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Abstract

The minimal models of CFT possess a few algebraic structures. Besides the
Virasoro Algebra which is an explicit symmetry of these models they have also
Quantum Group structure and Fermi-Bose duality. We discuss the relationship
between these things.

1. Introduction

The minimal models of conformal field theory possess not only an explicit symmetry
which is the Virasoro algebra. Due to the fact that the models satisfy simultaneously
other axioms of quantum field theory such as analiticity, operator fujion algebra et cet.
they get also another remarkable algebraic structure [1]. One of manifistations of this
structure is the famous Rogers-Ramanujian (R-R) Identity and its generalizations which
were discovered by McCoy, Melzer, Klassen and Kedem (KKMM) [2] a few years ago.
The characters of the minimal models of conformal field theory satisfy to these identities.
Here we discuss the relationship between these things.

2. The Identities for Characters of CFT

The Rogers-Ramanujian Identity itself is the following equality

1∏∞
n=1(1− tn)

∞∑
k=−∞

[tk(10k+1)− t(2k+1)(5k+2)] =
∞∑
m=1

tm
2

(1− t) . . . (1− tm)
(1)

The function which is the subject of this equation is nothing but a character of M(2,5)
minimal model of CFT.
∗Talk presented in Regional Conference on Mathematical Physics IX held at Feza Gürsey Institute,
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The simplest generalization of the R-R identity has the form

1∏∞
n=1(1 − tn)

∞∑
k=−∞

[tk(12k+1)− t(4k+1)(3k+1)] =
∞∑

m−even
m>0

tm
2/2

(1− t) . . . (1− tm)
(2)

and is just a character of M(3,4),that is Ising model.
To write down the generic formula for characters of minimal models let us remind

some facts on CFT [3]. The symmetry of CFT is Virasoro algebra whose generating
elements Ln satisfy the following relations

[Ln, Lm] = (n −m)Ln+m +
c

12
(n3 − n)δn,−m (3)

For the minimal models Mp the Virasoro central charge

c = 1− 6
p(p+ 1)

(4)

The chiral spase of states Hchiral of Mp can be written as

Hchiral = ⊕[r, s]

Here [r,s] is the irreducible representation of the Virasoro algebra with the highest weight

∆ = ∆rs =
[(p+ 1)r − ps]2 − 1

4p(p+ 1)
(5)

where 1 ≤ r < p, 1 ≤ s < p+ 1 The representation [r,s] is generated by an action of the
operators Ln with n < 0 on the vacuum vector |rs〉 which satisfies

L0|rs〉 = ∆rs|rs〉; Ln|rs〉 = 0 n > 0 (6)

The character of the irreducible representation [r,s] is defined as the generating func-
tion of the number of states in [r.s] with the given value L0

χprs(t)
def= tr[r,s]t

L0−∆rs (7)

It follows from the analysis of the structure [r,s] by Feigin and Fuks that

χprs(t) =
1∏∞

n=1(1− tn)

∞∑
k=−∞

[t∆r+2pk,s−∆rs − t∆r+2pk,−s−∆rs ] (8)

It was dicovered by Kedem,Klassen,McCoy and Melzer [2] that there exists another
representation for the same function

χprs(t) =
∑
m1≥0

. . .
∑

mp−2≥0

tmaCabmb
p−2∏
a=2

[
ma−1 +ma+1

ma

]
t

(9)
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where [
N
m

]
t

≡ (t)N
(t)m(t)N−m

(10)

and
(t)m ≡ (1− t) . . . (1− tm) (11)

The Cartan matrix

Cab = δa,b−1 + δa,b+1 1 ≤ a, b ≤ p− 2 (12)

Comparing of the expressions (8) and (9) for the same character χprs(t) we arrive to the
generalized R-R type identities.The left side of the identities is called bosonic while the
right one is usually refered to as fermionic. The reason of these denominations will be
explaned later.

These identities were proved numerically and combinatorically. The problem of alge-
braic and physical understanding of them is still open.

3. Minimal models of integrable lattice theory.

We consider the one-dimensional XXZ chain with free boundary conditions [5]

Hxxz =
N−1∑
n=1

[
σ+
n σ
−
n+1 + σ−n σ

+
n+1 +

q + q−1

4
σznσ

z
n+1

+
q − q−1

4
(σzn − σzn+1)

]
(13)

σ±n = 1⊗ · · · ⊗ σ± ⊗ · · · ⊗ 1,
σzn = 1⊗ · · · ⊗ σz ⊗ · · · ⊗ 1,

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
, σz =

(
1 0
0 −1

)
.

It was observed in [5, 7] that the eigenvalues of 2L-site XXZ Hamiltonian (13) with
the couplings η = π/4 and η = π/6 (we set q ≡ eıη) exactly coincide with some of the
eigenenergies of L-site self-dual quantum Ising and 3-Potts models with free ends (see
also [8]).

The remarkable properties of the model are connected with its Uq(sl(2)) symmetry
found by Pasqier and Saleur [6]. Namely, Hamiltonian Hxxz commutes with the genera-
tors X, Y , H of this quantum algebra that are defined as

X =
N∑
n=1

q(σz1 +...+σzn−1)/2σ+
n q
−(σzn+1+...+σzN )/2,

X → Y, σ+ → σ−,

H =
N∑
n=1

σzn
2
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and satisfy the relations

[H,X] = X, [H, Y ] = −Y, [X, Y ] =
q2H − q−2H

q − q−1
. (14)

Because of the quantum group symmetry, the spectrum of the Hamiltonian can be clas-
sified according to the representation theory of the algebra. For general q, its representa-
tions are equivalent to those of the ordinary U(sl(2)) algebra, and the configuration space
(C2)N of the spin chain can be split into a direct sum of irreducible highest-weight repre-
sentations ρj (j is the highest weight), which are in one-to-one correspondence with the
ordinary sl(2) representations. In the N = 4 case, for example, (C2)4 can be decomposed
as ρ2 + 3ρ1 + 2ρ0.

We concentrate on the case qp+1 = −1 [10, 6]. In this case, the generators X and Y
are nilpotent in the state space of the model,

Xp+1 = 0, Y p+1 = 0. (15)

As a consequence, we obtain a very different picture of the decomposition of the config-
uration space (C2)N .

For example, if q4 = −1 and we try to decompose (C2)4, we find that (C2)N now
decomposes into the sum of one “bad” eight-dimensional representation (ρ2, ρ1) of type I
and four other “good” representations (2ρ1 + 2ρ0) of type II [6]. The type II representa-
tions are isomorphic to the ordinary U(sl(2)) ones. The type I representation (ρ2, ρ1) can
be considered a result of gluing two representations ρ2 and ρ1. This (ρ2 , ρ1) representa-
tion is indecomposable, but because it contains a three-dimensional invariant subspace,
it is not irreducible.

In the general qp+1 = −1 case [10, 6], the configuration space splits into the sum
of “bad” type I representations with the highest weights Sz ≥ p/2 and “good” type II
representations with the highest weights Sz < p/2 that are simultaneously not subspaces
of some “bad” ones. The highest-weight vectors vj of the good representations can be
characterized [6] by the condition

vj ∈ Vp ≡ KerX/ ImXp. (16)

Because of the Uq(sl(2)) invariance of Hxxz, we can restrict its action on the space Vp.
We call the result of this quantum group reduction the minimal model of the integrable
lattice theory (LM(p, p+1)) because its thermodynamic limit is M(p, p+1), the ordinary
minimal model of CFT with the Virasoro central charge c = 1− 6

p(p+1) [5, 6, 9].

4. Quantum group reduction and truncation of fusion functional relations [21]

Alcaraz et al. [5] solved XXZ model (13) using the coordinate Bethe ansatz method.
Sklyanin constructed the family of transfer-matrices T (u) [11, 12, 14] commuting between
themselves and with Hxxz. It was shown in [13] that the Sklyanin transfer matrix T (u)
commutes with the quantum group Uq(sl(2)). Therefore, the action of T (u) as well as
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Hxxz can be restricted on the space Vp if qp+1 = −1. To perform this quantum group
reduction for T (u), we use the Baxter T–Q equation [9]

t(u)Q(u) = φ(u+ η/2)Q(u− η) + φ(u− η/2)Q(u+ η), (17)

where φ(u) = sin 2u sin2N u, t(u) = sin 2u T (u), and Q(u) are eigenvalues of the Baxter
auxilary matrix Q̂(u) commuting with T̂ (u).

The eigenvalue Q(u) for the eigenvector with M = N/2 − Sz reversed spins has the
form

Q(u) =
M∏
m=1

sin(u− um) sin(u+ um). (18)

Equation (17) is equivalent to the Bethe ansatz equations [14][
sin(uk + η/2)
sin(uk − η/2)

]2N

=
M∏
m6=k

sin(uk − um + η) sin(uk + um + η)
sin(uk − um − η) sin(uk + um − η)

(19)

for model (13) provided that T (u) has no poles.
Baxter equation (17) can be considered a discrete version of a second-order differential

equation [1]. We can therefore seek its second (linearly independent) solution P (u) with
the same eigenvalue t(u) as in (17),

t(u)P (u) = φ(u+ η/2)P (u− η) + φ(u− η/2)P (u+ η). (20)

It follows from (17) and (20) that

Q(u+ η)P (u)− P (u+ η)Q(u)
φ(u+ η/2)

=
Q(u)P (u− η) − P (u)Q(u− η)

φ(u− η/2)
. (21)

If η/π is irrational, then both parts of (21) are equal to a constant, and we can choose
this constant to be 1, which means just a normalization of P (u). We thus obtain the
“quantum Wronskian” condition [1]

Q(u+ η/2)P (u− η/2)− P (u+ η/2)Q(u− η/2) = φ(u). (22)

If η is a rational part of π, the expressions in (21) could be equal to a periodic function
f(u) such that f(u + η) = f(u), but in this case, we assume that f(u) is also equal to 1.

Inserting (22) in (17) or (20), we obtain

t(u) = Q(u+ η)P (u− η) − P (u+ η)Q(u− η). (23)

Dividing (22) by Q(u+ η/2)Q(u− η/2), we obtain

P (u+ η/2)
Q(u+ η/2)

− P (u− η/2)
Q(u− η/2)

=
φ(u)

Q(u+ η/2)Q(u− η/2)
. (24)
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The r.h.s. of (24) is a fraction of two trigonometric polynomials. Therefore, it can be
uniquely expressed as the sum

φ(u)
Q(u+ η/2)Q(u− η/2)

= R(u) +
A(u+ η/2)
Q(u+ η/2)

− B(u − η/2)
Q(u− η/2)

, (25)

where R(u+π) = R(u) is a trigonometric polynomial with degR(u) = 2N + 2− 4M and
A(u+ π) = A(u) and B(u+ π) = B(u) are some trigonometric polynomials with degrees
less than degQ(u) = 2M . Then (23) can be rewritten as

t(u)
Q(u+ η)Q(u− η)

= R(u+ η/2) +R(u− η/2) +

+
A(u+ η)
Q(u+ η)

− B(u)
Q(u)

+
A(u)
Q(u)

− B(u− η)
Q(u− η)

. (26)

The term A(u)−B(u)
Q(u) in the r.h.s. must vanish because otherwise it would have extra

poles that are absent in the l.h.s. of (26) (the degrees of the polynomials in the numerator
being less than the degree of the polynomial in the denominator). Therefore, A(u) = B(u)
and hence

φ(u)
Q(u+ η/2)Q(u− η/2)

= R(u) +
A(u + η/2)
Q(u+ η/2)

− A(u − η/2)
Q(u− η/2)

. (27)

If F (u) is a function such that

R(u) = F (u+ η/2)− F (u− η/2), (28)

we can rewrite (24) as

P (u+ η/2)
Q(u+ η/2)

− P (u− η/2)
Q(u− η/2)

=

= F (u+ η/2) +
A(u+ η/2)
Q(u+ η/2)

− F (u− η/2)− A(u− η/2)
Q(u− η/2)

. (29)

This means that we can choose the second solution of Baxter equation (20) in the form [16]

P (u) = F (u)Q(u) +A(u). (30)

The newly constructed solution of the Baxter equation is not a periodic function in
the general case. It is a periodic function if and only if F (u) is a periodic solution of (28).

We defer the question of the existence of such a solution and first consider the conse-
quences if it exists. We define the function

tk(u) = Q (u+ (k + 1)η/2)P (u− (k + 1)η/2)
− P (u+ (k + 1)η/2)Q (u− (k + 1)η/2) , (31)
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where k is any nonnegative integer. Comparing this with (22) and (23), we can see that
t0(u) = φ(u) and t1(u) = t(u). From (31), it is easy to obtain [16] the following functional
equations for tk(u):

tk (u+ η/2) tk (u− η/2)− tk+1(u)tk−1(u) = φ (u+ (k + 1)η/2)φ (u− (k + 1)η/2) ,

tk(u)t1 (u− (k + 1)η/2) = tk+1 (u− η/2)φ (u− kη/2)

+ tk−1 (u+ η/2)φ (u− (k + 2)η/2) .
(32)

These functional relations [17] coincide with the relations for eigenvalues of the fused
transfer matrices obtained by Zhou [9] for the XXZ model and by Behrend, Pearce, and
O’Brien [19] for the ABF models with fixed boundary conditions.

We now return to the question of the existence of the periodic solution of (28). Re-
calling φ(−u) = −φ(u) and definition (25) of R(u), we conclude that R(u) is also an
odd trygonometric polynomial with degR(u) = 2N + 2 − 4M ≥ 2 if the number of the
reversed spins M is not more than N/2. Such a polynomial can therefore be written as

R(u) =
2N+2−4M∑

m=1

Rm sinmu, (33)

where Rm are coefficients defined by (25).
If η/π is irrational, a periodic solution of (28) exists and has the form

F (u) = −1
2

2N+2−4M∑
m=1

Rm
sin mη

2

cosmu. (34)

But if η/π is a rational number, the situation is more sophisticated. Specifically, we
concentrate on the case η = π/(p + 1), which corresponds to the LM(p, p + 1) model;
from (34), we obtain

F (u) = −1
2

2N+2−4M∑
m=1

Rm
sin mπ

2(p+1)

cosmu. (35)

Therefore, if we try to find the solution in a sector where 2N + 2 − 4M ≥ 2(p + 1) or,
equivalently, Sz ≥ p/2, we can see from (35) that a periodic solution does not exist. The
reason is just a resonance.

We therefore conclude that a periodic F (u) and the second periodic solution of the
Baxter equation exist if we apply it to subspaces of the configuration space with Sz < p/2.
This inequality coincides with the condition for the quantum group reduction from part
II. We thus arrive at the main statement of this section:
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In the case where η = π/(p + 1), the second periodic solution of the Baxter
equation exists if and only if the configuration space of the model has under-
gone a quantum group reduction.

For this case, we have additional relations for the eigenvalues of the transfer matrices
tk(u). Equation (31) now becomes

tk(u) = Q

(
u− (k + 1)π

2(p + 1)

)
P

(
u+

(k + 1)π
2(p+ 1)

)
−Q

(
u+

(k + 1)π
2(p+ 1)

)
P

(
u− (k + 1)π

2(p+ 1)

)
.

(36)
Therefore, we can see that

tp(u) = 0 (37)

and
tp−1−k(u) = −tk(u+ π/2). (38)

We thus obtain the second main statement of this section:

The quantum group reduction of the model is equivalent to the truncation of
functional relations (32).1

5. Solution of the truncated functional equations in the case η = π/4.

In the case η = π/4 (or q4 = −1), the truncated fuctional equations become

t(u+ π/8)t(u− π/8) = φ(u+ π/4)φ(u− π/4)− φ(u)φ(u+ π/2). (39)

Substituting φ(u) = sin 2u sin2N u in (39), we obtain

t(u+ π/8)t(u− π/8) = 22N [sin2N+2 2u− cos2N+2 2u]. (40)

These equations were considered and solved in [20] as the equations for the transfer
matrix of the Ising model on the cylinder. For T (u) = t(u)

sin 2u , we can rewrite the last
equation as

22N−1T (u+ π/8)T (u− π/8) =
N/2∏
k=1

|ϕk(u+ π/8)|2|ϕk(u − π/8)|2, (41)

where we suggest that N be even,

ϕk(u) = sin(2u+ π/4)− ωk sin(2u− π/4), (42)

and ω = exp iπ
N+1 .

1This statement was also verified numerically by J. Suzuki [18].
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Using ϕk(u+ π/8) = −ωkϕk(u − π/8), we find 2N/2 real solutions of (41):

T (u) = Tn1,...,nN/2 ≡ 2
1−2N

2

N/2∏
k=1

∣∣∣ϕk (u+
πnk

4

)∣∣∣2 , (43)

where n1, . . . , nN/2 = 0, 1. In another form, the last expression is

Tn1,...,nN/2 = 2
1−2N

2

N/2∏
k=1

[
1 + (−1)nk cos

πk

N + 1
cos 4u

]
. (44)

In the integers {nk}, we recognize the occupation numbers of the fermions in the
one-dimensional Ising model. This is not suprising, because LM(3, 4) exactly coincides
with the Ising model, as was mentioned above [5, 7, 8].
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