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Ultra-bright biphoton emission from an atomic vapor based on Doppler-free

four-wave-mixing and collective emission
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We propose a novel ‘butterfly’ level scheme to generate highly correlated photon pairs from
atomic vapors. With multi-photon Doppler-free pumping, background Rayleigh scattering is dipole-
forbidden and collective emission is permitted in all directions. This results in usable pairs generated
simultaneously in the full 4π solid angle. Collecting these pairs can produce photon pairs at a rate
of ∼ 1012 per second, given only moderate ensemble sizes of ∼ 106 atoms.

PACS numbers: 42.65.Lm, 42.50.Ar, 42.50.Dv

The study of correlated/entangled photon pairs has
long been a topic in the field of quantum optics [1].
The importance of paired photons is two-fold: they i)
provide powerful tools to test the peculiar aspects of
quantum mechanics, such as violations of local-realism
[2, 3]; and ii) they hold promises for advancements in
quantum measurement, communication, and informa-
tion processing [4, 5, 6, 7, 8, 9, 10]. Over the past
few decades, spontaneous parametric down-conversion
(SPDC) in nonlinear crystals has been the standard
source of photon pairs [11, 12]. More recently, an al-
ternative class of biphoton sources has emerged, based
on optical four-wave mixing (FWM) in atomic vapors
[13, 14, 15, 16, 17, 18, 19, 20, 21]. These approaches rely
on collective effects [22] to greatly increase the probabil-
ity of correlated emission events. Compared to SPDC,
photon pairs generated via FWM in general have a much
narrower bandwidth, significantly greater temporal and
spatial coherence, and much higher conversion efficien-
cies. They are thus particularly suitable for hybrid quan-
tum communications and computations employing atoms
and photons [10, 23], and for high-precision quantum
measurements and imaging [5, 9].

This far, proposed FWM photon pair sources can be
categorized into three types by level configuration. The
first type, built on atomic two-level systems, is a con-
nected double-Rayleigh emission process [24, 25]. Due
to strong background Rayleigh scattering, however, the
resulting pair correlation is very weak, without violat-
ing the necessary Cauchy criteria for biphoton correla-
tion [17, 20]. A second type is configured on two-photon
cascade emission in a four-level system [19, 26]. While
high-fidelity photon pairs are generated, due to the un-
equal wavelengthes of two cascade photons, the phase-
matching condition for collective emission can only be
satisfied if the first photon is emitted by chance into a
specific small solid-angle, thus unpaired emission domi-
nates the overall radiation, resulting in a relatively low
conversion efficiency. The third type employs Raman
FWM (hereafter referred to as “RFWM”) in multilevel
systems, configured on double-Λ [13, 16, 17, 20, 21] or
“X” [18] level diagrams. The major challenge in these
schemes is to suppress background Rayleigh scattering,

which tends to rapidly overwhelm paired emission. Three
approaches have been proposed to overcome this diffi-
culty, including i) using frequency selectors to filter out
Rayleigh photons [16]; ii) collecting pairs along emission
directions where the dipole pattern leads to zero Rayleigh
emission [17]; and iii) using a single-mode optical cavity
to suppress Rayleigh transitions [18]. While yielding up
to 105 pairs per second, all of these setups are unidi-
rectional, where photon pairs are produced only along
certain directions. This restricts the obtainable beam
brightness of the photon pairs, since in each momentum
mode, the time separation between pairs must be suffi-
ciently large to achieve strong correlation effects. Lastly,
in aforementioned FWM schemes where unpaired emis-
sions dominate, atomic samples are rapidly thermalized
due to random atomic recoils, limiting applications of
these schemes to “hot” vapors only.

To substantially increase the gain rate and suppress
the atomic thermalization, here we propose an omni-
directional biphoton source configured on a ‘butterfly’
level scheme. The central idea is to completely eliminate
the background Rayleigh scattering in RFWM by em-
ploying electric-dipole forbidden driving channels. This
can be accomplished using multiphoton pumping. Com-
bining this with a Doppler-free geometry allows high-
efficiency emission of photon pairs in the full 4π solid
angle. Collecting these pairs will lead to twin beams of
correlated or entangled photon pairs, whose brightness
can be tens of thousands times greater than that via uni-
directional schemes. Furthermore, since Rayleigh scat-
tering has been eliminated, the atomic thermalization
will be strongly suppressed, so that this scheme can also
be applied to ultracold vapors including Bose-Einstein
condensates (BECs).

A schematic level diagram of the butterfly scheme is
shown in Fig. 1 (a). While greatly simplified with re-
spect to a realistic level-scheme, this model will serve to
illustrate the important dynamical effects. An atomic en-
semble, initially prepared in the |1〉 state, is first weakly
driven to the excited |2〉 level via a multi-photon pump
process, which imparts a net recoil momentum of h̄K,
so that for an initial momentum h̄k0, an atom excited
to |2〉 has a momentum of h̄(k0 + K). The atom then
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spontaneously decays to |3〉, emitting a ‘signal’ photon
with a random momentum h̄k, shifting the atom’s mo-
mentum to h̄(k0 + K − k). Decay to state |1〉, which
would generate background Rayleigh scattering, is for-
bidden by dipole selection-rules. The atom in |3〉 state is
then rapidly repumped to |4〉 by a strong multi-photon
coupling process. The coupling is arranged to yield a net
momentum of −h̄K, leading to a momentum of h̄(k0−k)
for the atom. From |4〉, the atom decays back to the |1〉
state, emitting an ‘idler’ photon, which will be emitted
with momentum −h̄k due to collective enhancement.

The collective enhancement mechanism can be under-
stood by noting first that the emission of the signal pho-
ton with momentum h̄k imprints ‘which atom’ informa-
tion onto the atomic ensemble via atomic recoil, pro-
vided of course that the single-photon recoil momentum
is larger than the momentum coherence length of the
sample (which for a thermal gas of free particles is the
inverse sample length). If the idler photon is then emitted
with momentum −h̄k, the atom is restored to its initial
momentum state of h̄k0, thus ‘erasing’ the ‘which atom’
information, resulting in collective emission by all atoms
within a wavelength of the emission axis, enhancing the
emission rate by a factor ∼ nλ2R, where n is the atomic
density, λ = 2π/|k|, and R is the cloud radius. The rea-
son only this fraction of the atoms emit collectively is
that the photons themselves carry sufficient information
in their phase fronts to locate the transverse origin of
emission with an accuracy given by the diffraction limit,
λ. Conversely, emission of an ‘idler’ photon with a mo-
mentum other than −h̄k is not collective, and is therefore
suppressed by unitarity.

The fact that the driving and coupling pumps have
opposite net momenta makes the scheme ‘Doppler-free’,
so that phase-matched collective emission can occur re-
gardless of which direction the signal photon randomly
‘chooses’, resulting in omni-directional emission of cor-
related photon pairs. This is clearly seen in Fig. 1 (b),
where for an arbitrary k, the atomic dynamics in the
space of recoil momentum undergoes a closed, diamond-
like cycle.

To study the system’s dynamics, we quantize the elec-
tromagnetic field of signal and idler photons onto orthog-
onal collective-emission modes {|k〉}. Each mode sub-
tends a solid angle ∼ (λ/R)2, centered on k, and the
modes do not overlap. This quantization basis is mode
matched to the collective emission angle. In this basis,
the atomic dynamics is governed by a set of rate equa-
tions:

d

dt
N1 =

i

2
(Ωd̺21 − c.c) +

∑

k

Γ4µk4Nk4(N1 + 1), (1)

d

dt
N2 = −

i

2
(Ωd̺21 − c.c) −

∑

k

Γ2µk2N2(Nk3 + 1), (2)

d

dt
̺21 = i

Ωd

2
(N1 − N2)

FIG. 1: (Color online) A schematic model of the butter-
fly scheme. Figure (a) draws the simplified level diagram,
employing multi-photon driving and coupling pumps. The
notation |1,k0〉 indicates a single atom state in level |1〉
and with momentum h̄k0, and so on. Figure (b) shows a
closed, diamond-like dynamical cycle in atom-recoil momen-
tum space, for an arbitrary k of signal photons.

+
1

2
̺21

∑

k

[Γ4µk4Nk4 − Γ2µk2(Nk3 + 1)] , (3)

d

dt
Nk3 =

i

2
(Ωc̺k43 − c.c) + Γ2µk2N2(Nk3 + 1), (4)

d

dt
Nk4 = −

i

2
(Ωc̺k43 − c.c) − Γ4Nk4(µk4N1 + 1), (5)

d

dt
̺k43 = i

Ωc

2
(Nk3 − Nk4)

+
1

2
̺k43 [Γ2µk2N2 − Γ4(µk4N1 + 1)] . (6)

Here, N1 and N2 are the atom numbers in states |1〉 and
|2〉, and ̺21 is the corresponding coherence term. Nk3

is the number of atoms in |3〉, whose signal-photon re-
coil kick corresponds to emission into collective mode |k〉.
Similarly, Nk4 is the number of these atoms transferred
to the state |4〉 by the coupling laser and ρk43 is the co-
herence between the two states. In the above equations,
Γ2, Γ4 are the spontaneous emission rates for |2〉 → |3〉
and |4〉 → |1〉 decays, while µk2 and µk4 are the col-
lective enhancement factors, which have been taken to
be real. The imaginary part of µk2, µk,4, describing the
laser-induced dipole-dipole interaction, is in general or-
ders of magnitude smaller than the real part, and can
thus be neglected. For a spherical sample of radius R,

we find µkj = (1 − |k̂ · d̂j |
2) 3

8π

(

λ
2R

)2
. Here, d̂2, d̂4 are

the unit vector directed along the dipole moments of the
|2〉 → |3〉 and |4〉 → |1〉 transitions.

The total emission rates for signal and idler photons,
corresponding to the (enhanced) decay rates of the |2〉
and |4〉 levels, are RS = Γ2

∑

k
µk2N2(Nk3 + 1) and

RI = Γ4

∑

k
µk4Nk4(N1 + 1), respectively. Assuming

steady-state, clearly we must have RI ≤ RS . If RI < RS ,
more signal photons are generated than idler photons,
so that pairing is weak. Thus, at a minimum, strong

pairing requires RI = RS . Focusing on a single k̂ di-
rection, and assuming µk2 = µk4 and Γ2 = Γ4, we find
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RI (k̂)

RS(k̂)
=

(

N1+1
N2

) (

Nk4

Nk3+1

)

. For a strong drive, Ωd
>
∼ Γ2,

we have N2 ∼ N1, so that we require Nk4 ∼ Nk3 ≫ 1,
which thus requires a strong coupler, Ωc

>
∼ Γ4µk4N1, as

well. We find that dynamically this doesn’t work, instead
population builds up in Nk3 and Nk4 without strong pair-
ing. This leaves the case of weak driving, Ωd ≪ Γ2 so

that N2 ≪ N1. This then requires Nk4 = N2(Nk3+1)
N1

,
which can be arranged by adjusting the drive and cou-
pler strengths and detunings, and for Nk4 ≪ 1 results in
strong pairing.

The total number of photon pairs generated per sec-
ond is given by Γ4

∑

k
µk4Nk4(N1 + 1). For a BEC,

the condensate atom loss rate, due to spontaneous emis-
sion from the |4〉 level, is Γ4

∑

k
Nk4. The ratio of

pair generation and atom loss rates is κ = N1µ̄, where
µ̄ =

∑

k
µk4Nk4/

∑

k
Nk4. For a spherical sample this

is roughly λ2/4πR2. Typically, κ is much greater than
one, so that many pairs can be generated before rogue
photon emission destroys the BEC. This means that if
desired, a BEC can act as an ultra-bright photon-pair
source without being destroyed in the process. We note
that in general, an atom which emits spontaneously from
|4〉 receives an additional photon recoil-kick, but is still
fully able to participate in collective emission of subse-
quent photon pairs. In a more realistic level scheme this
may not be true for atoms which spontaneously decay
from |4〉 to a level other than |1〉.

To measure the time correlation of the two photons,
we calculate the time-averaged second-order correlation
function g(2)(k,−k, τ) [2],

g(2)(k,−k, τ)=
1

T

∫ T

0

dt
〈â†

ks(t)â
†
−ki(t+τ)â−ki(t+τ)âks(t)〉

〈â†
ks(t)âks(t)〉〈â

†
−ki(t+τ)â−ki(t+τ)〉

,

where âks and âki are the annihilation operators for
signal and idler photons, which may or may not dif-
fer in polarization for a given k, and T is the aver-
aging window. This is evaluated by first using adia-
batic following to write the photon operators in terms
of the atomic operators. The resulting expressions are
then factorized into products of the occupation num-
bers. The equations for the occupation numbers are
solved in steady-state with atom losses neglected, which
allows us to take T → ∞. In this manner, we find to a
good approximation that, g(2)(k,−k, τ) ≈1 + 1

Nk4

χ(τ).

For a strong coupling with Ωc
>
∼ Γ4µk4N1, we find

χ(τ) ≈ sin2
(

1
2Ωcτ

)

exp(− 1
2Γ4µk4N1τ). The correlation

then exhibits oscillatory and damped behavior with sharp
peaks, indicating strong time-correlation between the sig-
nal and idler photons [16]. The time delay of idler pho-
tons is roughly (Γ4µkN1)

−1, which is much shorter than
the temporal coherence length of the signal photons. This
ensures strong interferences of paired photons, for exam-
ple, when mixed in a polarized beamsplitter [18].

As an example, we solve the rate-equation dynamics
for a symmetric Gaussian sample of N = 106 atoms. We
consider resonant driving and coupling pumps propagat-
ing along ẑ and −ẑ directions, and assume Γ2 = Γ4 ≡ Γ.
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FIG. 2: (Color online) Figures (a)-(b) show the evolutions of
N1, N2, N3, N4, while (c) compares the number of generated
photon pairs Npair and lost atoms Nloss. Figure (d) plots the

second-order correlation function g(2)(k,−k, τ ) for k = kẑ

and k = kx̂, respectively. Parameters are given in text.

We choose Ωd = 0.1Γ, Ωc = 100Γ and R = 50λ. The
results are shown in Fig. 2 (a)-(d). In figure (a), we plot
the time evolutions of N1, N2, showing that at all times
only a small fraction of atoms are excited, as required. In
figure (b), we plot the average occupation numbers N3

and N4, obtained by averaging over k. Both are found
to be of order of 0.01, so that there is negligible overlap
between subsequent pairs in a given mode k. The total
photon-pair number and lost atom number are shown in
figure (c), where they are found to increase linearly in
time with fitted rates of 8.3 × 103Γ and 1.4 × 102Γ. In
figure (d), we plot the second-order correlation functions
for photon pairs propagating along ±ẑ and ±x̂ directions.
Both cases exhibit sharp peaks of widths ∼ 0.05Γ−1, in-
dicating strong temporal correlation which violate the
standard Cauchy-Schwartz inequality by a factor >

∼ 1000.

We now examine the polarization entanglement of

paired photons. For d̂2,4 = 1√
2
(x̂ ± iŷ), the probabili-

ties for signal photons to be left(right) circularly polar-

ized along k, denoted ǫ̂L(ǫ̂R), are βL
S (θ) =

(

1 + cot4 θ
2

)−1

and βR
S (θ) = βL

S (π − θ), with θ defined relative to K.
Similarly, for the idler photons we have βR

I = βL
S (θ),

and βL
I = βR

S (θ). The probability for photons to be
in opposite circular polarizations along k (thus in the
same polarizations along each’s propagating direction) is

P (θ) = (1 + cot8 θ
2 )/

(

1 + cot4 θ
2

)2
, which is extremely

flat around θ = 0, π, where P (θ) ≈ 1 − 1
8mod(θ, π)4 ≈ 1,

meaning that photon pairs emitted over a wide range of
θ will yield strong polarization entanglement. Due to the
temporal overlap of signal and idler photons, each pair
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FIG. 3: (Color online) A realistic butterfly scheme using Ag
atoms. Figure (a) shows the level diagram, where thicker
solid lines draw dominating coupling channels, while thinner
dashed lines show weaker side transitions. Figure (b) plots
the time evolutions of Npair and Nloss, while (c) draws the
time correlation function for photon pairs emitted along ±ẑ

directions.

emitted within the strong correlation angle is approxi-
mately in the Bell state of |Ψ+〉 = 1√

2
(|ǫRǫL〉 + |ǫLǫR〉).

For example, pairs with one photon emitted within θ <
0.5 (corresponding to 17% of the emitted pairs) have an
entanglement fidelity ≥ 99%.

We now consider a realistic butterfly level scheme con-
figured on the 328nm-line of the 52S1/2 ↔ 52P3/2 tran-
sition in Silver, as shown in figure 3 (a). The atoms are
prepared in the |1〉 ≡ |F = 0, mF = 0〉 state and then
follow a FWM cycle which deposits them in level |3〉. A
second independent FWM cycle then returns them to the
initial |1〉 state. The drive (coupling) FWM cycle con-
sists of one UV laser,and two infrared lasers, with Rabi

frequencies Ω1(4) Ω2(5) and Ω3(6), respectively. Signal
photons are emitted as |2〉 atoms spontaneously decay to
the sole dipole-allowed state of |3〉 ≡ |F = 1, mF = 1〉,
and idler photons are generated as each atom in |4〉 (ac-
tually 2 effectively degenerate hyperfine levels) decays
collectively back to |1〉, and to its initial momentum h̄k0

(atoms which spontaneously decay to other hyperfine lev-
els are ‘lost’ as they can no longer participate in the col-
lective emission cycle). We note that the frequencies of
the signal and idler photons differ by the ground hyper-
fine splitting, which is smaller than the superradiance-
broadened linewidth of the idler photons, thus guaran-
teeing the frequency indistinguishability of the photons.

For a spherical cloud of 106 atoms with a radius of
R = 20µm, and with (all in units of GHz): Ω1 = 0.4,
Ω2 = 9, Ω3 = 1.5, Ω4 = 4, Ω5 = 12, Ω6 = 0.5, ∆1 = 24,
∆2 = 3, ∆3 = 80, ∆4 = 0.4, we solve the rate equa-
tions numerically. Results are shown in figure 3 (b) and
(c). In figure (b), the production rate of photon pairs is
∼ 0.5 × 1012 per second. The ratio of generated pairs
Npair to lost atoms Nloss is about 4, so that roughly
106 pairs of photons can be generated before significant
atomic loss. In figure (c), the time correlation function
exhibits sharp peaks, thus showing strong pair correla-
tion between signal and idler photons.

The dominant loss mechanism is due to atoms from
|1〉 being pumped to |4〉 by Ω4, and then decaying non-
collectively. Due the the detuning of this mechanism,
the rogue photons are different in frequency from signal
and idler photons by ∼ 80 GHz, which can be filtered
out. When the atom loss becomes significant, the system
will enter a more complicated regime, where the system
tries to equilibrate, resulting in macroscopic occupation
of all ground hyperfine sub-levels, and presumably di-
minished pair correlations. If this is the case, then only
a small number of photon pairs will be generated, but in
a very short burst. In this case, this particular system
may be an excellent source for generating highly number-
difference squeezed twin beams for quantum interferom-
etry.
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