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Abstract

In this study, the Kajiwara model has been applied to Cu-14.8at.%Sn alloy with
good agreement with experimental results. For this alloy, the austenite phase has
a body centered cubic (bcc) lattice and the martensite phase has a monoclinic 9R
superlattice.

Using the lattice parameters of both phases, the calculated habit plane indices,
magnitude of the lattice invariant shear and orientation relationships, have been
compared with the observed results for this alloy.

1. Introduction

Crystallographic phenomenological theory of martensitic transformations has been
presented by Wechsler, Lieberman and Read (WLR) [1] , and Bowles and Mackenzie
(BM) [2]. WLR and BM applied their crystallographic phenomenological theory to many
alloy systems and obtained a good agreement between theoretical and experimental val-
ues. However, measurements in many other alloy systems have also revealed discrepancies
between experiment and theoretical predictions [3]. In order to overcome this difficulty,
Acton and Bevis [4], and Ross and Crocker [5] generalized the theory by introducing
multiple lattice invariant shears. The original formulations of these theories consist of
rather lengthy and complicated matrix algebra. On the other hand, Suzuki [6] devel-
oped a much simpler method for calculating crystallographic parameters of martensitic
transformation.

For the martensitic transformation of the bcc into orthorhombic 9R in Cu-based alloys,
a model was proposed by De Vos et al. [7]. The model is based on the WLR theory.
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However, a more generalized model which is based on the Suzuki model, was proposed by
Kajiwara [8]. In this model, the austenite lattice has the bcc (DO3) and the martensite
lattice has the monoclinic 9R close-packed structure.

Crystallographic phenomenological theory of martensitic transformations is based on
the assumptions that there should be no average distortion at the matrix-martensite in-
terface (i.e., at the habit plane) and, furthermore, this interface should remain unrotated
during the transformation. Only by using this basic condition and lattice parameters
of austenite and martensite phases, and by assuming lattice invariant strain system (or
twinning shear system), the theory can predict the habit plane indices, orientation re-
lationships between the austenite and martensite lattices, and magnitude of the lattice
invariant shear associated with the martensitic transformation.

In this work, the Kajiwara model is applied to the transformation of bcc to monoclinic
9R close-packed structure in the Cu-14.8 (% at.) Sn alloy, and analytical equations
for the habit plane indices and orientation relationships and magnitude of the lattice
invariant shear are derived. The martensitic crystallographic parameters were calculated
with a program written in FORTRAN77. The theoretical calculations for the bcc to 9R
transformation in this alloy are compared with experimentally observed crystallographic
features.

2. Experimental Observations

The study of martensite in Cu-Sn alloys has a long history, but their crystallography
was not clear until electron microscopic observations were made. In order to obtain
data about the mechanism of martensitic transformation in the Cu-14.8(%at.)Sn alloy,
experiments were made by Nishiyama et al. [9,10]. They observed two kinds of martensite:
banded (β′) and wedgeshaped (β′′). The β′ martensite was produced by quenching from
700 ◦C into water at 0 ◦C. The electron diffraction pattern of this alloy suggests that the
martensite lattice is orthorhombic or monoclinic. Therefore, the β′ martensite structure of
this alloy can assume as disordered or monoclinic 9R structure. Furthermore, Nishiyama
et al. reported that the c-axis is rotated by almost 6◦ relative to the basal plane. In the
present case, the martensite transformation is considered to be formed along the shear
(110) plane in the [1 1 0] direction of the parent β1 lattice (bcc or DO3 type superlattice).
The habit plane which as obtained by Greninger and Mooradian [11], is different from
the {133}β1, but instead is rather near to the {223}β1 plane [12].

The β′′ martensite was produced by quenching into water and then dipping in liquid
nitrogen. In this martensite transformation, the shearing plane is (110) and shearing
direction is [1 1 0], as observed in the β′ martensite of the same alloy. The experiment
was made by electron microscopy to clarify of the β′′ martensite, with the conclusion
that it had a Fe3Al type superlattice β1 (or DO3) in the retained state [10]. From the
diffraction patterns, it is found that the β′′ martensite has a superlattice structure.
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3. Analytical Equations for Calculations

3.1. Magnitude of the Lattice Invariant Shear and the Habit Plane Indices

For calculations, the martensite lattice was assumed to be a monoclinic 9R (M9R)
structure. The austenite lattice is in the bcc (or DO3) type superlattice. The lattice
deformation of bcc to M9R martensite was proposed by Kajiwara [8]. Using a similar
lattice deformation (or twinning shear), the vector , abcc[101], abcc[010] and abcc[504] in the
bcc phase are transformed into a[100], b[010], and c[001] in 9R phase, respectively, where
abcc is a lattice constant of the bcc phase. For this transformation, the correspondence
matrix can be expressed as

C =

 −1 0 −5
0 −1 0
−1 0 4

 . (1)

The matrix C transforms any vector [uvw]bcc to a vector [uvw]9R. For brevity, put u
v
w


bcc

= XA,

 u
v
w


9R

= XM (2)

then we can write

XA = CXM or XM = C−1XA (3)

where C−1 is the inverse of the matrix C. The corresponding relation between the
planes (hkl)bcc and (hkl)9R is expressed by using the row matrices nA = (hkl)bcc and
nM = (hkl)9R:

nM = nA.C or nA = nM .C
−1. (4)

For the bcc to M9R transformation, the twinning shear is (101)[101]bcc or equivalently
(001)[100]9R [13]. Thus, the lattice invariant deformation matrix G is

G =

 1 0 g
0 1 0
0 0 1

 , (5)

where g′ = ga/(c sinβ0) and g′ is the magnitude of the lattice invariant shear. By
this shear, the lattice vector XM and the plane nM are transformed into X′M and n′M ,
respectively. Then, we can write as follows:

X′M = GXM = TXA (6)

n′M = nMG
−1 = nAT

−1, (7)
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where the matrix T is equal to the matrix GC−1 and G−1 is the inverse of the matrix G.
Using Eq. (1) and (5), the matrix T is calculated as follows:

T = −1
9

 4 + g 0 5− g
0 9 0
1 0 −1

 . (8)

It is therefore concluded that the matrix T transforms the vector [uvw]bcc and the plane
(hkl)bcc into the vector [u′v′w′]9R and the plane (h′k′l′)9R, respectively. But, an arbitrary
vector [1yz] lying in the habit plane (1Y Z) is invariant, since of there should be no average
distortion at this habit plane. Then, the following equation holds:

1 + yY + zZ = 0. (9)

The vector [1yz]bcc is transformed into the vector [−1
9
{4 + g(1− z)+ 5z},−y, 1

9
(z− 1)]9R

by Eq. (6). The latter vector must also lie in the habit plane. Therefore, the lengths
of the above two vectors must be the same. From this condition and using Eq. (9), we
obtain the equation with respect to z as follows:

A(Y, Z, g)z2 +B(Y, Z, g)z + C(Y, g) = 0. (10)

This equation should hold for any value of z, hence each coefficient of z must be zero. As
a result of this condition, g (or g′), Y and Z are obtained as follows:

Y = ±9

√
a2
bcc − b2

a2(4 + g)2 + 2ac(4 + g) cos β0 + c2 − 81a2
bcc

(11)

Z =

√
a2(5− g)2 − 2ac(5− g) cos β0 + c2 − 81a2

bcc

a2(4 + g)2 + 2ac(4 + g) cos β0 + c2 − 81a2
bcc

. (12)

g′ =
a

c sinβ0
− ctgβ0 ±

9abcc√
2c sinβ0

√
(
a2

2a2
bcc

− 1)(
2c2 sin2 β0

81a2
bcc

− 1) (13)

As seen in the above equations, g′, Y and Z are dependent only on the lattice constants
of both phases.

3.2. Orientation Relationships

The derivation of the orientation relationships was performed on a martensite variant
of which the habit plane indices have positive sign. It is seen by Eq. (7) with g that the
habit plane (1Y Z)bcc is transformed into (HKL)9R. Since the habit plane is invariant
during the transformation, (1Y Z)bcc must be parallel to (HKL)9R. Any given vector
lying on the habit plane must also be invariant during the transformation. For example,
the intersection of (100)bcc plane with the habit plane (1Y Z)bcc is [u1 u2 u3]bcc and this
direction is transformed into [u

′

1 u
′

2 u
′

3]9R by Eq. (6). Since the direction [u1 u2 u3]bcc lies
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on the habit plane, it must be invariant and hence parallel to the direction [u
′

1 u
′

2 u
′

3]9R.
Therefore the following orientation relationship is obtained:

(1Y Z)bcc//(HKL)9R

[u1 u2 u3]bcc//[u
′

1 u
′

2 u
′

3]9R.

The orientation relationships between some prominent planes and directions are de-
rived from the above relation by the following procedures. First, set up a new orthogonal
coordinate system with its origin on the habit plane, of which x0 - and y0 - axes are
taken to be parallel to [u1 u2 u3]bcc and the habit plane normal [1Y Z]bcc, respectively.
The unit length in the bcc lattice coordinate system is taken as the unit length in this
new orthogonal coordinate system. That is, the unit vector along x0 -axis in the above
orthogonal coordinate system is taken equal to the normalized direction of [u1 u2 u3]bcc,
and the unit vector y0 -axis equal to the normalized direction of [1Y Z]bcc. A direction
perpendicular to the above two directions is parallel to z0 -axis and its unnormalized
direction is [w1w2w3]bcc. Therefore the following relation holds between the direction
[u v w]bcc in bcc coordinate system and the direction [u v w]0 in the x0y0z0 -coordinate
system:  uv

w


bcc

=

u1 v1 w1

u2 v2 w2

u3 v3 w3

 uv
w


0

. (14)

The next step is to obtain a similar relation between the direction [uvw]9R in mono-
clinic coordinate system of 9R martensite and direction [uvw]0. The vectors [u1 u2 u3]bcc
and [w1w2 w3]bcc, which are the vectors along x0- and z0-axes, are transformed by Eq.
(6) into [u1 u2 u3]9R and [w1w2w3]9R, respectively. Since x0- and z0-axes lie on the
habit plane, the above two vectors are invariant during the transformation. Therefore,
the transformed vectors,[u′1 u′2 u′3]9R and [w′1w′2 w′3]9R, in monoclinic coordinate system
of the 9R martensite, correspond to the vectors along x0- and z0-axes in the x0y0z0-
coordinate system. A vector corresponding to the vector along y0-axis is calculated to be
[v′1 v′2 v′3]9R from these two vectors. Thus the following relationship is obtained: uv

w


9R

=

u′1 v′1 w′1
u′2 v′2 w′2
u′3 v′3 w′3

 uv
w


0

. (15)

Now a relation between [u vw]bcc and [u vw]9R is obtained from Eqs. (14) and (15). uv
w


bcc

=

u1 v1 w1

u2 v2 w2

u3 v3 w3

u′1 v′1 w′1
u′2 v′2 w′2
u′3 v′3 w′3

−1  uv
w


9R

. (16)
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A relation between the planes (hkl)bcc and (hkl)9R is obtained from the above equation
by calculating the inverse of the multiplication of these two matrices:

(h k l)bcc = (h k l)9R


u1 v1 w1

u2 v2 w2

u3 v3 w3

u′1 v′1 w′1
u′2 v′2 w′2
u′3 v′3 w′3

−1

−1

. (17)

From Eqs. (16) and (17) the orientation relationships between some prominent planes
and directions are obtained.

4. Numerical Calculations for the Cu-14.8 at.%Sn Alloy

In this section, the predictions of the bcc to 9R martensitic transformation theory
are compared with the experimental results for this alloy. The lattice parameters of bcc
austenite and orthorhombic martensite phases were measured by x-ray diffraction method
to be aβ = 2.981 Å, a0 = 2.685 Å, b0 = 4.554 Å and c0=4.342 Å, respectively [14]. For
the calculations, the lattice parameters of the martensite phase were transformed to the
lattice parameters of monoclinic 9R structure: a = a0, b = b0 and c = 9c0/2. The angle β0

is between the basal plane and c-axis. But, the angle β0 was assumed to be a parameter
which is varying between 90◦ and 95◦, as before reported in section 2.

The magnitude of the lattice invariant shear and indices of the habit plane were
calculated using Eqs. (11)-(13) with the above lattice constants. As seen in Eq. (13),
two values of the lattice invariant shears g′ are obtained, but the larger one is discarded
because it is physically unfavorable.

The calculated values of the normalized indices of the habit plane and the orientations
of this habit plane according to the some planes, are given in Table 1. The deviations
between the calculated and experimentally observed habit planes are also summarized in
Table 2. As seen in the Table 1, the orientation of the habit plane in the Cu-14.8at.%Sn
alloy lies near (3 10 11)bcc for β0 = 95◦. In the same alloy, it is reported [9,10] that the
habit plane is within 2◦ from the (1 3 3)bcc plane. When the angle β0 increases, this habit
plane is nearer the (1 3 3)bcc plane (i.e. 3.7◦). But, according to the comparison given in
Table 2, the calculated habit plane is very close to the (3 10 11)bcc plane, and it agrees
with the precise measurements in Kennon-Bowles work [14], for β0 = 95◦. The difference
between the calculated (β0 = 95◦) and experimental values is within 1◦. However, this
discrepancy may be explained in the viewpoint of the accuracy of the lattice constants.
Furthermore, the experimentally observed habit planes by Kennon [15] and Kennon-
Bowles [14] for the Cu-14.8at.%Sn alloy, were located several degrees away from their
calculations, for β0 = 90◦ or the transformation from bcc to orthorhombic.
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Table 1. The angles between the calculated habit planes and some important planes.

β0 h k l (1 3 3) (2 6 7) (2 10 11) (3 10 11)
90◦ 0.1540 0.6652 0.7306 5.2◦ 3.8◦ 1.2◦ 2.6◦

91◦ 0.1548 0.6655 0.7302 5.1◦ 3.7◦ 1.2◦ 2.5◦

92◦ 0.1573 0.6664 0.7288 5.0◦ 3.7◦ 1.4◦ 2.4◦

93◦ 0.1616 0.6678 0.7266 4.7◦ 3.5◦ 1.7◦ 2.1◦

94◦ 0.1677 0.6699 0.7233 4.2◦ 3.3◦ 2.0◦ 1.8◦

95◦ 0.1757 0.6726 0.7188 3.7◦ 3.3◦ 2.6◦ 1.6◦

Table 2. The deviations between calculated and experimentally observed habit planes.

Experimental values Calculated values
In ref.[14] and [15] In ref.[15] In ref.[14] In present

β0 = 90◦ β0 = 90◦ β0 = 90◦ β0 = 95◦

Plate 1 3.6◦ − 7.6◦ 6.4◦

Plate 2 5.7◦ − 2.4◦ 1.4◦

Plate A − 6.3◦ 1.9◦ 1.0◦

Plate B − 7.2◦ 2.0◦ 0.9◦

Plate C − 6.9◦ 1.3◦ 0.6◦

Plate D − 8.1◦ 1.0◦ 1.3◦

Observed mean − 6.5◦ 1.3◦ 0.4◦

The calculated and measured values for the lattice invariant shear (g′) are summarized
in Table 3. As seen in this table, for β0 = 90◦, the calculated value of lattice invariant
shear is very small than the experimentally observed ones. But, the calculated value for
β0 = 95◦, is in good agreement with the experimental ones. When the angle β0 increases,
the magnitude of the lattice invariant shear are also nearer the experimentally observed
values. In this case, we can assume that the unit cell of the martensite phase is monoclinic
rather than orthorhombic.

Table 3. The calculated and measured values for the lattice invariant shear g′.

The calculated values in the present work The calculated and measured values for g′ in
For bcc→ M9R ref.[14] and [15]. For bcc → orthorhombic
transformation transformation

β0 g′ Calculated value: 0.118
90◦ 0.019 Measured values : 0.125 and 0.122,
91◦ 0.037 for plate 1 and 2. (In ref. [15] )

92◦ 0.055
93◦ 0.073 Calculated value: 0.119
94◦ 0.093 Measured values : 0.108, 0.112, 0.110 and 0.104,
95◦ 0.112 for plate A, B, C and D. ( In ref. [14] )
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The orientation relationship for some prominent directions and planes were obtained
from Eqs. (16) and (17), respectively. The results of the calculations are summarized in
Table 4, together with the available experimental observations. From the table, it can be
seen that the orientations of the directions are not affected from the change in the angle
β0 , and there is fair agreement between the theory and experiment. But, as seen in this
table, the deviation between the calculated and observed values for (1 1 0)bcc plane is less
than 2◦, while that for (0 1 1)bcc plane is more than 2◦, for β0 = 95◦. This difference is
probably due to experimental error and precision of the calculation.

Table 4. The calculated and experimental values for the orientation relationships.

The directions and planes Calculated values Experimental values (for β0 = 90◦)

bcc M9R β0 = 90◦ β0 = 95◦ In ref. [15] In ref. [14] In ref. [9,10]

[101] [100] 6.4◦ 6.4◦ 6.3◦ 5.8◦ −
[010] [010] 6.7◦ 6.7◦ 6.5◦ 4.6◦ −
[504] [001] 5.0◦ 4.8◦ 4.5◦ 4.0◦ −
[111] [110] 0.8◦ 0.7◦ − − ∼ 0.0◦

(110) (1 15) 4.0◦ 1.9◦ − − ∼ 0.0◦

(011) (1 14) 0.5◦ 2.8◦ − − ∼ 0.0◦

5. Conclusions

The crystallography of the martensitic transformation in the Cu-14.8at.%Sn alloy was
analyzed using a computer program based upon the Kajiwara formulation. In the present
case, the transformation is assumed from cubic (bcc) to monoclinic 9R. In the calculations,
the angle β0 is also assumed to be a parameter which is varying between 90◦ and 95◦.

The habit plane predicted from the theory is (0.1757 0.6726 0.7188)bcc plane for β0 =
95◦, and deviation from the observed mean (0.1786 0.6657 0.7246)bcc plane [14] is only
0.4◦. This habit plane is very close to the (3 10 11)bcc plane (i.e. 1.6◦).

The measured lattice invariant shear being in the range 0.104 to 0.122 is in good
agreement with the calculated value 0.122 (for β0 = 95◦). The calculated orientation
relationships for the direction and planes agreed within 0.3◦ and ∼ 2◦ with the measured
ones, respectively.

As seen in the above discussion, the comparison between the theory and experiments
shows clearly that the calculations agree well with the experiments. As a result, we can
assume that the unit cell of the martensite phase in the above alloy is monoclinic rather
than orthorhombic.
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