk) . (30)

Eliminatingρk andρk+1 from Eqs.(29) and (30), we obtain

1
δk

(wk+1−wk)−
1

δk−1
(wk −wk−1) =

1
2
(δk + δk−1)−2a2

(

1
δk

+
1

δk−1

)

, (31)

or

∆2wk =
1
δk

M

(

δk −
4a2

δk

)

, (32)

by defining a difference operator∆ and an average operatorM as follows

∆Fk =
Fk+1−Fk

δk
, MFk =

Fk+1+Fk

2
.

Furthermore, a substitution of Eq.(28) into Eq. (30) leads to

dδk

ds
= wk+1−wk . (33)

Equations (31) and (33) constitute the semi-discrete analogue of the SCHE.
Next, let us show that in the continuous limit,a→ 0 (δk → 0), the proposed semi-discrete

SCHE recovers the continuous SCHE. To this end, Eqs.(31) and(33) are rewritten as











−2
δk + δk−1

(∆wk −∆wk−1)+1=
4a2

δkδk−1
,

∂sδk = wk+1−wk .

By taking logarithmic derivative of the first equation, we get

∂s

{ −2
δk + δk−1

(∆wk −∆wk−1)+1

}

−2
δk + δk−1

(∆wk −∆wk−1)+1
=−∂sδk

δk
− ∂sδk−1

δk−1
.

The dependent variablew is regarded as a function ofx andt, wherex is the space coordinate
of thek-th lattice point andt is the time, defined by

xk = x0+
k−1

∑
j=0

δ j , t = s .

In the continuous limit,a → 0 (δk → 0), we have

∂sδk

δk
=

wk+1−wk

δk
→ wx ,

∂sδk−1

δk−1
=

wk −wk−1

δk−1
→ wx ,

2
δk + δk−1

(∆wk −∆wk−1)→ wxx ,

∂xk

∂s
=

∂x0

∂s
+

k−1

∑
j=0

∂δ j

∂s
=

∂x0

∂s
+

k−1

∑
j=0

(w j+1−w j)→ w ,
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∂s = ∂t +
∂x
∂s

∂x → ∂t +w∂x ,

where the origin of space coordinatex0 is taken so that
∂x0

∂s
cancelsw0. Thus the above

semi-discrete SCHE converges to

(∂t +w∂x)(−wxx +1)
−wxx +1

=−2wx ,

or

(∂t +w∂x)wxx = 2wx (−wxx +1) , (34)

which is nothing but the SCHE (4).
In summary, the semi-discrete analogue of the SCHE and its determinant solution are

given as follows:
The semi-discrete analogue of the SCHE


















1
δk
(wk+1−wk)−

1
δk−1

(wk −wk−1) =
1
2
(δk + δk−1)−2a2

(

1
δk

+
1

δk−1

)

,

dδk

dt
= wk+1−wk .

(35)

The determinant solution of the semi-discrete SCHE

wk =−2(lngk)ss ,

δk = xk+1− xk = 2a
fk+1 fk

gk+1gk
,

{

xk = 2ka−2(lngk)s ,
t = s ,

gk =
∣

∣

∣
ψ( j)

i (k)
∣

∣

∣

1≤i, j≤N
, fk =

∣

∣

∣
ψ( j−1)

i (k)
∣

∣

∣

1≤i, j≤N
,

ψ( j)
i (k)= ai,1p j

i (1−api)
−kepi

−1s+η0i +ai,2(−pi)
j(1+api)

−ke−pi
−1s+η′

0i .(36)

Introducing new independent variablesXk = xk/κ and T = t/κ, we can include the
parameterκ in the semi-discrete SCHE (35)


















1
δk
(wk+1−wk)−

1
δk−1

(wk −wk−1) =
1

2κ2 (δk + δk−1)−2a2
(

1
δk

+
1

δk−1

)

,

dδk

dT
= wk+1−wk ,

(37)

whereδk = Xk+1−Xk ands = κT . This is the semi-discrete analogue of the SCHE (1).
TheN-cuspon solution of the semi-discrete SCHE (37) with the parameterκ is given by

wk =−2(lngk)ss ,

δk = Xk+1−Xk =
2a
κ

fk+1 fk

gk+1gk
,

{

Xk =
2ka
κ − 2

κ (lngk)s ,
T = s

κ ,

gk =
∣

∣

∣
ψ( j)

i (k)
∣

∣

∣

1≤i, j≤N
, fk =

∣

∣

∣
ψ( j−1)

i (k)
∣

∣

∣

1≤i, j≤N
,

ψ( j)
i (k) = ai,1p j

i (1− api)
−kepi

−1s+η0i + ai,2(−pi)
j(1+ api)

−ke−pi
−1s+η′

0i . (38)
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4. Full-discretization of the SCHE

In much the same way of finding the semi-discrete analogue of the SCHE, we seek for its
full-discrete analogue and in the process we arrive at itsN-cuspon solution.

Consider the following Casorati determinant

τn(k, l) =
∣

∣

∣
ψ(n+ j−1)

i (k, l)
∣

∣

∣

1≤i, j≤N
, (39)

where

ψ(n)
i (k, l) = ai,1pn

i (1− api)
−k (1− bpi

−1)−l
eξi + ai,2qn

i (1− aqi)
−k (1− bqi

−1)−l
eηi ,

with
ξi = pi

−1s+ ξi0 , ηi = qi
−1s+ηi0 .

It is known that the above determinant satisfies bilinear equations [18]
(

1
a

Ds −1

)

τn(k+1, l) · τn(k, l)+ τn+1(k+1, l)τn−1(k, l) = 0, (40)

and

(bDs −1)τn(k, l +1) · τn+1(k, l)+ τn(k, l)τn+1(k, l +1) = 0. (41)

Herea,b are mesh sizes for space and time variables, respectively.
Applying the two-reductionτn−1 = (∏N

i=1 p2
i )

−1τn+1, i.e., enforcingpi = −qi, i =
1, · · · ,N, and lettingτ0(k, l) = fk,l , τ1(k, l) = gk,l , the above bilinear equations take the
following form:

(

1
a

Ds −1

)

fk+1,l · fk,l + gk+1,lgk,l = 0, (42)
(

1
a

Ds −1

)

gk+1,l ·gk,l + fk+1,l fk,l = 0, (43)

(bDs −1) fk,l+1 ·gk,l + fk,lgk,l+1 = 0, (44)

(bDs −1)gk,l+1 · fk,l + gk,l fk,l+1 = 0, (45)

where the gauge transformationτn → (∏N
i=1 pi)

nτn is used. It is readily shown that the above
equations are equivalent to

1
a

(

ln
fk+1,l

fk,l

)

s

= 1− gk+1,lgk,l

fk+1,l fk,l
, (46)

1
a

(

ln
gk+1,l

gk,l

)

s

= 1− fk+1,l fk,l

gk+1,lgk,l
, (47)

b

(

ln
fk,l+1

gk,l

)

s

= 1− fk,lgk,l+1

fk,l+1gk,l
, (48)

b

(

ln
gk,l+1

fk,l

)

s

= 1− gk,l fk,l+1

gk,l+1 fk,l
. (49)

We introduce a dependent variable transformation

wk,l =−2(lngk,l)ss , (50)

and a discrete hodograph transformation

xk,l = 2ka−2(lngk,l)s , (51)
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then the mesh

δk,l = xk+1,l − xk,l = 2a−2

(

ln
gk+1,l

gk,l

)

s

(52)

is naturally defined. It then follows
(

ln
gk+1,l

gk−1,l

)

s

= 2a− 1
2
(δk,l + δk−1,l) . (53)

In view of Eq.(47), one obtains

fk+1,l fk,l

gk+1,lgk,l
=

δk,l

2a
. (54)

A substitution into Eq.(46) yields
(

ln
fk+1,l

fk,l

)

s

= a− 2a2

δk,l
, (55)

it then follows
(

ln
fk+1,l

fk−1,l

)

s

= 2a−2a2
(

1
δk,l

+
1

δk−1,l

)

. (56)

Starting from an alternative form of Eq.(47)

2a−2

(

ln
gk+1,l

gk,l

)

s

= 2a
fk+1,l fk,l

gk+1,lgk,l
, (57)

we obtain

wk+1,l −wk,l

δk,l
=

−2
(

ln
gk+1,l

gk,l

)

ss

2a−2
(

ln
gk+1,l

gk,l

)

s

=

(

ln
fk+1,l fk,l

gk+1,lgk,l

)

s

, (58)

by taking logarithmic derivative with respect tos. A shift from k to k−1 gives

wk,l −wk−1,l

δk−1,l
=

(

ln
fk,l fk−1,l

gk,lgk−1,l

)

s

. (59)

Subtracting Eq.(59) from Eq.(58), we obtain

wk+1,l −wk,l

δk,l
− wk,l −wk−1,l

δk−1,l
=

(

ln
fk+1,l

fk−1,l

)

s

−
(

ln
gk+1,l

gk−1,l

)

s

. (60)

By using the relations (53) and (56), we finally arrive at

wk+1,l −wk,l

δk,l
− wk,l −wk−1,l

δk−1,l
− 1

2
(δk,l + δk−1,l)+2a2

(

1
δk,l

+
1

δk−1,l

)

= 0. (61)

Similar to Eq.(32), Eq.(61) constitutes the first equation of the full-discretization of the SCHE,
which can be cast into a simpler form:

∆2wk,l =
1

δk,l
M

(

δk,l −
4a2

δk,l

)

. (62)

Next, we seek for the second equation of the full-discretization. Recalling (46)–(49), one
could obtain

xk+1,l+1− xk,l+1

xk+1,l − xk,l
=

2a−2
(

ln
gk+1,l+1

gk,l+1

)

s

2a−2
(

ln
gk+1,l

gk,l

)

s

=

(

ln
gk+1,l+1

fk+1,l

)

s
− 1

b
(

ln
fk,l+1
gk,l

)

s
− 1

b

, (63)
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here a shift froml to l +1 in (47) and a shift fromk to k+1 in (49) are employed.
From Eqs.(50), (55) and (58), one can find the following two relations

(

ln
gk+1,l+1

fk+1,l

)

s

=−wk+1,l −wk,l −2a2

2δk,l
+

1
4
(xk+1,l + xk,l −2xk+1,l+1) , (64)

(

ln
fk,l+1

gk,l

)

s

=
wk+1,l+1−wk,l+1+2a2

2δk,l+1
− 1

4
(xk+1,l+1+ xk,l+1−2xk,l) , (65)

after some tedious algebraic manipulations. Substitutingthese two relations into (63), we
finally obtain the second equation of the fully discrete analogue of the SCHE

δk,l+1− δk,l

b
+

1
4

δk,l+1 (xk+1,l+1+ xk,l+1−2xk,l)

+
1
4

δk,l (xk+1,l + xk,l −2xk+1,l+1)

=
1
2
(wk+1,l+1+wk+1,l −wk,l+1−wk,l) . (66)

Taking the continuous limitb → 0 in time, we have

δk,l+1− δk,l

b
→ dδk

ds
,

δk,l+1 (xk+1,l+1+ xk,l+1−2xk,l)→ 0,

δk,l+1δk,l (xk+1,l + xk,l −2xk+1,l+1)→ 0,

and
1
2
(wk+1,l+1+wk+1,l −wk,l+1−wk,l)→ wk+1−wk.

Therefore, one recovers exactly the second equation of the semi-discrete SCHE (33).
In summary, the fully discrete analogue of the SCHE and its determinant solution are

given as follows:
The fully discrete analogue of the SCHE






































wk+1,l −wk,l

δk,l
− wk,l −wk−1,l

δk−1,l
− 1

2
(δk,l + δk−1,l)+2a2

(

1
δk,l

+
1

δk−1,l

)

= 0,

δk,l+1− δk,l

b
+

1
4

δk,l+1 (xk+1,l+1+ xk,l+1−2xk,l)

+
1
4

δk,l (xk+1,l + xk,l −2xk+1,l+1) =
1
2
(wk+1,l+1+wk+1,l −wk,l+1−wk,l) .

(67)

The determinant solution of the fully discrete SCHE

wk,l =−2(lngk,l)ss =−2
h̄k,lgk,l − h2

k,l

g2
k,l

,

xk,l = 2ka−2(lngk,l)s = 2ka−2
hk,l

gk,l
,

δk,l = xk+1,l − xk,l = 2a
fk+1,l fk,l

gk+1,lgk,l
,
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gk,l =
∣

∣

∣
ψ( j)

i (k, l)
∣

∣

∣

1≤i, j≤N
, fk,l =

∣

∣

∣
ψ( j−1)

i (k, l)
∣

∣

∣

1≤i, j≤N
,

hk,l =
∂gk,l

∂s
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ(0)
1 (k, l) ψ(2)

1 (k, l) ψ(3)
1 (k, l) · · · ψ(N)

1 (k, l)

ψ(0)
2 (k, l) ψ(2)

2 (k, l) ψ(3)
2 (k, l) · · · ψ(N)

2 (k, l)
...

...
...

. . .
...

ψ(0)
N (k, l) ψ(2)

N (k, l) ψ(3)
N (k, l) · · · ψ(N)

N (k, l)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

h̄k,l =
∂2gk,l

∂s2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ(−1)
1 (k, l) ψ(2)

1 (k, l) ψ(3)
1 (k, l) · · · ψ(N)

1 (k, l)

ψ(−1)
2 (k, l) ψ(2)

2 (k, l) ψ(3)
2 (k, l) · · · ψ(N)

2 (k, l)
...

...
...

.. .
...

ψ(−1)
N (k, l) ψ(2)

N (k, l) ψ(3)
N (k, l) · · · ψ(N)

N (k, l)

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ(0)
1 (k, l) ψ(1)

1 (k, l) ψ(3)
1 (k, l) · · · ψ(N)

1 (k, l)

ψ(0)
2 (k, l) ψ(1)

2 (k, l) ψ(3)
2 (k, l) · · · ψ(N)

2 (k, l)
...

...
...

. . .
...

ψ(0)
N (k, l) ψ(1)

N (k, l) ψ(3)
N (k, l) · · · ψ(N)

N (k, l)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

ψ( j)
i (k, l) = ai,1p j

i (1− api)
−k (1− bpi

−1)−l
eξi + ai,2(−pi)

j(1+ api)
−k (1+ bpi

−1)−l
eηi ,

ξi = pi
−1s+ ξi0 , ηi =−pi

−1s+ηi0 . (68)

Note thats is an auxiliary parameter. By virtue ofs, hk,l and h̄k,l can be expressed as
hk,l = ∂sgk,l and h̄k,l = ∂2

s gk,l , respectively, because the auxiliary parameters works on

elements of the above determinant by∂sψ
(n)
i (k, l) = ψ(n−1)

i (k, l).
Introducing new independent variablesXk,l = xk,l/κ and b̃ = b/κ, we can include the

parameterκ in the full-discrete SCHE (67):






































wk+1,l −wk,l

δk,l
− wk,l −wk−1,l

δk−1,l
− 1

2κ2 (δk,l + δk−1,l)+2a2
(

1
δk,l

+
1

δk−1,l

)

= 0,

δk,l+1− δk,l

b̃
+

1
4κ2 δk,l+1 (Xk+1,l+1+Xk,l+1−2Xk,l)

+
1

4κ2 δk,l (Xk+1,l +Xk,l −2Xk+1,l+1) =
1
2
(wk+1,l+1+wk+1,l −wk,l+1−wk,l) .

(69)

Similarly, theN-cuspon solution of the full-discrete SCHE (69) with the parameterκ is
given as follows:

wk,l =−2(lngk,l)ss =−2
h̄k,lgk,l − h2

k,l

g2
k,l

,

Xk,l =
2ka
κ

− 2
κ
(lngk,l)s =

2ka
κ

− 2
κ

hk,l

gk,l
,

δk,l = Xk+1,l −Xk,l =
2a
κ

fk+1,l fk,l

gk+1,lgk,l
,

gk,l =
∣

∣

∣
ψ( j)

i (k, l)
∣

∣

∣

1≤i, j≤N
, fk,l =

∣

∣

∣
ψ( j−1)

i (k, l)
∣

∣

∣

1≤i, j≤N
,
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hk,l =
∂gk,l

∂s
=

1
κ

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ(0)
1 (k, l) ψ(2)

1 (k, l) ψ(3)
1 (k, l) · · · ψ(N)

1 (k, l)

ψ(0)
2 (k, l) ψ(2)

2 (k, l) ψ(3)
2 (k, l) · · · ψ(N)

2 (k, l)
...

...
...

. . .
...

ψ(0)
N (k, l) ψ(2)

N (k, l) ψ(3)
N (k, l) · · · ψ(N)

N (k, l)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

h̄k,l =
∂2gk,l

∂s2 =
1
κ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ(−1)
1 (k, l) ψ(2)

1 (k, l) ψ(3)
1 (k, l) · · · ψ(N)

1 (k, l)

ψ(−1)
2 (k, l) ψ(2)

2 (k, l) ψ(3)
2 (k, l) · · · ψ(N)

2 (k, l)
...

...
...

. . .
...

ψ(−1)
N (k, l) ψ(2)

N (k, l) ψ(3)
N (k, l) · · · ψ(N)

N (k, l)

∣

∣

∣

∣

∣

∣

∣

∣

∣

+
1
κ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ(0)
1 (k, l) ψ(1)

1 (k, l) ψ(3)
1 (k, l) · · · ψ(N)

1 (k, l)

ψ(0)
2 (k, l) ψ(1)

2 (k, l) ψ(3)
2 (k, l) · · · ψ(N)

2 (k, l)
...

...
...

. . .
...

ψ(0)
N (k, l) ψ(1)

N (k, l) ψ(3)
N (k, l) · · · ψ(N)

N (k, l)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

ψ( j)
i (k, l) = ai,1p j

i (1− api)
−k (1− bpi

−1)−l
eξi + ai,2(−pi)

j(1+ api)
−k (1+ bpi

−1)−l
eηi ,

ξi = pi
−1s+ ξi0 , ηi =−pi

−1s+ηi0 . (70)

5. Concluding remarks

In the present paper, bilinear equations and the determinant solution of the SCHE are obtained
from the two-reduction of 2DTL equations. Based on this fact, integrable semi-and full-
discrete analogues of the SCHE are constructed. TheN-soliton solutions of both continuous
and discrete SCHEs are formulated in the form of the Casoratideterminant. Note that the
short pulse equation was also obtained from the two-reduction of the 2DTL equation [19].

Finally, we remark that the present paper is one of our seriesof work in an attempt
of obtaining integrable discrete analogues for a class of integrable nonlienar PDEs whose
solutions possess singularities such as peakon, cuspon or loop soliton solutions. New discrete
integrable systems obtained in this paper, along with the semi-discrete analogue for the
Camassa-Holm equation [15] and the semi-discrete and fullydiscrete analogues of the short
pulse equation [19] deserves further study in the future.
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