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— Abstract

) In this work an extended Jacobian elliptic function meth®groposed and applied to the generalized

— . shallow water wave equation. We systematically investigatclassify new exact travelling wave solu-

== ' tions expressible in terms of quasi-periodic elliptic gr function and doubly-periodic Jacobian elliptic

.E, functions. The derived new solutions include rationaljguéic, singular and solitary wave solutions. An
interesting comparison with the canonical procedure isigeal. A detailed discussion is given about the

‘;' physical viability of the singular solutions obtained thgh our procedure.
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1 Introduction In this article we plan to study the travelling wave so-
lutions
Seeking analytical as well as numerical solutions of non- uw(z,t) =u(z), z=x—ct, (2)

linear systems has continued to attract attention thro%qkt\he GSWW equatiori{1) in a more general framework

the last few decadesl[L] & 3, 4]. Mathematically, NOje show that the canonical procedure namely, the class

:/I\?oeuall(rj sgu:rtlc:)r;se (rjnoal?icr)\t ?r?érga;?e rrrlmi\;ﬁesorlgtlfenszx\;rrl%’%l technique [22], based on an integration within a suit-
Perp 9 y yrep range not only recovers both known periodic (includ-

complicated and difficult to analyzg![5, 6]. On the otherl;

hand, an extensive study of a number of nonlinear s'§ elliptic and trigonometric) and non-periodic hyper-
’ y ¥3lic solutions, but also unfolds several new elliptic and

tems has revealed that there do exist solutions which %t?onal solutions. However such a constructive methoc
not only interesting in their own right but have a W'dﬁas its limitations in the sense that the range of validity

range of applicabilityl[7. 8]. To generate exact SOIUUO% the obtained solutions is fixed by the analysis of the

and to understand their properties several important t(% ‘s of the governing cubic polynomial () before-

_nr:ql;es rho?ceh ?g erlia(ljevz!?Fo??nSraihowﬁl?’ltgealnngg;(?klscn fd and so, in practical applications, a particular solu
Ing app [9], Lax pai ulation [10] ""on proves difficult to implement.

transformations [11]. Nonlinear equations have also bee ne of our aims is to go beyond this standard path by

sessing hierarchy of conservation laf [13] 0p?r'oposing an extended method based on the use of J
) y . cobian elliptic functions. We refer to it as an extended

. An |mp.ortan.t class of solut!ons of nonlinear eVOI.LEIIiptic function (EEF) method. We look for solutions by
tion equations is concerned with those of the travelli nsidering an expansion given by

waves that reduce the guiding partial differential equa-
tion of two variables namely; andt¢ to an ordinary dif- . ;
ferential equation of one independent variable = — ct v(z) =u(z2) = Z a; 1" (2) (3)
where ¢€ R — {0}) is a parameter signifying the speed i=—m

with which the wave travels either to the right or left. A Equation((B), F is an unknown functional constrained
number of methods has been employed in the literattw&atisfy the relation

to obtain the travelling wave solutions of various types. o ) )

These include the homogeneous balance methad [14], the (F)" = (L +ek7) (e +e3F7), (4)

hyperbolic method [15], the trigonometric method![16}yhere the prime denotes the derivative with respect to
Darboux’s transformatiori [17], F-function methad [18hroughout the text. The important feature of the EEF
etc. method is that it includes not only the positive integral
Recently the existence of travelling wave solutions fggwers of ' but also the negative ones. Our motivation
the generalized shallow water wave (GSWW) equatigft keeping lower negative degrees of F comes from the

m

[19] fact that in typical solvable systems like the Korteweg de
o Vries the related spectral problem allows similar exten-
Ut + QU Uy + BU Uz — Ut — Uy = 0, () = a) (1) sions[23/24]. It has been shown that these lower equé

tions may arisel [24] as a necessary part of an extende
with «, 8 € R — {0} has been noted. The derivatiosymmetry structure [25] while it is known [26] that the
of (1) follows from the classical water wave theory witbnderlying commutator generates the whole set of sym
the aid of Boussinesq approximation. In an interestingetry operators for the system.
review, Clarkson and Mansfield [20] considered the vari- It is not difficult to see that the biquadratic integrall[27]
ous classical and non-classical reductions of the GSWWWerging from the constrairiil (4) facilitates expressireg th
equation wherein they also investigated the Painlevé tegivelling wave solutions in terms of the Jacobian elliptic
to examine the complete integrability éf (1) which holdanctions pgz — 2, k), where the symbol pq represents
ifand only if« = 8 ora = 23. They explored some simtwelve such distinct functions sn,cn,dn;as{/sn),cs&
ple and non-trivial family of solutions of (1) while in [21]cn/sn) etc. The novelty of the EEF method is that it
a class of exact travelling wave solutions were obtainggens up a broad spectra of new travelling wave solu
by making use of the homogeneous balance method #@ods that include the already known ones (see for exam
a modified hyperbolic method. ple, [22,28/ 29, 30, 31]). We shall explicitly provide the



solutions generated from the EEF method for some sper simplicity let us assume that all the three roots of

cial selections of the integral parameters. P3(v) are real and focus on the arrangement> vy >
This article is organized as follows. In Sectidn 2, wg. We consider first the non-degenerate case of distinc

derive the reduced ordinary differential equation for theots fora + 5 < 0. A formal integration of [(I7) in

GSWW equation and then go for the classical technighe rang€(v;, z;), (v, z)], where the point; is to be de-

to obtain exact analytical solutions. In Section 3 we turermined from the transcendental equatign;) = v;,

to the constrainf(4) to take up the construction of our newelds

procedure and then categorise different types of solutions . v duw

being generated from the EEF method by appealing to / dz = i/ 5 . (9

particular choices of the integral parameters. It will be zj vj [(—#) Hj:l(w — v;)]/?

seen that the solutions in the appropriate limits reducq\F

previously known results. Finally, in Sectibh 4 we presepl

a summary of our results.

W care is to be taken to choose the rogtj = 1,2 or 3

t defines the interval of validity of the solution. It is
easy to see that the reality condition fdr) gives rise to
two different cases namely eithey < v < vy Orv; <

2 Canonical procedurefor the v < co. We address them by turn below.

GSWW equation
€ Casel: vs<v<vy (a+4+3<0)
To start with, we substitute the forrl (2) into the GSWW Keeping in mind that the range of integration is be-

equation[(Il) that results in a fourth order ordinary diffefween[vs, v] and[z3, 2], the following change of variables
ential equation w — @ proves useful

cu" + (a+ p)eu'u” + (1 —c)ju” =0. (5)

Let us note that the parametersg controls the strength . ) o .

of non-linearity of above equation. Without loss of geneT—he standard Qeflnltlon for Jacoplan elliptic function then
ality, one can leave one of them, sayarbitrary while the €XPresses(z) in a closed analytic form

other' para_mete/ﬁ may be varied to tune the strepgth va 2) = '(2) = vs + (v — v3)SI((2 — 23), k), (11)
non-linearity appropriate for the concerned physical-situ

ations. Three particular values 6fhamelys = +a,a/2 wherev = /[la + S|(v1 — v3)/3]/2 andk? = (v, —
are known to correspond completely integrable system)./(v; — v3)(0 < k? < 1) is the modulus of the elliptic
In this article we shall explore the solutions of Equatidunction [32]. In terms of the elliptic integral function of
(@) leaving both of them arbitrary except f6r= —« as the second kindE'(y,, k) through the relatiosin ¢, =

it points to the linear system and hence is well-known.si(v(z — z(), k), defined by the integral

is straightforward to obtain a second integralldf (5) given

Pe

by E(W,k):/ V1 —Ek2sin?a da, (=0,1,3,
3cu"?+c(atB)u+3(1—C)u+6ceiu’ +3cc, = 0, (6) ° (12)
which may be expressed as a first order equation in teMffsobtainu(z), after integrating(111), in the final form
of the variabley(z) = u/(2):

w = vg + (vy — v3)sin . (20)

vy — kv vy — v
3 u(z) = Ug+ ——2 5 3(2—23)— 2 5 3E(g03,k). (13)
U,Q__Oé‘i‘ﬁ? (’l}):—a—i_ﬁH(’U—U») (7) k vk
B 3 T 3 ey o In the above solution and also in the following is de-

, , . fined in a natural way as; = u(z;),j = 1,2,3 while
Note that in Equatiori(6) and also elsewhere inthe text, _ | _ ;2 is the complementary modulus of elliptic
the arbitrary constants appearing through the procesg gktions.

integration are denoted by the symbgland will not be may be pointed out tha{13) is a new travelling wave

explicitly mentioned further. IrL.{7) the monic cubic polyzq,tion. Two interesting limits namely— 1 andk — 0

nomial'P;(v) is given by may be of interest to notice that lead to the existence o
3(1—c¢) , 6¢ 3¢y a double root ofP3(v). Fork — 1-0, we must lety; —

_ .3
Pa(v) ="+ (ot pB)" tor 3" tor 3 () 1,40, but thenw; cannot be allowed to coincide with,




as this will imply that the limiting solution has no range/heresin ¢, = snv(z — z),k'),7 = 1, 3. To derive the
of validity. Along the same reasoning we conclude thalbove we made the following substitution it (9)

the limit & — 0 is disallowed for this case. Noting that o

E(ps,k — 1) = tanh[v(z — z3)] the solution[(IB) thus w =1 + (V2 —vy)sin® . (21)
reduces to the hyperbolic form fér— 1-o

vy — Vs Case4: —0o<v<vy (a+pB>0)

tanh[v(z —23)] . (14)
v v(z) = v — (v, —v3)dS(v(z — 23), k),

u(z) = ug+uvs(z—23)+ i [E(ps, k) (22)
—sn(v(z — 23), K )dc(v(z — 23), k') ,

u(z) = ug+vo(z —23) —

Case2: vi<v<oo (a+B8<0)
Clearly the range of integration now lies between

[v1,v] and[zy, z]. Employing the substitution which comes from the following substitution il (9)
w = vy + (v; — v3)c0sely, (15) w = v, — (v; — v3)C0SECP. (23)
we obtain the following expression fo( z) It is interesting to note that in contrast to the casesd

2for a+ g < 0, the known hyperbolic and periodic solu-
v(z) =u'(2) = vz + (1 — v3)dC(v(z — 21),k) . (16) tions are recovered far + 3 > 0 (Cases3,4) in the com-
The above equation, on further integration, yields anotl%?mentary limit of the e”.'pt'c solution$ (20) arld (22).
new travelling wave solution Finally let us deal ywth the degenerate case wher
P3(v) has a triple zero, i.ey = vy = v3 = vo. From the
(o, k) cubic (8) itis clear that we have to choase= —2vyc; /3
b giving the multiple rootr, = (¢ — 1)/[c(c + 3)]. The
—sn(v(z — z1), k)dc(v(z — z1), k)] . (17) range of integration will be-co < v < vy 0rvy < v < 0o
according asy + 5 = 0. The singular rational solution

V1 — U3

w(z) = w+v(z—2)—

In above we have used t?e relation(sn- K, k) = can be expressed in a compact form as follows
cd(z, k), whereK (k) = ”/ da/V/1 - k2 sin o is the

B 3 B 12 1
quarter real period of elllptlc sine function. Let us noW;(v) = (v—wp)’ 1 u = vo(2z—c3)+ +ey,
take the limitv, — v;-0 keepingvs < v, that makes the a+fz—c (24)
travelling wave solution linear in spatial and time coordi-

which was obtained in [21] from a different approach.
We have thus obtained several new solutions by ap
k= 1-0:u(z,t) = (uy —viz) + vi(z —ct).  (18) plying the classical technique based on an analysis of th
zeros of a cubic polynomial. Interestingly in the appro-
On the other hand, letting; — v,-0 wherev, < vy, we priate limits all the known solutions are retrieved. It is

recover the periodic solution clear that for practical applications of the solutiar(s)
Vg derived in this section, a knowledge about the position of
tan[v(z—z1)]. zeros ofu”(z) is required which somewhat weakens their
(19) utility. In the next section we propose a new method tha

The case for + 8 > 0 will give the result in comple- IS free from such a limitation.
mentary frame which can be derived along the same way

as before. Without giving the details of the procedure, 8¢ The EEF method for the GSWW equa-
are providing below the final solutions. tion

nates

v —

k—0: U(Z) = U1—|—U2(Z’—Zl)+

Cases: va<vevi (a+f8>0) Here instead of focussing on the zerosi6fz) which are

v(z) = v — (v —v)SE(v(z — ), k), unknown we fix the zeros of’(z). Sinceu” has three
zeros [see Equatiohl(7) of Sectian 2], it is obvious tifat
E(¥}, K, (20) has four zeros. This motivates us to propose the following
construction.

Vo — ]i]2U1 V1 — U2
U(Z) = u;+ T(Z' — Zl)w



Table 1: The solutions of the non-linear systéen (28) for tEa@sion Table 2: The integration constans anda_ » satisfying [(28) are

parameters,;, j = 0,1,2 are given. In the second columa, = provided whergA; — w?)/(e1e2e3) = 12/(—4)771, forj = 1,2
€169 + €3. andAs = cag(a + ) + 2(1 —c).
Class (a+pflag a1 (a+pas Class a1 (a+p)a_s cla+ B)es
1 0 —12¢e9 —(1—c)* +16c° A,
1 1-cl—dw 0 —12ee3 2 0 —12¢e5 —(1 —c)? + 16¢%As
2 1-cl—4w 0 0 3 0 0 —(1—c¢)? 4+ 16€*A,
3 l—c!l—4w 0 —12¢1€e3 4 0 0 CagAs (Oé + ﬂ)
4 Arbitrary 0 0

By exploiting (28) we can derive four classes of so-

3.1 Construction lutions for a; and ¢; which are summarized in Tablé 1
Let us turn to the fourth-order ordinary differential equ nd Tablé 2. From a previous work we already know tha
tion (5) which we integrate to write welve dlﬁgreqt choices e>_<|st (see Table 1in][27]) fqr the

zeros of F' in right-hand side of((4) that leads to differ-

2cv” + c(a+ B)v? +2(1 — ¢)v — ¢5 = 0. (25) ent representation faf'(z) in terms of Jacobian elliptic
functions. Further for each of them one gets four classe

We look for a formal solution in the form of travelling wave solutions of GSWW equatidn (1) corre-
m sponding to the solutions furnished in Table 1 and Table 2
v(z) = Z a; F*, (26) Our new method is a generalized procedure and encon

i=—m passes the previously known solutions as special cases.

the next subsection we provide, as illustrative cases, fou

where the generating function@l(z(z,t)) satisfies the : . : :
; . . , classes of solutions for three particular choices of irgkegr
constraint[(#). Note that the inclusion of negative powers

of F', in general, creates pole af triggering the pres- parameters in Equationl(4).

ence of singular solutions in some situations. However . ) ) )

we explicitly show that such singular solutions are phy%—é Class 1-4 solutionsfor particular selectionsof in-
ically acceptable in a restricted domain of space labeled t€gral parameters

by (¢, u). Substituting the expansian (26) into Equatiofy, get explicit forms of Class 1-IV solutions obtained in
(23) points tom = 2 and so the Lorentz-like expansioggF method, it remains to choose the integral paramete!

of v(z) reads gj,7 = 1,2,3in the constraint™? = (1 4 ,F?)(ey +
B 7 g2, -1, 03 57 e3 %), At first let us consider some degenerate selection:
v(e) = a0+ aF + @ F + =+ (27) (1. e. taking a pair of double zeros 7) leading to hyper-

. bolic, trigonometric and linear solutions.
We next compute the expansion parametershat 9

needs term-by-term balancing of the coefficients of eache Algebro-hyperbolic Waves
powers ofF’ to zero. Somewhat involved but straightfor-  The choice(ey, e, e5) = (—1,1, —1) givesF(z) =

ward algebra leads to the following relations tanh z that generate the following solutions modulo
a constant
Fi4 . ai2[12 /\j: +(Oé + ﬁ)aig] = 0, [/\+ = 6163] s
FE a2 A1 +H(a+ Baws] =0, [A- = g9, u = (ap+as+a_g)z—agtanh z—a_s coth z. (29)
F*2 . 8c(e16a + €3)azs + ( + B)e(al, + 2a0a.s) The above solution reduces to linear form for Class 4
+2(1—-clags =0, (28) while singular term disappears in Class Il solutions.
F=c(eies + e3)az + (o + B)0(agass + az1a40) e Algebro-trigonometric Waves
+ (1 —clap =0, Choosing (e1,e2,e3) = (1,1,1), we getF =
0 ) 2 tan z which gives following solutions apart from an
F° : AC(e2a2 + €123a_0) + (o + B)c(ag + 2 aza_;) inessential factor
=1
+2(1—c)ag+¢c5=0. u=(ap—ay—a_s)z+astanz —a_scotz. (30)



Note that such types of algebro-hyperbolic and algebro- The behaviour of the expressions, given[by (33) nea

trigonometric solutions are new and of interest. By choos-

ing suitable value of wave speed c the algebraic term can
be removed causing the reduction to known forms ob-

tained in [21]. Now using a canonical procedure we have
already obtained [sek_(14) & (119) of Sectidn 2] such types
of solutions in the extreme limits of modulus parameter of

elliptic functions. This means that more general forms of

solutions can be generated from EEF method provided

has four simple zeros.

We already mentioned that twelve different selections
are possible for the simple zerosifin the constrain{(4)

leading to closed analytic expressions fofz) in terms

of doubly periodic Jacobian elliptic functions. Here we
provide explicit forms of the wave-solutions for the three
representative selections, two of which produce singular
wave-solutions of Class and2. For each class of solu-

tions, the parameters, g and the integration constary

are related through a constraint as dictated by the last col-
umn of Tabld 2, the explicit mention of which is omitted

in the following to avoid repetition.

e Selection |
Let us choose the zeros @' as +£1,+1/k(0 <

k* < 1) which correspond to the selection of triplet

(61,89,63) = (—=1,1,—k?) or (—k?,1,—1). Choos-

ing zo such thatF'(z,) = 0, one then obtains (see

Table | of [27])
F(z) =snz — z). (31)

Thus we are led to four classes of solutions of which
the first two correspond to the singular solutions :

o) = a0+a25r12(z—zo)+a_2n52(2—20) )
(32)

Classj :

for j = 1,2, whereq;s have to be computed from 1st

and 2nd rows of Tablel 1 and superfi¥ is used to
denote Clas$ and2 solutions. Note that $rterm is
not present foyj = 2, sinceay = 0 in 2nd row of the

table. The corresponding travelling wave solutions

read

u? = g+ [ag + (3 = j)a—s] (z — 20)
— (3 —=J)a—2E(po, k) + Sy, (33)

wheresSj is the singular term given by

So=a_s |—Cn(z — 2o, k)dSz — zp, k) + lim

zZ—20 2 — ZO ’

(34)

the singular point ~ z, needs a careful analysis.
We notice that the only singular term in the infi-
nite trigonometric series expansion of the function
NS z—zp, k) is (mcosecr) /2K, T = n(z—2)/(2K),
while that in the infinite power series expansion of
cosecr for |7| < mis 1/7. This implies that the
principal term of the asymptotic expansion of the
solutionsu(z) behave like(z — z,)~! nearz,. The
singularity will be attractive or repulsive according
as the parameter_,, which is the strength of the
singularity, is negative or positive. Fortutiously, the
effect of singularity disappears at= z, due to the
cancellation taking place between terms of opposite
signs inSy. Thus the solutions vanish at the plane
u = ug in the coordinate frame labeled By, ¢, u)

as is expected for a physical solution in the presenc:
of singularity.

The restrictionr| < = for convergence of cosec
series is translated for the spatial and time coordi-
nates agz —xo) —C(t—tp) < 2K, where we express
20 = xg — Cto. Hence the physical travelling waves
are confined to one half-space (while the other half-
space remains a forbidden region for the waves) o
the planer — ct — d < 0, whered = xy — Cty + 2K,

and correspondingly = uy as(z,t) — (xo, to).

Note that the separating plane is orthogonal to the
latter plane and makes angles= cos™! |1/v/1 + C2|
andf;, = cos™!|c/v/1+ c2| with the other two co-
ordinate planes = 0 andt¢ = 0 respectively. These
two angles in turn depend on the parameter ¢ whick
determines the wave speed. Hence the wave spee
plays a significant role in defining the region of va-
lidity of the solutions, ie. very fast and very slow
waves have different regions of validity.

The other two classes correspond to the non-singule
solutions

Classj: oY) =ay+ ayF?, j=3,4. (35

The resulting travelling wave solutions are of the
same form as the solutions (13) and](18) obtainec
in Sed2:

, a a
u = ug+ (ao+ k—Q)(z — ) — k—zE(goo, k), (36)

whereaq;s are to be computed from last two rows of
Table[1 and Tablg]2. Note that Classolution is
linear inz andt, sinceay; = a4y = 0 (see the last
rows of the tables).



e Selection |1 four classes remain non-singular

Let us now choose pairs of purely real and of purely w9 = oy + ap(z — 21) + (3 — j)a_sE(p1, k)

imaginary roots ofF” respectively ast1/k'(0 < (2 — V24 oSN 2 — 2 ked(x — = k) (41

k? =1 —k* < 1) and+i/k which come from the (j)( B IR agsilz — 2, k) E(Z Zl’k?ﬁ @

selection(ey, €2, e3) = (—k2,1,k2) or (k2,1, —k"2). e +ao(z —21) +a (‘pl’lz)/ ’

One then obtains the following representation of — K assn(z — z1, k)ed(z — 21, k) /K™, (42)

F(z): wherej = 1,2 for Equation [4l) ang = 3,4 for
F(z) =sdz — 20, k) , (37) Equation [(4R).

leading to a new solution af(z). The explicit ex-  Other possible selections from Table 116f[27] will gen-
pressions for Class 1 and Class 2 are givenby  erate many such new elliptic travelling wave solutions of

u? = w4 0;(z — 20) — (3 — j)a_sE(wo, k) GSWW equation. Let us mention that the degeneratt

19 0 e 0 - 0 selections leading to hyperbolic and trigonometric type

+(2 = j)k a—ssn(z — 2o, k)cd(z — 20, k) + 50(38) \yaves can be obtained from elliptic solutions](3B)+(42)
for j = 1,2, where we have abbreviateg as Nk — 0,1 limit.

0; = ap+ (3—j)k"?a_». The non-singular solutions
corresponding to Class Il and IV solutions read 4 Summary

0D = uo o+ (ag — 22 (Z_Z)+&E( k) : :
-0 07 12 0) T J212 7 \P0, ¥) | this article we proposed an extended method to genel
a2 4 ate a rich class of doubly-periodic elliptic travelling veav
— —sNnz — zy, k)cd(z — 2o, k =3,4. (39 . . . ,
k2 "z = 20, k)ed(z = 20, k) , j = 3,4. (39) solutions of the GSWW equation. A systematic classi-
fication is given for the solutions to exhaustively utilize
Re strength of the proposed method. We also discusse

. - canonical procedure for generating travelling wave so
Sgrr::?allgt (tjrl::stc())l tpsngdi'::gp;lezr}rs;dsgﬁégr;{I ions. The problem with such solutions is that these
: lutions g - ectic %%uire the pre-knowledge of zeros of second derivative

only quasi-periodic, the periodic behaviour is o%—

d f inaul Ui hich : the solutions. The proposed EEF method removes thi
ii;\/; Zr sihgufar solutions which are prominey iculty by fixing the zeros of the first derivative of the
~J 0.

solutions and leads to a wide range of travelling wave:s
e Selection |11 which include the kink type solitary wave [13], sinusoidal

We just saw that the Clagsand? solutions gener- type periodic soluj[ion [20] and a rational solut.ion ([22]).
ate singular solutions owing to the generating fungas's'l to 4 classify the various types of solgtlons Wh.ose
tional F(2(x. 1)) possessing either a zero or a pofePlicit forms are noted for three representative selestio
in the region of validity. It is indeed possible to gergf integral parameters defining the_generatlng_ funp_tlonal
erate non-singular solutions for these classes, whitfill @nalysis regarding the domain and applicability of
share similar qualitative behaviour with the previos!Ch solutions is also given.

counterparts, i’ can be chosen to have neither zero

nor a pole in the finite part. Below we provide sucRefer ences

an example, which are the only one among the set of

The main feature of Selection Il is that the solutio
coming from that are nearly periodic in the whol

elliptic functions. [1] Levi D and Winternitz P (Eds) 1988ymmetriesand
We choose the zeros #f as+1, +1/k’ correspond- nonlinear phenomena (WS)

ing to the selection(,e3,e3) = (—A”,—L1). 2] Konopelchenko B G 1987MNonlinear integrable
Then we have the following representationfofz) equations (Springer-Verlag)

(see Table 1 of[[27])
F(z)=ndz — 2z, k), (40)

[3] Léon J J-P (Ed) 1988Blonlinear evolutions (WS)

[4] Nayfeh A H and Balachandran B 19%&plied non-
wherez; is fixed asF'(z;) = 1. It is now trivial linear dynamics. Analytical, Computational and
to check that the generated solutions for each of the Experimental Methods (Willey-Interscience NY)
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[5] Wiggins S 2003Introduction to Applied Nonlinear [20] Clarkson M. A. and Mansfield E. L. 199onlin-
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