文章编号:1007-4627(2010)01-0087-05

80 keV N 离子注入对 ZnO 薄膜结构的影响^{*}

臧 航^{1,2},王志光^{1,#},魏孔芳^{1,2},孙建荣¹,姚存峰^{1,2},申铁龙^{1,2},
 马艺准^{1,2},杨成绍^{1,2},庞立龙^{1,2},朱亚斌^{1,2}
 (1中国科学院近代物理研究所,甘肃兰州 730000;
 2中国科学院研究生院,北京 100049)

摘 要:室温下用 80 keV N 离子注入 ZnO 薄膜样品,注量分别为 5.0×10¹⁴,5.0×10¹⁵ 和 5.0×10¹⁶ ions/cm²,然后用 X 射线衍射和透射电镜技术对样品的结构特性进行了表征。实验结果表明,由高度(002)择优取向的致密柱状晶构成的薄膜中,注入 5.0×10¹⁵ ions/cm² 时,观测到缺陷 生成和局域无序化现象,但薄膜总体结构仍保持柱状晶和(002)择优取向;随着注量的增大,晶格 常数 c 和压应力呈增大趋势。对注入 N 离子对 ZnO 薄膜结构特性的影响机理进行了简单的讨论。 关键词: ZnO 薄膜; N 离子注入; X 射线衍射;透射电镜

中图分类号: O484.5 文献标识码: A

1 引言

氧化锌(ZnO)作为 II-VI族直接带隙化合物半导体材料,具有禁带宽度大(室温下 3.37 eV),激子结合能高(60 meV)的特性,是制备室温下短波长光电子器件的优选材料,受到国内外科研工作者 广泛关注^[1,2]。由于 ZnO 材料中的施主具有较低的 形成焓,所以掺入杂质后很容易生成起浅施主作用 的本征缺陷(如 Zn 空位,O 间隙等)^[3]。另外掺入 杂质在 ZnO 中的溶解度较低等因素,导致 p 型 ZnO 的制备是研制的难点^[4-7],目前尚未真正解 决,仍然停留在实验室探索阶段。由于 N 离子半径 (0.146 nm)与 O 离子半径(0.138 nm)比较接近, 引入的受主能级相对较浅(距价带顶约 0.40 eV), 因此 N 被认为是最适合用来实现 ZnO 的 p 型转变 的受主杂质^[8]。

离子注入方法具有可精确控制掺杂浓度和不受 固溶度影响等优点,已经广泛应用于半导体工业生 产。因此,注入 N 离子来制备 p 型 ZnO 薄膜是一 种可行的方法,目前已经有了一些研究进展^[9-12]。 Georgobiani 等^[9]利用 300 keV N 离子注入 ZnO/ SiO₂薄膜,在注量为 1×10^{15} 和 3×10^{15} ions/cm² 时,氧气气氛下 600 ℃退火后获得 p 型传导特性; Wang Kun 等^[10]利用 120 keV N离子注入 ZnO/Si 薄膜,在注量为 1×10^{15} 和 1×10^{16} ions/cm²时,氧 气气氛下 850 ℃退火后获得 p 型传导特性;但 Wang Hung-Ta 等^[11]采用 5—150 keV N离子注入 单晶 ZnO,在 600—950 ℃退火,仍为 n 型 ZnO; Chen 等^[12]采用 N⁺, O⁺, Al⁺分别注入以及 N⁺/ O⁺, Al⁺/O⁺共注入单晶 ZnO,并对其进行不同温 度退火,与 Wang H Ta 等的结果一样,也未观测 到 n 型向 p 型的转变。

到目前为止,利用离子注入尚未真正实现 ZnO 材料从 n 型到 p 型的转变,掺杂导致的结构缺陷及 其演化也还需要进行深入的研究。本工作采用 N 离子注入高度择优取向的 ZnO 薄膜,通过研究 ZnO 薄膜结构随注入剂量的变化,探索注入 N 离 子对 ZnO 薄膜结构的影响及其机理。

2 实验

实验样品在辽宁聚智公司的 JS-450 型射频溅

^{*} 收稿日期: 2009 - 03 - 30;修改日期: 2009 - 04 - 03

 ^{*} 基金项目:中国科学院知识创新方向性项目(KJCX2-YW-M11);国家自然科学基金资助项目(10835010)
 作者简介: 臧航(1982-),男(汉族),河南确山人,在读博士研究生,从事固体材料辐照效应研究;
 E-mail: zanghang@impcas. ac. cn

[#] 通讯联系人:王志光, E-mail: zhgwang@impcas. ac. cn

射台上制备。以直径 50 mm 纯度为 99.999%的高 纯锌靶为靶材, 溅射前真空预抽至 8×10⁻⁴ Pa, 溅 射气体为氩气和氧气的混合气(Ar:O₂=8:3), 溅 射功率为 100 W, 衬底为硅单晶(100), 衬底与靶间 距 86 mm, 衬底温度为 400 ℃, 溅射气压为 3.4 Pa, 溅射时间为 7 h, 石英震荡仪显示膜厚为 400 nm。

在室温下,用 80 keV 的 N 离子注入制备的 ZnO 薄膜样品。实验在中国科学院近代物理研究 所 320 kV 高压平台上进行。N 离子注量分别为 0, 5.0×10^{14} , 5.0×10^{15} 和 5.0×10^{16} ions /cm²。为 了研究掺杂前后 ZnO 薄膜结构变化情况,采用透 射电子显微镜(TEM)分析和 X 射线衍射(XRD)测 量对 N 离子注入前后样品的结构等进行了表征。 其中 TEM 分析在日本精工的 JEM-3010 型透射电 子显微镜上完成; XRD 测量在飞利浦 X'pert Pro 型 X 射线衍射仪上进行,采用 $\theta 2\theta$ 模式,激发 X 射 线为 Cu 的 K_a射线。为了精密计算晶格常数,获得 的 XRD 谱用 jade 程序进行 K_{a2}射线峰的去除,只 分析 K_{a1}射线(波长 λ =0.154056 nm)激发产生的 XRD 谱。

利用 SRIM 程序^[13]模拟计算了 80 keV N 离子 注入在 ZnO 薄膜内的浓度分布和位移损伤截面分 布(如图 1 所示)。注入的 N 离子及其引起的位移损 伤主要影响样品近表面约 250 nm 厚的范围,注入 N 的峰值浓度和位移损伤峰分别出现在约 150 和 100 nm 处。另外还可推知,注量为 5.0×10¹⁶ ions/ cm²的样品中注入 N 的峰值浓度可达 4%。根据下 文给出的透射电镜结果可知,薄膜厚度约为 400 nm,大于 N 离子的入射深度。

图 1 ZnO 薄膜中 N 浓度分布及位移损伤截面随深度的变化

由于 80 keV N 离子在 ZnO 薄膜中的核能损和

电子能损分别为 0.213, 0.556 MeV/(mg/cm²), 损伤主要由核-核之间的弹性碰撞所产生原子位移 引起,电子能损的贡献较小。注入 N 的峰值浓度和 位移损伤峰存在明显的交叠,因此实验观测到的 ZnO 薄膜结构的变化是 N 掺杂和位移损伤两者共 同起作用的结果。

3 结果与讨论

通过测量 ZnO 薄膜的 XRD 谱,研究了 N⁺注 入产生的辐照损伤对晶体结构影响。图 2 给出了 N⁺的注入前后 ZnO 薄膜样品的 XRD 谱。可以看 出,N⁺注入后的样品仍为高度(002)择优取向,即 N⁺注入没有改变原有 ZnO 薄膜的晶体结构,这与 我们以前用高能 Xe 辐照 ZnO 薄膜得到的结果类 似^[14]。由于在 XRD 测量中,晶粒尺寸变化和应变 导致衍射峰宽化均为对称宽化^[15],因此在对 ZnO (002)峰进行高斯拟合时,N⁺注量为 5.0×10¹⁶ ions/cm²的样品的 XRD 谱按照双峰拟合处理,得 到衍射峰的峰位、半高宽见表 1。由此,不仅可以发 现 ZnO(002)峰位随 N⁺注量的增加向低散射角方 向略有移动,而且还发现 N⁺注量为 5.0×10¹⁶ ions/cm²时,ZnO 薄膜 XRD 谱中的(002)峰附近出 现一个与掺杂有关的新峰。

图 2 ZnO 薄膜样品的 XRD 谱随 N 离子注量的变化

利用 Bragg 公式计算了 ZnO 薄膜样品的晶格 常数 c。对于 ZnO 六方纤锌矿结构,其应力 σ= -453.6×(c-c_o)/c_o(GPa)^[16](c_o=5.206 Å 为无应 力粉末样品的晶格常数^[17]),计算结果若为负号表 示薄膜所受应力为压应力,反之为张应力。根据实 验测得的 XRD 谱分析得到的部分结果如表 1 所示。

从表 1 可以看出,随着 N⁺ 注量由 0(未注入) 增大至 5.0×10¹⁶ ions/cm²,晶格常数 *c* 从 5.207 Å

表 1 N离子注入的 ZnO 薄膜样品的 XRD 峰位、半高宽、晶格常数及应力结果

注量	(002)峰		新峰		晶格常数 c	应力 σ
$/(ions/cm^2)$	峰位 20/(°)	半高宽/(°)	峰位 20/(°)	半高宽/(°)	/Å	/GPa
0	34.413	0.103	-	-	5.2078	-0.16
5.0×10 ¹⁴	34.413	0.096	-	-	5.2078	-0.16
5.0×10 ¹⁵	34.394	0.148	-	-	5.2106	-0.40
5.0×10 ¹⁶	34.383	0.187	34.239	0.493	5.2122	-0.54

增大到 5.211 Å, 半高宽由 0.103°增大到 0.187°, 对应的压应力由 0.16 Gpa 增大到 0.54 Gpa。在 N 离子注入 ZnO 薄膜过程中, N 离子通过弹性碰撞 在薄膜内产生空位或间隙原子等缺陷,同时被阻止 在薄膜内形成掺杂。由于间隙原子与晶格中临近原 子之间存在相应的斥力,使相邻晶面内的原子间距 增加,导致其所在的晶胞的体积略有增加,晶胞内 的原子将受到来自周围正常晶胞的原子的压应力: 而空位可使相邻晶面内的原子间距变小,导致其所 在晶胞的体积略有减小,此时晶胞内的原子将受到 来自周围正常晶胞的原子的张应力。从实验得到的 结果看,N离子注入在ZnO薄膜中产生的间隙原 子大于产生空位数, 故 XRD 分析显示薄膜内原子 整体上受到压应力。随着注入剂量的增加,与空位 数相比富余的间隙子的数目增加,不仅使薄膜的压 应力和晶格常数 c 随之增加, 而且还引起了晶体结 构的完整性变差。

当注量为 5.0×10¹⁶ ions /cm²时,在 2 θ = 34.239°处测得一个与掺杂有关的新峰。根据模拟 计算,注量 5.0×10¹⁶ ions /cm²时,薄膜中沉积的 N 的峰值浓度可达到 4%。通过查寻 XRD 中 pdf 卡片,发现这与 Zn₃ N₂的(321)面的衍射峰(2 θ = 34.318°)与该新峰比较接近。因此推测该新峰可能 与注入的 N 离子替代 ZnO 晶格内 O 的位置而形成 Zn—N 键有关。

为了直观观测 N⁺ 注入前后 ZnO 薄膜结构变 化情况,利用高分辨透射电镜对 ZnO 薄膜样品进 行了内部结构分析。图 3 和图 4 分别给出了注入前 ZnO 样品和注量为 5.0×10¹⁵ ions /cm²的样品的电 镜照片,其中图 3(b)和图 4(b)为高分辨透射电镜 (HREM)像,图 3(c)和图 4(c)为电子衍射图。

图 3 注入前 ZnO 薄膜样品的 TEM 照片 (a)全貌图,(b)HREM,(c)电子衍射图。

图 4 N 注量为 5.0×10¹⁵ ions /cm² 的 ZnO 薄膜样品的 TEM 照片

(a)全貌图,(b)HREM,(c)电子衍射图。

比较注入前后电镜图片可以看出,注入前 ZnO 薄膜由致密柱状晶体组成(图 3(a)衬度像中的条状 结构所示), HREM 图显示晶格排列有序, (002)方 向晶面间距约为 0.258 nm, 电子衍射图显示衍射 斑点规律排列,类似单晶;注入 5.0×10¹⁵ ions/ cm²后,薄膜仍然保持致密柱状晶结构(图 4(a)衬 度像中的条状结构所示), HREM 图显示点阵结构 大部分还比较清楚,但部分区域出现晶格扭曲和模 糊,电子衍射图中也出现多套反映多晶面的衍射斑 点,而且有向衍射环变化的趋势。这说明 N 离子注 入在 ZnO 薄膜中产生了缺陷和损伤,破坏了局部 晶格结构的完美性,使得薄膜的质量有所下降。据 计算结果, N⁺注量为 5.0×10¹⁵ ions/cm² 时, 在靠 近薄膜表面的 200 nm 内的损伤水平可达到或者超 过1.0 dpa,也就是说,每个原子可以至少发生了1 次的位置变化。然而,电镜分析结果显示薄膜整体 结构依然良好, 这表明 ZnO 薄膜有很强的抗辐照 损伤的能力。

4 结论

实验研究了 80 keV N 离子注入引起的 ZnO 薄 膜结构特性的变化。XRD 实验结果发现, ZnO 薄 膜的晶格常数和薄膜内所受压应力随注入剂量增加 呈增大趋势;当注量达到 5.0×10¹⁶ ions/cm²时, 在 20 = 34.239°处得到新峰,这可能与注入 N 离子 在 ZnO 晶格内替代 O 的位置而形成 Zn—N 键有 关。透射电镜分析结果表明, N离子注入可在 ZnO 薄膜样品中产生缺陷。较大注量(5.0×10¹⁵ ions/ cm²,损伤水平峰值可超过 1.0 dpa)N离子注入可 导致薄膜中出现局部无序化,使得薄膜的质量有所 下降,但薄膜总体结构仍保持柱状晶和(002)择优 取向。这些实验结果表明,在总体结构不变的前提 下,有可能实现 ZnO 薄膜样品中的 N 掺杂。

参考文献(References):

[1] Özgür Ü, Alivov Ya I, Liu C, et al. Journal of Applied Phys-

ics, 2005, 98: 041301.

- [2] Pearton S J, Norton D P, Ip K, et al. Progress in Materials Science, 2005, 50: 293.
- [3] Kohan A F, Ceder G, Morgan D, et al. Phys Rev, 2000, B61 (22): 15019.
- [4] Ryu Y, Lubguban J A, Lee T S, et al. Appl Phys Lett, 2007, 90: 131115.
- [5] Xu W Z, Ye Z Z, Zeng Y J, et al. Appl Phys Lett, 2006, 88: 173506.
- [6] Liu W, Gu S L, Ye J D, et al. Appl Phys Lett, 2006, 88: 092101.
- [7] Yungryel Ryu, Tae-Seok Lee, Jorge A L, et al. Appl Phys Leet, 2006, 88: 241108.
- [8] Park C H, Zhang S B, Wei S H, Phys Rev, 2002, B66: 073202.
- [9] Georgobiania A N, Gruzintsev A N, Volkov V T, et al. Nucl Instr and Meth, 2003, A514, 117.
- [10] Wang Kun, Ding Zhibo, Chen Tianxiang, et al. Nucl Instr and Meth, 2008, B266: 2962.
- [11] Wang H T, Kang B S, Chen J J, et al. Appl Phys Leet, 2006, 88: 102107.
- [12] Chen Z Q, Maekawa M, Kawasuso A, et al. Appl Phys Leet, 2005, 87: 091910.
- [13] Ziegler J F, SRIM2006. Available from: http://www.srim. org/.
- [14] Zang H, Wang Z G, Peng X P, et al. Nucl Instr and Meth, 2008, B266: 2863.
- [15] Lifshin E. Materials Science and Technology, Characterization of Materials Part II, (Chinese Translation Book). 1998, 2B, 256.
 [E・利弗森. 材料的特征检测(2)(材料科学与技术丛书). 译者: 叶恒强. 北京: 科学出版社, 1998, 06].
- [16] Puchert M K, Timbrell P Y, Lamb R N. J Vac Sci Technol, 1996, A14(4): 2220.
- [17] Reeber R R. J Appl Phys, 1970, **41**: 063.

ZANG Hang^{1, 2}, WANG Zhi-guang^{1, #}, WEI Kong-fang^{1, 2}, SUN Jian-rong¹, YAO Cun-feng^{1, 2}, SHEN Tie-long^{1, 2}, MA Yi-zhun^{1, 2}, YANG Cheng-shao^{1, 2}, PANG Li-long^{1, 2}, ZHU Ya-bin^{1, 2}

(1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: ZnO thin films were implanted at the room temperature by 80 keV N-ions to 5.0×10^{14} , 5.0×10^{15} or 5.0×10^{16} ions/cm², the structural characteristics of the samples were investigated using X-ray diffraction(XRD) spectrometer and transmission electron microscopy(TEM). It was found that the un-implanted ZnO films are constituted of columnar crystals which are very compact and of preferred c-axis orientation. After N-ion implantation, the crystal lattice constant and the biaxial compressive stress increased with the increasing of the N-implantation dose. In the 5.0×10^{16} N-ions/cm² implanted ZnO sample, a new XRD peak due to defects or N-dopants appeared. Moreover, defects and localized disordering in the 5.0×10^{15} N-ions/cm² implanted ZnO films have been observed under high resolution TEM measurement. However, N-ion implantation could not change significantly the crystal structure of the ZnO films. Possible mechanism of the structural modification of ZnO films by N-ion implantation was briefly discussed.

Key words: ZnO films; N-implantation; XRD; TEM

^{*} Received date: 30 Mar. 2009; Revised date: 3 Apr. 2009

Foundation item: Knowledge Innovation Program of Chinese Academy of Sciences(KJCX2-YW-M11); National Natural Science Foundation of China(10835010)

[#] Corresponding author: Wang Zhi-guang, E-mail: zhgwang@impcas.ac.cn