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Abstract

A mathematical approach of the phenomenological theory has been applied to the
martensitic transformation of DO3 → M18R close-packed structure. The crystallog-
raphy of DO3 → M18R martensitic transformation in Fe-25.8 wt%Mn-7.4wt%Al-
0.11wt%C alloy was studied using single crystals. Martensitic crystallographic pa-
rameters such as habit plane, magnitude of lattice invariant shear, shape deforma-
tion direction and orientation relationships are calculated with new mathematical
approach. Phenomenological theoretical calculations were compared with predic-
tions of the phenomenological crystallographic CRAB theory and with experimental
observations.

1. Introduction

On the basis of the experimentally observed parent-martensite orientation relation-
ship, and other features such as stacking faults on the martensite basal plane, it is now
well accepted that the basal plane of 18R martensites originates from one of the {110}
planes of the parent DO3 phase and that the inhomogeneous shear of the crystallography
theory during transformation occurs on the basal plane. There are six {110} planes in
the DO3 structure and two possible shear directions for each {110} plane. Thus, there
are 12 possible combinations of stacking planes and shear directions, each combination
of which leads to two possible crystallographically equivalent unrotated and undistorted
habit planes. Thus, 24 martensite variants can result from a single crystal parent.

The 18R martensite phase was observed in the bcc matrix of an Fe-25.8wt%Mn-
7.4wt%Al-0.11wt%C [1] alloy, after cooling from high temperature. When FeMnAlC
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alloy was water-quenched from 1300◦C to room temperature, γ + α duplex structures
was found. The γ phase is a fcc structure and the α phase is bcc. There is a needle-like
martensite phase in the α grains. The bcc phase is the stable phase at high temperature.
The crystal structure of the needle-like martensite phase can be determined from the
selected-area diffraction technique [2, 3]. In the FeMnAlC alloy system, a high stacking
fault density is found within the 18R martensite phase. Basically, the martensite phase
in this system is similar to the 9R martensite in CuZn [4, 5] or the 18R martensite in
CuZnAl [6, 7, 8].

It is well known that the so-called phenomenological theory of martensitic trans-
formation is based on the assumptions that the parent-martensite interface (i.e., at the
habit plane) should remain unrotated during the transformation. From this basic condi-
tion crystallographic features such as habit plane, magnitude of lattice invariant shear,
shape deformation direction and orientation relationships can be calculated. Almost all
of such calculations so for done followed the mathematical approach originally developed
by Wechsler et.al. [9], Bowles and Mackenzie [10] or Crocker et.al. [11]. This approach
consists of rather lengthy and complicated matrix algebra. On the other hand, Suzuki
[12] developed in 1954 a much simpler method of calculating those crystallografic features
of martensitic transformation, assuming the almost same strain condition at the habit
plane. Although his approach is quite easily applicable to any system of martensitic
transformations and is very convenient for actual numerical calculations.

In this work the Suzuki’s mathematical approach is applied to the transformation
of DO3 → M18R close-packed structure, and analytical equations for the magnitude of
the lattice invariant shear and habit plane indices are derived. The numerical calculations
of various crystallographic features are performed for FeMnAlC [1] alloy. The predicted
crystallographic features will be compared with the calculations of CRAB martensitic
crystallography. Martensitic crystallographic parameters such as habit plane, magnitude
of lattice invariant shear, shape deformation direction and orientation relationships were
analysed with a program written in FORTRAN 77.

2. Derivation of Analytical Equations

2.1. Magnitude of the Lattice Invariant Shear and Habit Plane Indices

It is well known that the theory of martensitic transformation crystallography is
based on the assumption that there should be no average distortion at the parent/product
interface (i.e. at the habit plane). From this basic condition, crystallographic features
such as habit plane, orientation relationships, direction and magnitude of the shape defor-
mation and magnitude of the lattice invariant shear can be calculated. We accomplish this
by inserting the lattice parameters introduced earlier for the bcc parent and 9R marten-
site into the formula derived by Kajiwara [4], which incorporated the Suzuki martensite
crystallographic theory [12]. First we discuss the structural change from DO3 to M18R
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structure, referring to Fig. 1 [13]. The DO3 superlattice and the 18R structure in the
monoclinic representation are drawn schematically in Fig. 1(b).
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Figure 1. Structural change from DO3 parent to M18R martensite for C.V.3 ′ . a) DO3

structure viewed from [0 1 0]DO3 direction. b) 18R structure viewed from [0 1 0]18R direction

[13].

Similar to what has been shown by Kajiwara [4], it can be seen that the axes in the 18R
structure are related to those in the DO3 superlattice as follows [13]:

a[1 0 0]18R → aDO3

2
[1 0 1]

b[0 1 0]18R → aDO3 [0 1 0]
c[0 0 1]18R → aDO3 [5 0 4].

From the relations above, the matrix C relating any vector ~V of the DO3 structure
to a vector ~V ′ of the 18R structure can be deduced as

~V = C~V ′. (1)
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Here, the matrix C is correspondence matrix and is given by:

C =
1
2

 −1 0 −10
0 −2 0
−1 0 8

 .

The inverse of this relation
~V ′ = C−1~V (2)

with

C−1 =
1
9

 −8 0 −10
0 −9 0
−1 0 1


is also valid and can be used for calculating the vector ~V ′ in martensite into which a
given vector ~V in the parent phase is transformed. Accordingly, plane normals ~n in the
parent phase and ~n′ in martensite are related by

~n = ~n′C−1 (3)

~n′ = ~nC. (4)

By means of Eqs. (1) to (4) the vectors originally present in martensite or in the
parent phase can be redefined in terms of other structure.

Since there are six {101}DO3 planes and two choices in the direction of the shear,
there are 12 lattice correspondence variants (C.V.). These are listed in Table 1, where the
C.V. with and without primes for the same numbers refer to C.V.’s with opposite shear
directions. Obviously, the C.V. described above corresponds to C.V.3 ′ in Table 1.

Table 1. Lattice correspondence between DO3 parent and 18R martensite

C.V. [100]18R [010]18R [001]18R (001)18R

1 1
2 [011]DO3 [100]DO3 [054]DO3 (011)DO3

1′ 1
2
[011]DO3 [100]DO3 [045]DO3 (011)DO3

2 1
2 [011]DO3 [100]DO3 [054]DO3 (011)DO3

2′ 1
2 [011]DO3 [100]DO3 [045]DO3 (011)DO3

3 1
2
[101]DO3 [010]DO3 [405]DO3 (101)DO3

3′ 1
2 [101]DO3 [010]DO3 [504]DO3 (101)DO3

4 1
2 [101]DO3 [010]DO3 [405]DO3 (101)DO3

4′ 1
2
[101]DO3 [010]DO3 [504]DO3 (101)DO3

5 1
2 [110]DO3 [001]DO3 [450]DO3 (110)DO3

5′ 1
2 [110]DO3 [001]DO3 [540]DO3 (110)DO3

6 1
2
[110]DO3 [001]DO3 [540]DO3 (110)DO3

6′ 1
2 [110]DO3 [001]DO3 [450]DO3 (110)DO3

142



AKMAK, ARTUN

Based on the stacking of close packed planes, we assume the lattice invariant shear
direction in the 18R structure martensite is [100]18R and the plane of lattice invariant
deformation is (001)18R . By this shear the lattice vector ~V ′ and the plane ~n′ are
transformed into ~V ′′ and ~n′′ , respectively, through the following equations:

~V ′′ = G · ~V ′ (5)

~n′′ = ~n′ ·G−1 (6)

where

G =

 1 0 g
0 1 0
0 0 1


and g is the magnitude of lattice invariant shear. The matrix G−1 is the inverse of
the matrix G . A combined effect of the lattice deformation and the lattice invariant
deformation is seen by the substitution of Eqs. (3) and (4) into Eqs. (5) and (6), which
leads to

~V ′′ = G · C−1 · ~V (7)

~n′′ = ~n · C ·G−1. (8)

The matrix G−1 is calculated as follows:

G−1 =

 1 0 −g
0 1 0
0 0 1

 .

It is concluded that, as a result of lattice deformation and the lattice invariant deforma-
tion, the vector and the plane in the DO3 crystal are transformed by the above equations
into the vector and the plane in the 18R crystal, respectively.

Now denote a habit plane as (1 Y Z)DO3 and an arbitrary vector lying in this
habit plane as [1 y z]DO3 , then the following equation holds:

1 + yY + zZ = 0. (9)

In the DO3 to 18R transformation the vector [1 y z]DO3 is transformed into the vector
[ 1
9
{−8 − g + (g − 10)z}, −y, 1

9
(z − 1)]18Rby Eq. (7). The latter vector must, of course,

lie in the habit plane. Since the habit plane is undistorted, the lengths of the above two
vectors must be the same. Therefore

a2

81
{(−8− g) + (g − 10)z}2 + b2y2 +

c2

81
(z − 1)2

+
2ca
81

cosβ0{(−8 − g) + (g − 10)z}(z − 1) = a2
DO3

(1 + y2 + z2).(10)
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Eliminating y from Eqs. (9) and (10), we obtain

A(Y, Z, g)z2 + B(Y, Z, g)z +C(Y, g) = 0, (11)

where

A(Y, Z, g) =
a2

81
(10− g)2 + b2

Z2

Y 2
+
c2

81
− 2

81
ac(10− g) cos β0 − a2

DO3
(1 +

Y 2

Z2
)

B(Y, Z, g) =
2a2

81
(8 + g)(10− g) +

2b2

81
Z

Y 2
− 2c2

81
+

4
81
ac(1− g) cos β0 − 2a2

DO3

Z

Y 2

C(Y, g) =
a2

81
(8 + g)2 + b2

1
Y 2

+
c2

81
+

2
81
ac(8 + g) cos β0 − a2

DO3
(1 +

1
Y 2

).

Since [1 y z]DO3 represent an arbitrary direction lying in the habit plane, Eq. (11)
should hold for any value of z , hence each coefficient of z in the equation must be zero.
That is,

A(Y, Z, g) = 0, B(Y, Z, g) = 0, C(Y, g) = 0. (12)

From Eq. (12) g, Y and Z are obtained as follows:

g = 1− c

a
cosβ0 ±

9aDO3√
2a

√(
2a2

a2
DO3

− 1
)(

2c2 sin2 β0

81a2
DO3

− 1
)

(13)

Y = ±
√

81a2
DO3
− b2

a2(8 + g)2 + 2ac(8 + g) cosβ0 + c2 − 81a2
DO3

(14)

Z =

√
a2(10− g)2 + 2ac(10− g) cos β0 + c2 − 81a2

DO3

a2(8 + g)2 + 2ac(8 + g) cos β0 + c2 − 81a2
DO3

. (15)

By using the relation g′ = ga/c sinβ0 , the magnitude of the lattice invariant shear g′ is
then

g′ =
a

c sinβ0
− ctgβ0 ±

9aDO3√
2c sinβ0

√(
2a2

a2
DO3

− 1
)(

2ca2 sin2 β0

81a2
DO3

− 1
)
. (16)

As seen in the above equation g′ is a function of only lattice constants, a, b, c, β0 ,
and aDO3 , and accordingly Y and Z are also dependent only on the lattice constants of
both phases.
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2.2. Orientation Relationships

The derivation of the orientation relationships was performed on the martensite
variant of which the habit plane indices have positive sign. It is seen by Eq. (8) with g
that the habit plane (1Y Z)DO3 is transformed into (HKL)18R . Since the habit plane
is invariant during the transformation, (1Y Z)DO3 must be parallel to (HKL)18R . Any
given vector lying on the habit plane must also be invariant during the transformation.
For example, the intersection of (100)DO3 plane with the habit plane (1Y Z)DO3 is
[u1 u2 u3]DO3 and this direction is transformed into [u′1 u′2 u′3]18R by Eq. (7).
Since the direction [u1 u2 u3]DO3 lies on the habit plane, it must be invariant and hence
parallel to the direction [u′1 u′2 u′3]18R . Therefore the following orientation relationship
is obtained:

(1Y Z)DO3//(HKL)18R

[u1 u2 u3]DO3//[u
′
1 u′2 u′3]18R.

A relationship between some prominent planes and directions is derived from the
above relation by the following procedures. First, set up a new orthogonal coordinate
with its origin on the habit plane, of which x0 - and y0 -axes are taken to be parallel to
[u1 u2 u3]DO3 and the habit plane normal [1Y Z]DO3 , respectively. The unit length in
the DO3 lattice coordinate is taken as the unit length in this new orthogonal coordinate.
That is, the unit vector along x0 -axis in the above orthogonal coordinate is taken equal
to normalized direction of [u1 u2 u3]DO3 , i.e.

1√
u2

1 + u2
2 + u2

3

[u1 u2 u3]DO3

and the unit vector y0 -axis equal to the normalized direction of [1Y Z]DO3 , i.e.,

1√
1 + Y 2 + Z2

[1Y Z]DO3 or
1√

v2
1 + v2

2 + v2
3

[v1 v2 v3]DO3 .

A direction perpendicular to the above two directions is parallel to z0 -axis and its
normalized direction is

1√
w2

1 + w2
2 + w2

3

[w1 w2 w3]DO3 .

Therefore the following relation holds between the direction [u v w]DO3 in DO3

coordinate and the direction [u v w]DO3 in DO3 coordinate and the direction [u v w]0
in the x0y0z0 -coordinate: u

v
w


DO3

=

 u1 v1 w1

u2 v2 w2

u3 v3 w3

 u
v
w


0

. (17)
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The next step is to obtain a similar relation between the direction [u v w]18R in
monoclinic coordinate of 18R martensite and direction [u v w]0 . The vectors

1√
u2

1 + u2
2 + u2

3

[u1 u2 u3]DO3 and
1√

w2
1 +w2

2 +w2
3

[w1 w2 w3]DO3

which are the unit vectors along x0 - and z0 -axes are transformed by Eq. (7) into
[u1 u2 u3]18R and [w1 w2 w3]18R , respectively. Since x0 - and z0 -axes lie on the
habit plane, the above two vectors are invariant during the transformation. Therefore,
the transformed vectors, [u′1 u′2 u′3]18R and [w′1 w′2 w′3]18R , in monoclinic coordinate of
the 18R martensite correspond to the unit vectors along x0 - and z0 -axes in the x0y0z0 -
coordinate. A vector corresponding to the unit vector along y0 -axis is calculated to be
[v′1 v′2 v′3]18R from these two vectors. Thus the following relationship is obtained: u

v
w


18R

=

 u′1 v′1 w′1
u′2 v′2 w′2
u′3 v′3 w′3

 u
v
w


0

. (18)

Now a relation between [u v w]DO3 and [u v w]18R is obtained from Eqs. (17) and
(18).  u

v
w


DO3

=

 u1 v1 w1

u2 v2 w2

u3 v3 w3

 u′1 v′1 w′1
u′2 v′2 w′2
u′3 v′3 w′3

−1  u
v
w


18R

. (19)

A relation between the planes (hkl)DO3 and (hkl)18R is obtained from the above equation
by calculating the inverse of the multiplication of these two matrices.

(h k l)DO3 = (h k l)18R


 u1 v1 w1

u2 v2 w2

u3 v3 w3

 u′1 v′1 w′1
u′2 v′2 w′2
u′3 v′3 w′3

−1

−1

. (20)

From Eqs. (19) and (20) the relations between some prominent planes and directions are
obtained.

2.3. Shape Deformation

It is well known that the total shape change which produces the surface relief
effect in the martensitic transformation is an invariant plane strain. The total shape
change (deformation) is considered to be an invariant plane strain, which corresponds
to a simple shear on the habit plane plus an extension or contraction perpendicular to
the habit plane to account for the change in volume upon transformation. The invariant
plane is, of course, the habit plane (1Y Z)DO3 . This total shape change is simply called
the shape deformation. The direction and the magnitude of the shape deformation are
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defined by the direction and the amount of the displacement of the unit vector normal to
the habit plane.

The unit vector,
1√

v2
1 + v2

2 + v2
3

[v1 v2 v3]DO3

of the habit plane normal is transformed into [v′1n v′2n v′3n]18R by Eq. (7). This vector is
equivalent to [v′1n v′2n v′3n]DO3 according to Eq. (19). The vector difference between the
above vector and unit normal of the habit plane is ~S′′ . That is, the shape deformation is

~S′′ = [s′′1 s′′2 s′′3 ]DO3 = [v′1n v′2n v′3n]DO3 −
1√

v2
1 + v2

2 + v2
3

[v1 v2 v3]DO3 . (21)

The magnitude of the shape deformation is
√

(s′′1 )2 + (s′′2 )2 + (s′′3)2 . The normalized
direction of the shape deformation ~s′′ is

~s′′ =
1√

(s′′1)2 + (s′′2 )2 + (s′′3 )2
[s′′1 s′′2 s′′3 ]DO3 . (22)

3. Numerical Calculations of the Lattice Invariant Shear, Habit Plane,
Orientation Relationship and Shape Deformation

In order to obtain reliable results single crystals were used, and were studied by X-
ray diffraction technique. The lattice parameter aDO3 of the DO3 matrix is determined
to be 0.582 nm from X-ray diffractometry. The lattice parameter of the monoclinic 18R
unit cell is determined to be a = 0.448 nm, b = 0.518 nm, and c = 3.865 nm [1]. The
a and b lie in the basal plane, the c direction corresponds to 18 close packed layers,
making an angle β0 different from 90◦ between a and c axes. The distortion of the
close-packed hexagonal in the close-packed plane leads to a deviation from the ideal (b/a)
and (c/a) ratios. The ratios between the lattice parameters in the case of an ideally
close-packed 18R structure are a/b/c = 1/1.155/8.485 [14]. In the ideally close-packed
structure, the angle β0 is 90 deg. The lattice parameters of 18R phase for FeMnAlC
alloy [1] are very close to the ideal ratios. That is, the ratios for FeMnAlC [1] alloy are
a/b/c = 1/1.156/8.627.

It is well known that the theory of martensitic transformation crystallography
is based on the assumption that there should be no average distortion at the habit
plane. From this basic condition, crystallographic features such as habit plane, orientation
relationships, direction and magnitude of the shape deformation and magnitude of the
lattice invariant shear can be calculated. Kajiwara applied the Suzuki theory to calculate
the martensitic crystallography of bcc to 9R structure in Cu-Zn or Cu-El alloys [4]. Lee
et.al. [1] applied the CRAB [11] theory to calculate the martensitic crystallography for
a FeMnAlC [1] alloy and the calculated crystallography fits very well with experimental
observation by TEM. In this paper, the Suzuki mathematical approach is applied to the
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transformation of the DO3 to 18R close-packed structure, and the numerical calculations
of various crystallographic features are performed for FeMnAlC [1] alloy. The calculated
results and the calculations of CRAB theory are given in Table 2.

Table 2. Theoretical crystallographic comparison between in the present work and CRAB

theory for a FeMnAlC [1] alloy. The experimental habit plane is nearly (1 6 8)bcc

in the present CRAB

Habit plane (1 6.108 7.151) (1 6.303 7.712)

Direction of shape deformation [0.096 -0.723 0.684] [0.089 -0.721 0.688]

Magnitude of shape deformation 0.2355 0.2522

Magnitude of lattice invariant shear 0.0606 0.0968

The orientation relationships were calculated by using for the lattice parameters
of the FeMnAlC alloy [1]. From equations (20) and (21), the relationships between some
planes and directions can be obtained and are given in Table 3. From Table 3, it can
be seen that [111]DO3 is approximately parallel to [110]18R and (011)DO3 approximately
parallel to (118)18R . This orientation relationship is also similar to those in FeMnAlC
alloy [1].

From the crystallographic calculation for FeMnAlC [1] alloy, the magnitude of
lattice invariant shear g is 0.0606. The solution of habit plane from the calculation of
martensitic crystallography is (1, 6.303, 7.7119)DO3 , which is very close to that determined
from experiment.
Table 3. Theoretical comparison between planes or directions in FeMnAlC [1] alloy during

martensitic transformation

18R in present calc. angle CRAB calc. angle
(1 1 8) (012)DO3 1.23◦ (011)bcc 0.35◦

(1 1 10) (210)DO3 3.03◦ (110)bcc 5.42◦

(2 0 2) (101)DO3 6.08◦ (101)bcc 6.24◦

(0 0 18) (101)DO3 5.13◦ (101)bcc 5.53◦

(1 1 10) (201)DO3 5.18◦ (110)bcc 7.04◦

(1 1 8) (012)DO3 12.26◦ (011)bcc 13.9◦

[1 1 0] [111]DO3 10.08◦ [111]bcc 12.23◦

4. Conclusions

The martensite crystallographic parameters such as orientation relationships, habit
plane, shape deformation direction and magnitude of lattice invariant shear have been cal-
culated using new mathematical approach in the present work. The predicted orientation
relationship of DO3 → 18R martensitic transformation is near (011)DO3//(1 1 8)18R

and [111]DO3//[110]18R . The habit plane is (1 6.108 7.151)DO3 and shape deformation
direction is [0.096 − 0.723 0.684]DO3 with the magnitude of 0.2355.
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The theoretical analysis in this present paper confirms the crystallography of
DO3 → 18R martensitic transformation in the Fe-25.8 wt % Mn-7.4 wt % Al-0.11 wt
% C alloy. Phenomenological crystallographic CRAB theory, in good agreement with
experimental observations. Overall, the calculated crystallographic features fit very well
with CRAB theory.

As shown in this work, the Suzuki method is especially powerful when a complicated
lattice deformation is involved, and mathematical equations for the magnitude of the
lattice invariant shear and the habit plane indices can be quite easily obtained by this
mathematical approach.
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