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Abstract

In this work an extended Jacobian elliptic function method is proposed and applied to the generalized
shallow water wave equation. We systematically investigate to classify new exact travelling wave solu-
tions expressible in terms of quasi-periodic elliptic integral function and doubly-periodic Jacobian elliptic
functions. The derived new solutions include rational, periodic, singular and solitary wave solutions. An
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physical viability of the singular solutions obtained through our procedure.
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1 Introduction

Seeking analytical as well as numerical solutions of non-
linear systems has continued to attract attention through
the last few decades [1, 2, 3, 4]. Mathematically, non-
linear equations do not normally have solutions which
would superpose making the systems they represent rather
complicated and difficult to analyze [5, 6]. On the other
hand, an extensive study of a number of nonlinear sys-
tems has revealed that there do exist solutions which are
not only interesting in their own right but have a wide
range of applicability [7, 8]. To generate exact solutions
and to understand their properties several important tech-
niques have been developed such as the inverse scatter-
ing approach [9], Lax pair formulation [10] and Backlund
transformations [11]. Nonlinear equations have also been
shown to arise from a boundary value problem [12] pos-
sessing hierarchy of conservation laws [13].

An important class of solutions of nonlinear evolu-
tion equations is concerned with those of the travelling
waves that reduce the guiding partial differential equa-
tion of two variables namely,x andt to an ordinary dif-
ferential equation of one independent variablez = x− ct
where c(∈ R − {0}) is a parameter signifying the speed
with which the wave travels either to the right or left. A
number of methods has been employed in the literature
to obtain the travelling wave solutions of various types.
These include the homogeneous balance method [14], the
hyperbolic method [15], the trigonometric method [16],
Darboux’s transformation [17], F-function method [18]
etc.

Recently the existence of travelling wave solutions for
the generalized shallow water wave (GSWW) equation
[19]

uxxxt+αuxuxt+βutuxx−uxt−uxx = 0 , (ul ≡
∂u

∂l
) (1)

with α, β ∈ R − {0} has been noted. The derivation
of (1) follows from the classical water wave theory with
the aid of Boussinesq approximation. In an interesting
review, Clarkson and Mansfield [20] considered the vari-
ous classical and non-classical reductions of the GSWW
equation wherein they also investigated the Painlevé tests
to examine the complete integrability of (1) which holds
if and only ifα = β orα = 2β. They explored some sim-
ple and non-trivial family of solutions of (1) while in [21]
a class of exact travelling wave solutions were obtained
by making use of the homogeneous balance method and
a modified hyperbolic method.

In this article we plan to study the travelling wave so-
lutions

u(x, t) ≡ u(z) , z = x− ct , (2)

of the GSWW equation (1) in a more general framework.
We show that the canonical procedure namely, the classi-
cal technique [22], based on an integration within a suit-
able range not only recovers both known periodic (includ-
ing elliptic and trigonometric) and non-periodic hyper-
bolic solutions, but also unfolds several new elliptic and
rational solutions. However such a constructive method
has its limitations in the sense that the range of validity
of the obtained solutions is fixed by the analysis of the
zeros of the governing cubic polynomial inu′(z) before-
hand and so, in practical applications, a particular solu-
tion proves difficult to implement.

One of our aims is to go beyond this standard path by
proposing an extended method based on the use of Ja-
cobian elliptic functions. We refer to it as an extended
elliptic function (EEF) method. We look for solutions by
considering an expansion given by

v(z) ≡ u′(z) =
m
∑

i=−m

aiF
i(z) . (3)

In Equation (3), F is an unknown functional constrained
to satisfy the relation

(F ′)2 = (1 + ε1F
2)(ε2 + ε3F

2) , (4)

where the prime denotes the derivative with respect toz
throughout the text. The important feature of the EEF
method is that it includes not only the positive integral
powers ofF but also the negative ones. Our motivation
for keeping lower negative degrees of F comes from the
fact that in typical solvable systems like the Korteweg de
Vries the related spectral problem allows similar exten-
sions [23, 24]. It has been shown that these lower equa-
tions may arise [24] as a necessary part of an extended
symmetry structure [25] while it is known [26] that the
underlying commutator generates the whole set of sym-
metry operators for the system.

It is not difficult to see that the biquadratic integral [27]
emerging from the constraint (4) facilitates expressing the
travelling wave solutions in terms of the Jacobian elliptic
functions pq(z − z0, k), where the symbol pq represents
twelve such distinct functions sn,cn,dn,ns(≡ 1/sn),cs(≡
cn/sn) etc. The novelty of the EEF method is that it
opens up a broad spectra of new travelling wave solu-
tions that include the already known ones (see for exam-
ple, [22, 28, 29, 30, 31]). We shall explicitly provide the
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solutions generated from the EEF method for some spe-
cial selections of the integral parameters.

This article is organized as follows. In Section 2, we
derive the reduced ordinary differential equation for the
GSWW equation and then go for the classical technique
to obtain exact analytical solutions. In Section 3 we turn
to the constraint (4) to take up the construction of our new
procedure and then categorise different types of solutions
being generated from the EEF method by appealing to
particular choices of the integral parameters. It will be
seen that the solutions in the appropriate limits reduce to
previously known results. Finally, in Section 4 we present
a summary of our results.

2 Canonical procedure for the
GSWW equation

To start with, we substitute the form (2) into the GSWW
equation (1) that results in a fourth order ordinary differ-
ential equation

cu′′′′ + (α+ β)cu′u′′ + (1− c)u′′ = 0 . (5)

Let us note that the parametersα, β controls the strength
of non-linearity of above equation. Without loss of gener-
ality, one can leave one of them, sayα, arbitrary while the
other parameterβ may be varied to tune the strength of
non-linearity appropriate for the concerned physical situ-
ations. Three particular values ofβ namelyβ = ±α, α/2
are known to correspond completely integrable system.
In this article we shall explore the solutions of Equation
(1) leaving both of them arbitrary except forβ = −α as
it points to the linear system and hence is well-known. It
is straightforward to obtain a second integral of (5) given
by

3cu′′2+c(α+β)u′3+3(1−c)u′2+6cc1u
′+3cc2 = 0 , (6)

which may be expressed as a first order equation in terms
of the variablev(z) ≡ u′(z):

v′2 = −α + β

3
P3(v) ≡ −α + β

3

3
∏

j=1

(v − vj) . (7)

Note that in Equation (6) and also elsewhere in the text,
the arbitrary constants appearing through the process of
integration are denoted by the symbolcj and will not be
explicitly mentioned further. In (7) the monic cubic poly-
nomialP3(v) is given by

P3(v) = v3 +
3(1− c)
c(α + β)

v2 +
6c1

α + β
v +

3c2
α+ β

. (8)

For simplicity let us assume that all the three roots of
P3(v) are real and focus on the arrangementv1 ≥ v2 ≥
v3. We consider first the non-degenerate case of distinct
roots for α + β < 0. A formal integration of (7) in
the range[(vj , zj), (v, z)], where the pointzj is to be de-
termined from the transcendental equationv(zj) = vj,
yields

∫ z

zj

dz = ±
∫ v

vj

dw

[(−α+β
3
)
∏3

j=1(w − vj)]1/2
. (9)

Now care is to be taken to choose the rootvj , j = 1, 2 or 3
that defines the interval of validity of the solution. It is
easy to see that the reality condition forv(z) gives rise to
two different cases namely eitherv3 < v < v2 or v1 <
v < ∞. We address them by turn below.

Case 1: v3 < v < v2 (α + β < 0)

Keeping in mind that the range of integration is be-
tween[v3, v] and[z3, z], the following change of variables
w → ϕ proves useful

w = v3 + (v2 − v3) sin
2 ϕ . (10)

The standard definition for Jacobian elliptic function then
expressesv(z) in a closed analytic form

v(z) ≡ u′(z) = v3 + (v2 − v3)sn2(ν(z − z3), k) , (11)

whereν =
√
[|α + β|(v1 − v3)/3]/2 andk2 = (v2 −

v3)/(v1 − v3)(0 < k2 < 1) is the modulus of the elliptic
function [32]. In terms of the elliptic integral function of
the second kindE(ϕℓ, k) through the relationsinϕℓ =
sn(ν(z − zℓ), k), defined by the integral

E(ϕℓ, k) =

∫ ϕℓ

0

√

1− k2 sin2 α dα , ℓ = 0, 1, 3 ,

(12)
we obtainu(z), after integrating (11), in the final form

u(z) = u3+
v2 − k′2v3

k2
(z−z3)−

v2 − v3
νk2

E(ϕ3, k) . (13)

In the above solution and also in the followinguj is de-
fined in a natural way asuj = u(zj), j = 1, 2, 3 while
k′2 = 1 − k2 is the complementary modulus of elliptic
functions.

It may be pointed out that (13) is a new travelling wave
solution. Two interesting limits namelyk → 1 andk → 0
may be of interest to notice that lead to the existence of
a double root ofP3(v). For k → 1-0, we must letv1 →
v2+0, but thenv3 cannot be allowed to coincide withv2
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as this will imply that the limiting solution has no range
of validity. Along the same reasoning we conclude that
the limit k → 0 is disallowed for this case. Noting that
E(ϕ3, k → 1) = tanh[ν(z − z3)] the solution (13) thus
reduces to the hyperbolic form fork → 1-0

u(z) = u3+ v2(z− z3)−
v2 − v3

ν
tanh[ν(z− z3)] . (14)

Case 2: v1 < v < ∞ (α + β < 0)

Clearly the range of integration now lies between
[v1, v] and[z1, z]. Employing the substitution

w = v3 + (v1 − v3)cosec2ϕ , (15)

we obtain the following expression forv(z)

v(z) ≡ u′(z) = v3 + (v1 − v3)dc2(ν(z − z1), k) . (16)

The above equation, on further integration, yields another
new travelling wave solution

u(z) = u1 + v1(z − z1)−
v1 − v3

ν
[E(ϕ1, k)

−sn(ν(z − z1), k)dc(ν(z − z1), k)] . (17)

In above we have used the relation sn(z + K, k) =

cd(z, k), whereK(k) =
∫ π/2

0
dα/

√

1− k2 sin2 α is the
quarter real period of elliptic sine function. Let us now
take the limitv2 → v1-0 keepingv3 < v2 that makes the
travelling wave solution linear in spatial and time coordi-
nates

k → 1-0 : u(x, t) = (u1 − v1z1) + v1(x− ct) . (18)

On the other hand, lettingv3 → v2-0 wherev2 < v1, we
recover the periodic solution

k → 0 : u(z) = u1+v2(z−z1)+
v1 − v2

ν
tan[ν(z−z1)] .

(19)
The case forα+ β > 0 will give the result in comple-

mentary frame which can be derived along the same way
as before. Without giving the details of the procedure, we
are providing below the final solutions.

Case 3: v2 < v < v1 (α + β > 0)

v(z) = v1 − (v1 − v2)sn2(ν(z − z1), k
′) ,

u(z) = u1 +
v2 − k2v1

k′2
(z − z1)

v1 − v2
νk′2

E(ϕ′
1, k

′) , (20)

wheresinϕ′
i = sn(ν(z − z1), k

′), i = 1, 3. To derive the
above we made the following substitution in (9)

w = v1 + (v2 − v1) sin
2 ϕ . (21)

Case 4: −∞ < v < v3 (α + β > 0)

v(z) = v1 − (v1 − v3)dc2(ν(z − z3), k
′) ,

u(z) = u3 + v3(z − z3) +
v1 − v3

ν
[E(ϕ′

3, k
′) (22)

−sn(ν(z − z3), k
′)dc(ν(z − z3), k

′)] ,

which comes from the following substitution in (9)

w = v1 − (v1 − v3)cosec2ϕ . (23)

It is interesting to note that in contrast to the cases1 and
2 for α+ β < 0, the known hyperbolic and periodic solu-
tions are recovered forα+ β > 0 (Cases3,4) in the com-
plementary limit of the elliptic solutions (20) and (22).

Finally let us deal with the degenerate case when
P3(v) has a triple zero, i.e.v1 = v2 = v3 = v0. From the
cubic (8) it is clear that we have to choosec2 = −2v0c1/3
giving the multiple rootv0 = (c − 1)/[c(α + β)]. The
range of integration will be−∞ < v < v0 orv0 < v < ∞
according asα + β ≷ 0. The singular rational solution
can be expressed in a compact form as follows

P3(v) = (v−v0)
3 : u = v0(z−c3)+

12

α+ β

1

z − c3
+c4 ,

(24)
which was obtained in [21] from a different approach.

We have thus obtained several new solutions by ap-
plying the classical technique based on an analysis of the
zeros of a cubic polynomial. Interestingly in the appro-
priate limits all the known solutions are retrieved. It is
clear that for practical applications of the solutionsu(z)
derived in this section, a knowledge about the position of
zeros ofu′′(z) is required which somewhat weakens their
utility. In the next section we propose a new method that
is free from such a limitation.

3 The EEF method for the GSWW equa-
tion

Here instead of focussing on the zeros ofu′′(z) which are
unknown we fix the zeros ofu′(z). Sinceu′′ has three
zeros [see Equation (7) of Section 2], it is obvious thatu′

has four zeros. This motivates us to propose the following
construction.
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Table 1: The solutions of the non-linear system (28) for the expansion
parametersaj, j = 0, 1, 2 are given. In the second column,ω =
ε1ε2 + ε3.

Class (α+ β)a0 a1 (α+ β)a2

1 1− c−1 − 4ω 0 −12ε1ε3
2 1− c−1 − 4ω 0 0
3 1− c−1 − 4ω 0 −12ε1ε3
4 Arbitrary 0 0

3.1 Construction

Let us turn to the fourth-order ordinary differential equa-
tion (5) which we integrate to write

2cv′′ + c(α + β)v2 + 2(1− c)v − c5 = 0. (25)

We look for a formal solution in the form

v(z) =
m
∑

i=−m

aiF
i , (26)

where the generating functionalF (z(x, t)) satisfies the
constraint (4). Note that the inclusion of negative powers
of F , in general, creates pole ofu′ triggering the pres-
ence of singular solutions in some situations. However,
we explicitly show that such singular solutions are phys-
ically acceptable in a restricted domain of space labeled
by (x, t, u). Substituting the expansion (26) into Equation
(25) points tom = 2 and so the Lorentz-like expansion
of v(z) reads

v(z) = a0 + a1F + a2F
2 +

a−1

F
+

a−2

F 2
. (27)

We next compute the expansion parametersai that
needs term-by-term balancing of the coefficients of each
powers ofF to zero. Somewhat involved but straightfor-
ward algebra leads to the following relations

F±4 : a±2[12 ∧± +(α + β)a±2] = 0, [∧+ ≡ ε1ε3] ,

F±3 : a±1[2 ∧± +(α+ β)a±2] = 0, [∧− ≡ ε2] ,

F±2 : 8c(ε1ε2 + ε3)a±2 + (α + β)c(a2±1 + 2a0a±2)

+ 2(1− c)a±2 = 0 , (28)

F±1 : c(ε1ε2 + ε3)a±1 + (α+ β)c(a0a±1 + a∓1a±2)

+ (1− c)a±1 = 0 ,

F 0 : 4c(ε2a2 + ε1ε3a−2) + (α + β)c(a20 + 2
2

∑

i=1

aia−i)

+ 2(1− c)a0 + c5 = 0 .

Table 2: The integration constantc5 anda
−1,2 satisfying (28) are

provided where(Aj − ω2)/(ε1ε2ε3) = 12/(−4)j−1, for j = 1, 2
andA3 = ca0(α + β) + 2(1− c).

Class a
−1 (α+ β)a

−2 c(α+ β)c5
1 0 −12ε2 −(1− c)2 + 16c2A1

2 0 −12ε2 −(1− c)2 + 16c2A2

3 0 0 −(1− c)2 + 16c2A2

4 0 0 ca0A3(α+ β)

By exploiting (28) we can derive four classes of so-
lutions for aj and c5 which are summarized in Table 1
and Table 2. From a previous work we already know that
twelve different choices exist (see Table I in [27]) for the
zeros ofF in right-hand side of (4) that leads to differ-
ent representation forF (z) in terms of Jacobian elliptic
functions. Further for each of them one gets four classes
of travelling wave solutions of GSWW equation (1) corre-
sponding to the solutions furnished in Table 1 and Table 2.
Our new method is a generalized procedure and encom-
passes the previously known solutions as special cases. In
the next subsection we provide, as illustrative cases, four
classes of solutions for three particular choices of integral
parameters in Equation (4).

3.2 Class 1-4 solutions for particular selections of in-
tegral parameters

To get explicit forms of Class 1–IV solutions obtained in
EEF method, it remains to choose the integral parameters
εj, j = 1, 2, 3 in the constraintF ′2 = (1 + ε1F

2)(ε2 +
ε3F

2). At first let us consider some degenerate selections
(i. e. taking a pair of double zeros ofF ′) leading to hyper-
bolic, trigonometric and linear solutions.

• Algebro-hyperbolic Waves

The choice(ε1, ε2, ε3) = (−1, 1,−1) givesF (z) =
tanh z that generate the following solutions modulo
a constant

u = (a0+a2+a−2)z−a2 tanh z−a−2 coth z . (29)

The above solution reduces to linear form for Class 4
while singular term disappears in Class III solutions.

• Algebro-trigonometric Waves

Choosing (ε1, ε2, ε3) = (1, 1, 1), we get F =
tan z which gives following solutions apart from an
inessential factor

u = (a0 − a2 − a−2)z+ a2 tan z− a−2 cot z . (30)
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Note that such types of algebro-hyperbolic and algebro-
trigonometric solutions are new and of interest. By choos-
ing suitable value of wave speed c the algebraic term can
be removed causing the reduction to known forms ob-
tained in [21]. Now using a canonical procedure we have
already obtained [see (14) & (19) of Section 2] such types
of solutions in the extreme limits of modulus parameter of
elliptic functions. This means that more general forms of
solutions can be generated from EEF method providedF ′

has four simple zeros.
We already mentioned that twelve different selections

are possible for the simple zeros ofF ′ in the constraint (4)
leading to closed analytic expressions forF (z) in terms
of doubly periodic Jacobian elliptic functions. Here we
provide explicit forms of the wave-solutions for the three
representative selections, two of which produce singular
wave-solutions of Class1 and2. For each class of solu-
tions, the parametersα, β and the integration constantc5
are related through a constraint as dictated by the last col-
umn of Table 2, the explicit mention of which is omitted
in the following to avoid repetition.

• Selection I

Let us choose the zeros ofF ′ as ±1,±1/k(0 <
k2 < 1) which correspond to the selection of triplet
(ε1, ε2, ε3) = (−1, 1,−k2) or (−k2, 1,−1). Choos-
ing z0 such thatF (z0) = 0, one then obtains (see
Table I of [27])

F (z) = sn(z − z0) . (31)

Thus we are led to four classes of solutions of which
the first two correspond to the singular solutions :

Classj : v(j) = a0+a2sn2(z−z0)+a−2ns2(z−z0) ,
(32)

for j = 1, 2, whereais have to be computed from 1st
and 2nd rows of Table 1 and superfix(j) is used to
denote Class1 and2 solutions. Note that sn2-term is
not present forj = 2, sincea2 = 0 in 2nd row of the
table. The corresponding travelling wave solutions
read

u(j) = u0 + [a0 + (3− j)a−2] (z − z0)

− (3− j)a−2E(ϕ0, k) + S0 , (33)

whereS0 is the singular term given by

S0= a−2

[

−cn(z − z0, k)ds(z − z0, k) + lim
z→z0

1

z − z0

]

.

(34)

The behaviour of the expressions, given by (33) near
the singular pointz ∼ z0 needs a careful analysis.
We notice that the only singular term in the infi-
nite trigonometric series expansion of the function
ns(z−z0, k) is (πcosecτ)/2K, τ ≡ π(z−z0)/(2K),
while that in the infinite power series expansion of
cosecτ for |τ | < π is 1/τ . This implies that the
principal term of the asymptotic expansion of the
solutionsu(z) behave like(z − z0)

−1 nearz0. The
singularity will be attractive or repulsive according
as the parametera−2, which is the strength of the
singularity, is negative or positive. Fortutiously, the
effect of singularity disappears atz = z0 due to the
cancellation taking place between terms of opposite
signs inS0. Thus the solutions vanish at the plane
u = u0 in the coordinate frame labeled by(x, t, u)
as is expected for a physical solution in the presence
of singularity.

The restriction|τ | < π for convergence of cosecτ -
series is translated for the spatial and time coordi-
nates as(x−x0)−c(t−t0) < 2K, where we express
z0 = x0 − ct0. Hence the physical travelling waves
are confined to one half-space (while the other half-
space remains a forbidden region for the waves) of
the planex− ct− d < 0, whered = x0− ct0 +2K,
and correspondinglyu = u0 as(x, t) → (x0, t0).

Note that the separating plane is orthogonal to the
latter plane and makes anglesθx = cos−1 |1/

√
1 + c2|

andθt = cos−1 |c/
√
1 + c2| with the other two co-

ordinate planesx = 0 andt = 0 respectively. These
two angles in turn depend on the parameter c which
determines the wave speed. Hence the wave speed
plays a significant role in defining the region of va-
lidity of the solutions, i.e. very fast and very slow
waves have different regions of validity.

The other two classes correspond to the non-singular
solutions

Classj : v(j) = a0 + a2F
2 , j = 3, 4 . (35)

The resulting travelling wave solutions are of the
same form as the solutions (13) and (18) obtained
in Sec 2:

u(j) = u0+(a0+
a2
k2

)(z− z0)−
a2
k2

E(ϕ0, k) , (36)

whereais are to be computed from last two rows of
Table 1 and Table 2. Note that Class4 solution is
linear inx andt, sincea±1 = a±2 = 0 (see the last
rows of the tables).
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• Selection II

Let us now choose pairs of purely real and of purely
imaginary roots ofF ′ respectively as±1/k′(0 <
k′2 = 1 − k2 < 1) and±i/k which come from the
selection(ε1, ε2, ε3) = (−k′2, 1, k2) or (k2, 1,−k′2).
One then obtains the following representation of
F (z):

F (z) = sd(z − z0, k) , (37)

leading to a new solution ofu(z). The explicit ex-
pressions for Class 1 and Class 2 are given by

u(j) = u0 + ̺j(z − z0)− (3− j)a−2E(ϕ0, k)

+ (2− j)k2a−2sn(z − z0, k)cd(z − z0, k) + S0 (38)

for j = 1, 2, where we have abbreviated̺j as
̺j = a0+(3− j)k′2a−2. The non-singular solutions
corresponding to Class III and IV solutions read

u(j) = u0 +
(

a0 −
a2
k2

)

(z − z0) +
a2

k2k′2
E(ϕ0, k)

− a2
k′2

sn(z − z0, k)cd(z − z0, k) , j = 3, 4 . (39)

The main feature of Selection II is that the solutions
coming from that are nearly periodic in the whole
domain due to the additional sn and cd-term. In
contrast the solutions generated from Selection I are
only quasi-periodic, the periodic behaviour is ob-
served for singular solutions which are prominent
nearz ∼ z0.

• Selection III

We just saw that the Class1 and2 solutions gener-
ate singular solutions owing to the generating func-
tional F (z(x, t)) possessing either a zero or a pole
in the region of validity. It is indeed possible to gen-
erate non-singular solutions for these classes, which
share similar qualitative behaviour with the previous
counterparts, ifF can be chosen to have neither zero
nor a pole in the finite part. Below we provide such
an example, which are the only one among the set of
elliptic functions.

We choose the zeros ofF ′ as±1,±1/k′ correspond-
ing to the selection(ε1, ε2, ε3) = (−k′2,−1, 1).
Then we have the following representation ofF (z)
(see Table I of [27])

F (z) = nd(z − z1, k) , (40)

wherez1 is fixed asF (z1) = 1. It is now trivial
to check that the generated solutions for each of the

four classes remain non-singular

u(j) = u1 + a0(z − z1) + (3− j)a−2E(ϕ1, k)

− (2− j)k2a−2sn(z − z1, k)cd(z − z1, k) ; (41)

u(j) = u1 + a0(z − z1) + a2E(ϕ1, k)/k
′2 ,

− k2a2sn(z − z1, k)cd(z − z1, k)/k
′2 , (42)

wherej = 1, 2 for Equation (41) andj = 3, 4 for
Equation (42).

Other possible selections from Table I of [27] will gen-
erate many such new elliptic travelling wave solutions of
GSWW equation. Let us mention that the degenerate
selections leading to hyperbolic and trigonometric type
waves can be obtained from elliptic solutions (33)–(42)
in k → 0, 1 limit.

4 Summary

In this article we proposed an extended method to gener-
ate a rich class of doubly-periodic elliptic travelling wave
solutions of the GSWW equation. A systematic classi-
fication is given for the solutions to exhaustively utilize
the strength of the proposed method. We also discussed
a canonical procedure for generating travelling wave so-
lutions. The problem with such solutions is that these
require the pre-knowledge of zeros of second derivative
of the solutions. The proposed EEF method removes this
difficulty by fixing the zeros of the first derivative of the
solutions and leads to a wide range of travelling waves
which include the kink type solitary wave [13], sinusoidal
type periodic solution [20] and a rational solution ([22]).
Class 1 to 4 classify the various types of solutions whose
explicit forms are noted for three representative selections
of integral parameters defining the generating functional.
A full analysis regarding the domain and applicability of
such solutions is also given.
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