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Biological cells with all of their surface structure and complex interior stripped away are essentially
vesicles — membranes composed of lipid bilayers which form closed sacs. Vesicles are thought to
be relevant as models of primitive protocells, and they could have provided the ideal environment
for pre-biotic reactions to occur. In this paper, we investigate the stochastic dynamics of a set of
autocatalytic reactions, within a spatially bounded domain, so as to mimic a primordial cell. The
discreteness of the constituents of the autocatalytic reactions gives rise to large sustained oscillations,
even when the number of constituents is quite large. These oscillations are spatio-temporal in
nature, unlike those found in previous studies, which consisted only of temporal oscillations. We
speculate that these oscillations may have a role in seeding membrane instabilities which lead to
vesicle division. In this way synchronization could be achieved between protocell growth and the
reproduction rate of the constituents (the protogenetic material) in simple protocells.

PACS numbers: 02.50.Ey, 05.40.-a, 87.16.dj

I. INTRODUCTION

The cell is a structural and functional unit, the build-
ing block of any living system. Cells consist of a mem-
brane, made of a lipid bilayer, which encloses and pro-
tects the contents of the cell, including genetic material.
The membrane is semi-permeable: nutrients can diffuse
in and serve as energy to support the functioning of the
machinery [1]. Cells undergo replication (cell division):
this is a process by which a cell, hereafter called the par-
ent cell, divides into two or more cells, called the daugh-
ters. The daughter cell contains in principle an exact
replica of the parent’s inner constituents, this property
being ultimately a prerequisite for stable living organisms
to exist. Such a process clearly relies on the synchro-
nization between the duplication rate of the constituents
and the growth of the container. In modern cells this
condition is of paramount importance and is efficiently
realized via dedicated control mechanisms, expressed as
pathways of nested molecular checkpoints [1]. This com-
plex and delicate machinery has evolved; presumably the
first minimalistic cells (so-called protocells [2]-[10]) had
a far more straightforward and less elaborate way of di-
viding. So focusing on the primordial cell units postu-
lated to be present at the origin of life on Earth, can we
conceive of a simple, though efficient, mechanism which
could govern the division process? A possible answer to

this question will emerge as a result of the calculations
carried out in this paper.

One of the most persuasive scenarios concerning the
origin of life on Earth identifies vesicles as protocells [11].
These are tiny closed sacs in which the outer membrane
takes the form of a lipid bilayer, and so are good candi-
dates for a minimal cell. Despite the dramatic reduction
in complexity as compared to modern cells, vesicles still
display many fascinating properties, as revealed in lab-
oratory experiments [11, 12]. They are semi-permeable
and allow for different types of chemicals to enter the
enclosed volume, and so sustain any reaction cycles that
may be taking place. In addition, vesicles can grow due to
inclusion of lipid constituents into their surface, progres-
sively adjust their shape, and eventually divide to pro-
duce daughter vesicles. Vesicles which are initially spher-
ical can pass through a number of intermediate shapes
before they divide, for instance a vesicle may first change
into an ellipsoid, then into a dumbbell shape and finally
into two attached spheres, at which point it will divide
in two [12].

However it must be said there is in reality very little
theoretical evidence that the shape of the vesicle always
follows this particular sequence, and even less experimen-
tal evidence. It may be more appropriate to talk about
an ensemble of vesicles and typical pathways to the state
where division takes place. Similarly there may only be a
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mean time to division, although it should be noted that
there would then be a selection process which would favor
the types of vesicles (if they could be distinguished) which
would undergo the division proceeding at the fastest rate.

When modeling protocells, one needs to relate the
mechanism of growth and division to the actual mi-
croscopic dynamics of the internal constituents. While
vesicles can possibly define the scaffold of prototypical
cell models, what can one say about the internal con-
stituents? It is customarily believed that autocatalytic
reactions [13] might have had a role in producing complex
molecules required for the origin of life [14]-[17]. A chem-
ical reaction is called autocatalytic if one of the reaction
products is itself a catalyst for the chemical reaction.
Clearly the reaction will speed up as more catalyst is
produced. If there are several catalytic reactions, rather
than just one — an autocatalytic set [18] — then more
complex behavior is possible, with some reactions pro-
ducing catalysts for other reactions. This suggests that
the interior of the protocell might have been occupied by
interacting families of replicators, organized in autocat-
alytic cycles.

Autocatalytic reactions have also been invoked in the
context of studies on the origin of life as a possible so-
lution of the famous Eigen paradox [19]. This is a puz-
zle, since it limits the size of self-replicating molecules
to perhaps a few hundred base pairs. At odds with this
conclusion, almost all life on Earth requires much longer
molecules to encode their genetic information. This prob-
lem is dealt with in living cells by the presence of enzymes
which repair mutations, allowing the encoding molecules
to reach sizes on the order of millions of base pairs [20].
In primordial organisms, autocatalytic cycles might have
provided the required degree of microscopic cooperation
to prevent Eigen’s evolutionary drive to self-destruction
to occur.

In this paper we will investigate the properties of au-
tocatalytic reactions within a bounded region of space,
which we will identify with the vesicle, the whole struc-
ture being a reference model for a protocell. The auto-
catalytic reactions will be taken to have the form pro-
posed by Togashi and Kaneko [21, 22]. In their work,
Togashi and Kaneko emphasized the role played by the
noise intrinsic to the system of elementary constituents.
This model was recently revisited by Dauxois et al. [23],
who used an approach based on expanding the master
equation in a system-size expansion [24], to make an-
alytic progress in the description of the process. This
approach has recently been applied to a number of pro-
cesses in biological systems to show how large oscillations
can emerge, sustained by the stochastic component of the
dynamics [25]-[27]. The analysis has also been extended
to a spatial model [28], and our calculations will mirror
those in this paper.

Therefore here we will ask what happens once space
(i.e. microscopic particle diffusion) is incorporated into
the model. Are the oscillations robust or, conversely, do
they get washed out through coarse-grained averaging?

We shall demonstrate that spatio-temporal patterns do
emerge and influence the mass transport inside the cell.
We will also speculate that the division of the protocell
requires an inherent degree of synchronization which may
be triggered by collective, spatially ordered fluctuations
in the concentration. Building on this scenario, one can
imagine that localized peaks in the concentration might
develop at a given stage of the vesicle evolution. Denser
patches could then drive an instability which could po-
tentially lead to the distortion of the membrane and so
to division.

II. THE MODEL

The model we will use is a spatial version of the auto-
catalytic model discussed in [23]. The idea is to introduce
a spatial coarse-graining and divide the vesicle into small
micro-cells, within which autocatalytic reactions occur.
The cells adjoining the membrane which forms the limit
of the vesicle have a special status, since the membrane
allows chemicals to diffuse in from the environment and
out into the environment. In this paper we will focus
only on these micro-cells — those that are adjacent to
the boundary — and lump all the interior micro-cells
together into an inner region. We do not give the envi-
ronment or this inner region any spatial structure; they
simply act as a particle reservoir for the chemicals in the
micro-cells adjacent to the membrane.
In each micro-cell autocatalytic reactions as specified

in [23] occur, see Fig. 1. More specifically we con-
sider k chemical species, here labeled Xj

s , with the index
s = 1, . . . , k labeling the species and j = 1, ...,Ω, the Ω
micro-cells where the reactions occur. The autocatalytic
reactions take the form [23]

Xj
s +Xj

s+1

ηs+1−→ 2Xj
s+1. (1)

The reactions are taken to be cyclic, so that Xj
k+1 = Xj

1 .
The spatial element of the model is introduced through

migration of chemical species between neighboring cells.
The boundary cells will form a periodic structure in two
dimensions, so that a Fourier-based approach can be
used in the analysis described below. The geometry is
schematically depicted in Fig. 2, in a two-dimensional set-
ting, so that the micro-cells form a one-dimensional pe-
riodic structure. It should be emphasized that although
the scheme is illustrated in Fig. 2 with reference to a two-
dimensional vesicle for simplicity, the setting and analy-
sis apply in any spatial dimension including the relevant
three-dimensional case. If the vesicle is d+1-dimensional,
clearly the micro-cells will form a d-dimensional periodic
structure.
The migration between adjacent cells is encapsulated

in the following relations

Xj
s + Ej′ αs−→ Xj′

s + Ej , (2)

Ej +Xj′

s
αs−→ Ej′ +Xj

s , (3)
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where j and j′ label the adjacent cells and Ei represents
the number of vacancies in cell i. We will assume that
the capacity of each cell is N , so that sum of the number
of molecules of each species plus the number of vacancies
equals N for every cell.
Finally, cell j may lose a molecule Xj

s to the environ-
ment or inner region leaving a vacancy Ej or a gain of a
molecule Xj

s from the environment or inner region, i.e.

Xj
s

γs−→ Ej ; Ej βs−→ Xj
s . (4)

There is no need to distinguish between the environment
and inner region; the rates γs and βs can simply be re-
garded as the combined rates for both processes. In the
rest of the paper we will simply refer to both these regions
as “the environment”.
In the following we will formulate the model in terms

of a chemical master equation and find the mean-field
solution as well as determining stochastic corrections to
this which occurs when N is finite. We will also simulate
the stochastic dynamics and compare the results with the
analytic formulas we obtain.

FIG. 1: (Color online) The volume of the cells adjacent to
the boundary is imagined to be partitioned into Ω micro-cells
(see also Figure 2). Within micro-cell j the molecular species
interact according to the autocatalytic reactions specified by
Eqs. (1). In addition, the molecules can migrate from micro-
cell j to its nearest neighbors, e.g. micro-cell j′, as depicted
in the cartoon. A molecule of type Xj

s (full circle) takes over

a vacancy (dashed empty circle) of micro-cell Ej′ , and so

transforms intoXj′

s , leaving behind a vacancyEj . Finally, the
chemical can also diffuse in from the environment, a reaction
that in turn implies changing Ej into Xj

s . The opposite holds
for molecules that diffuse out into the environment.

To describe the model as a chemical master equation,
we denote the number of molecules of chemical species
s in cell j by nj

s, and so the state of the system can be
characterized by the vector n = (n1,n2, ...,nΩ) where

nj = (nj
1, n

j
2, ..., n

j
k). The transition rate from one state

n′, to another n, is denoted by T (n|n′) — with the initial
state being on the right. For example, the transitions
stemming from the autocatalytic cycles are

T (nj
s − 1, nj

s+1 + 1|nj
s, n

j
s+1) =

ηs+1

Ω

nj
s

N

nj
s+1

N
, (5)

where within the brackets we have chosen to indicate
only the dependence on those species which are involved
in the reaction. The transition rates associated with the
migration between adjacent micro-cells take the form

T (nj
s − 1, nj′

s + 1|nj
s, n

j′

k ) =
αs

zΩ

nj
s

N

(
1−

k∑

m=1

nj′

m

N

)
,

T (nj
s + 1, nj′

s − 1|nj
s, n

j′

s ) =
αs

zΩ

nj′

s

N

(
1−

k∑

m=1

nj
m

N

)
,(6)

where z is the number of nearest neighbors that each
micro-cell has. Finally, for the interaction with the envi-

FIG. 2: (Color online) In the spatial autocatalytic model con-
sidered here the vesicle is imagined to be divided into small
micro-cells. We are specifically interested in the micro-cells
adjoining the membrane, shown in darker outline in the fig-
ure. These latter link up together and constitute a sort of
inner shell, immediately adjacent to the vesicle wall. Within
each micro-cell the chemicals interact as shown in Figure 1.
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ronment, the transition rates are

T (nj
s − 1|nj

s) =
γs
Ω

nj
s

N
,

T (nj
s + 1|nj

s) =
βs

Ω

(
1−

k∑

m=1

nj
m

N

)
. (7)

In Eqs. (6) and (7), explicit use has been made of the
condition

k∑

s=1

nj
s

N
+

nj
E

N
= 1, (8)

to eliminate nj
E , the number of vacancies in cell j.

The system is intrinsically stochastic and may be
described by the probability density function, P (n, t),
which gives the probability of finding the system in state
n at time t. The equation which governs the dynamical
evolution of P (n, t) is the master equation [24], which for
the system under consideration here takes the form

dP (n, t)

dt
=

Ω∑

j=1

T j
locP (n, t) +

Ω∑

j=1

∑

j′∈j

T jj′

migP (n, t)

+

Ω∑

j=1

T j
envP (n, t), (9)

where the three terms on the right-hand side refer to the
local terms for the chemical reactions, the migration of
chemical species between the micro-cells, and the inter-
action with the environment, respectively. The notation
j′ ∈ j means that the cell j′ is a nearest-neighbor of the
cell j. The three terms in the master equation can be
expressed in a concise, but transparent, form by intro-
ducing the step operator [24] E±1

s,j defined by

E±1
s,j f({ni

m}) = f(. . . , nj
s ± 1, . . .), (10)

where f is an arbitrary function. The explicit forms for
these three terms are

T j
loc =

k∑

s=1

(
Es,jE−1

s+1,j − 1
)
T (nj

s − 1, nj
s+1 + 1|nj

s, n
j
s+1)

(11)

T jj′

mig =

k∑

s=1

(
Es,jE−1

s,j′ − 1
)
T (nj

s − 1, nj′

s + 1|nj
s, n

j′

s )

+

k∑

s=1

(
Es,j′E−1

s,j − 1
)
T (nj′

s − 1, nj
s + 1|nj′

s , n
j
s)

(12)

T j
env =

k∑

s=1

[
(Es,j − 1)T (nj

s − 1|nj
s)

+
(
E−1
s,j − 1

)
T (nj

s + 1|nj
s)
]
, (13)

where it is understood that the operator E±1
s,j also acts

on P (n, t) when these expressions are substituted into
Eq. (9). In Eq. (11) the cyclic nature of the reactions

means that nj
k+1 should be identified as nj

1 and E±1
k+1,j

should be identified as E±1
1,j . The explicit expressions for

the transition rates are given by Eqs. (5)-(7). These,
together with Eqs. (9)-(13) define the model.
The above description is exact; no approximations

have yet been made. At this stage we could also resort
to direct numerical simulations of the chemical reaction
system by use of the Gillespie algorithm [29, 30]. This
method produces realizations of the stochastic dynam-
ics which are formally equivalent to those found from
the master equation (9). Averaging over many realiza-
tions enables us to calculate quantities of interest. We
will discuss the results of performing such simulations in
Section IV, but a very accurate approximation scheme
exists which can be used to investigate models of this
type analytically. This is the van Kampen system-size
expansion [24]. It is effectively an expansion in pow-
ers of N−1/2, which to leading order (N → ∞) gives
the deterministic equations describing the system, and
which at next-to-leading order gives finite N corrections
to these. These latter corrections take the form of linear
stochastic differential equations which can then be ana-
lyzed straightforwardly, especially in the case when the
deterministic system has approached a stable fixed point.
The method is based on substituting the ansatz

nj
s

N
= φj

s +
1√
N

ξjs , (14)

into the master equation (9). Here φj
s(t) is the solution to

the deterministic equation, and ξjs(t) is a stochastic term
which is the difference between the actual value nj

s/N
and φj

s at time t.
We develop this approximation in the next two sec-

tions. In Section III we carry out the analysis to leading
order, finding the deterministic equations and the rele-
vant fixed point. In Section IV we carry through the cal-
culation to next-to-leading order, investigating the linear
stochastic differential equations by taking their Fourier
transforms. The derivations of these equations is lengthy,
though straightforward, and the details of the expansion
are provided in Appendices A and B.

III. LEADING ORDER: THE DETERMINISTIC

EQUATIONS

In the limit where the number of molecules (includ-
ing vacancies) in each micro-cell, N , goes to infinity, the
system becomes deterministic and is governed by a set
of ordinary differential equations. These are found by
substituting the ansatz (14) into the master equation (9)
and letting N → ∞, after the introduction of a rescaled
time τ = t/(NΩ). The calculation is described in Ap-
pendix A, but the same equation can also be found by
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multiplying Eq. (9) by ni
r and summing over all states n.

Either way one obtains the following equation for species
s in cell j

dφj
s

dτ
= ηsφ

j
s−1φ

j
s − ηs+1φ

j
sφ

j
s+1

+ αs

(
∆φj

s(1−
k∑

m=1

φj
m) + φj

s

k∑

m=1

∆φj
m

)

+ βs(1−
k∑

m=1

φj
m)− γsφ

j
s, (15)

where ∆ is the discrete Laplacian operator ∆f j
s =

(2/z)
∑

j′∈j(f
j′

s − f j
s ). In the limit where the size of the

micro-cells tends to zero, these equations become par-
tial differential equations, with ∆ becoming the familiar
Laplacian operator. In this respect, Eq. (15) general-
izes the results of [23] to the case of a spatially-extended
system. When turning off the migration mechanism be-
tween neighboring micro-cells, i.e. imposing αs = 0 for
any species s, the spatial aspects drop out and one for-
mally recovers the ordinary differential equations given
in [23].
To proceed with the analysis, and to make contact with

the investigation carried out in [21, 23], we shall now as-
sign the same chemical parameters to all the species. The
migration rate is the only exception to this, and may have
a different value for each species. We will see later that
this will be necessary in order to find spatio-temporal
oscillations but also, as we will see shortly, a straightfor-
ward analysis is still possible if we maintain in αs, and
none of the other parameters, an explicit reference to the
index s. We will be concerned with finding the homoge-
neous solution of Eq. (15), that is, the solution with no
spatial variation. The homogeneous solution is found to
be an attractor of the deterministic dynamics, even when
the system is initially prepared in a non-homogeneous
configuration. This observation follows from numerical
simulations, but can in principle be made quantitative
by investigating the stability of the homogeneous fixed
point. This means that no gradient in concentration is
allowed between neighboring micro-cells, once the asymp-
totic regime is attained. So, when searching for fixed
points of the dynamics, one can set the terms involving
the Laplacian in Eq. (15) to zero. Since the only depen-
dence on s, appearing in αs, multiplies these terms, there
is also no dependence remaining on the species type, s,
and so the fixed points are both independent of j and of
s. Under these conditions a unique fixed point for the
concentration, φ∗, is easily found to be

φ∗ =
β

kβ + γ
, (16)

for any s = 1, ..., k and j = 1, ...,Ω. The result (16) is
identical to that obtained in [23], when dealing with the
non-spatial homologous model.
In [23], fluctuations for finite N were shown to induce

regular temporal oscillations in the species populations,

so significantly altering the predicted deterministic dy-
namics. What is going to happen in the present spatial
context? In Section IV we shall investigate this, the cen-
tral point of the paper, by focusing on the next-to-leading
order corrections in the van Kampen expansion.

IV. NEXT-TO-LEADING ORDER: THE

STOCHASTIC CORRECTIONS

Equating the terms of next-to-leading order in the
master equation, after rescaling the time, leads to the
Fokker-Planck equation (B1) which governs the proba-
bility density function of the fluctuations. This Fokker-
Planck equation is formally equivalent to the following
Langevin equation [31, 32]

dξjs
dτ

=
∑

j′,r

M jj′

sr ξj
′

r + λj
s(τ), (17)

where

〈λj
s(τ)λ

j′

r (τ
′)〉 = Bjj′

sr δ(τ − τ ′). (18)

The noise term, λj
s(τ), in Eq. (17) is Gaussian with zero

mean and with a correlator given by Eq. (18), from which
it can be seen to be white. The form of the two matrices
M and B are discussed in Appendix B. They depend
on the solution of the deterministic equation φj

s(τ), and
so in principle are time-dependent, since φj

s is. How-
ever, in practice we are interested in fluctuations about
the stationary state, φ∗, and so they lose their time de-
pendence. They also only have a non-trivial spatial de-
pendence through the presence of the discrete Laplacian,
because the stationary state is homogeneous. Therefore
the calculation can be considerably simplified by taking
the spatial Fourier transform of Eqs. (17) and (18). As
discussed in Appendix B this gives (see also [28])

dξks
dτ

=
∑

r

Mk
srξ

k
r + λk

s (τ), (19)

where

〈λk
s (τ)λ

k′

r (τ ′)〉 = Bk
srΩa

dδk+k′,0δ(τ − τ ′), (20)

and where k is the wavevector. Here we have as-
sumed that the micro-cells form a hypercubic lattice in
d−dimensions with a lattice spacing a. The matrices Mk

and Bk are given by Eqs. (B9)-(B13) and Eqs. (B15)-
(B19) respectively. However the important point is that
now k is simply a label and the matrix structure origi-
nating from the spatial nature of the problem has been
lost. Thus both Mk and Bk are simply k × k matrices
(recall that k is the number of chemical species) and the
analysis from now on is as in the non-spatial case [23].
As we have already stressed in this paper, fluctuations

about the stationary state need to be taken into account,
since they can be significant even if N is quite large. The
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fact we can investigate these systematically is crucially
dependent on the linearity of Eq. (19) and that the Mk

and Bk matrices are time-independent. It means that we
can straightforwardly take the temporal Fourier trans-
form of Eq. (19) to obtain

k∑

r=1

(
−iωδsr −Mk

sr

)
ξ̃kr (ω) = λ̃k

s (ω), (21)

where f̃ denotes the temporal Fourier transform of the
function f . Defining the matrix (−iωδsr − Mk

sr) to be
Φk

sr(ω), the solution to Eq. (21) is

ξ̃kr (ω) =

k∑

s=1

[
Φk(ω)

]−1

rs
λ̃k
s (ω). (22)

From previous investigations, and the nature of the
system, we expect that the fluctuations about the sta-
tionary state (16) will oscillate, and will also be sustained
and enhanced by a resonant effect [23, 25]. This is indeed
what is seen. To investigate this effect systematically we
focus our attention on the power spectrum Ps(k, ω) of
the fluctuations of species s,

Ps(k, ω) ≡
〈
|ξks (ω)|2

〉
=

Ωad
k∑

r=1

k∑

u=1

[
Φk(ω)

]−1

sr
Bk
ru

[
Φk †(ω)

]−1

us
. (23)

The theoretical power spectrum can be found and plot-
ted out, for any given choice of the chemical parameters,
from Eq. (23). To make contact with earlier investiga-
tions [23], and aiming at elucidating the spatial effects,
we here solely focus on the choice k = 4 and select η = 10,
β = 5/32, and γ = 5/32. When the αs are set equal to
zero, the communication between neighboring micro-cells
is silenced, each spatial block behaving as an independent
unit. Based on Eq. (23), a temporal peak in the power
spectrum is predicted to occur. The peak is approxi-
mately located at ω ≃ 4, in agreement with the analy-
sis developed in [23]. Another simple limit is when the
αs are made equal for all of the k chemical species. In
this case, the temporal peak gets progressively damped
at large k, the effect being more pronounced the larger
the values for the migration parameters. A similar phe-
nomenon was also reported to occur in [28].
More interestingly, in Fig. 3, we show the theoretical

power spectrum Eq. (23) for αs that take different values
for each of the species in the case of a two-dimensional
vesicle (a one-dimensional periodic lattice of micro-cells,
i.e. d = 1). The range of variation of the αs covers sev-
eral orders of magnitude, which in turn corresponds to
assigning a significantly different degree of mobility to
the species. Molecules characterized by large values of
αs will quickly diffuse, while those with smaller αs are
associated with relatively static, and presumably, more
massive, species. A localized peak is clearly displayed
suggesting that organized spatio-temporal patterns can

spontaneously emerge, due to the inherent stochasticity
of the system. From an inspection of Figs. 3, it is also
evident that the power spectrum shows a clear peak for
all four species. We found that making the αs signifi-
cantly different among species was a simple way to pro-
duce localized spatio-temporal patterns. We also found
that they could be produced if (at least) one of the αs

was sufficiently large, when compared with the others.
The conclusion of the above analysis, as well as the ac-

curacy of the approximations that have been employed,
can be tested via direct numerical simulations. By aver-
aging over many realizations, we can calculate the power
spectra after Fourier transformation. Results of the sim-
ulation are displayed in Fig. 4 for the same choice of
parameters as in Fig. 3. The correspondence between
the profiles is excellent and so confirms the correctness
of our theoretical scheme.
In summary, we have unambiguously demonstrated

that organized spatio-temporal cycles can emerge in a
simple model of protocells where the constituents inside
the vesicle interact via an autocatalytic scheme. As we
shall argue in the following, this finding provides a pos-
sible mechanism to drive a dynamical synchronization
between the duplication of genetic material inside a pro-
tocell and the division of the vesicle membrane.

V. DISCUSSION

In this paper we have investigated how the discrete-
ness of the constituents in an autocatalytic chemical re-
action can lead to spatio-temporal oscillations. The oc-
currence of temporal oscillations in such a setting, but
without a spatial element, has previously been stud-
ied [21, 23]. Similarly, such oscillations have been studied
for a predator-prey system in a spatial framework [28],
but the oscillations in this case did not occur at a non-
zero value of k. In this paper, we have combined and
generalized these treatments, and also put them into the
context of vesicles, which suggests an interesting conse-
quence of the oscillatory behavior.
We can speculate that the natural tendency of the

chemical constituents to organize in regular spatio-
temporal cycles can be instrumental in achieving a de-
gree of synchronization between the outer membrane of
the vesicle and the mixture of chemicals inside. In the
context of protocells, these chemicals undergoing auto-
catalytic reactions are to be interpreted as a primitive
form of genetic material. One would expect, as a minimal
self-consistency requirement, that within a stable popu-
lation, a vesicle would split into two when the chemical
material contained within it had approximately doubled
in size. It is tempting to postulate that such a property is
a dynamical phenomenon, the density fluctuations acting
as a positive feedback on the vesicle growth, so signaling
when the constituents inside the vesicle are ready for the
splitting to take place.
Now let us imagine that the vesicle containing the
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FIG. 3: (Color online) Power spectra calculated from Eq. (23) for k = 4 species and for a two-dimensional vesicle (one-
dimensional periodic array of micro-cells). Here N = 5000, Ω = 256, η = 10, β = 5/32, γ = 5/32 and α = [100, 0.001, 1, 500].
Each pair of panels (the three-dimensional plot and its two-dimensional projection) refers to a different chemical species. A
localized peak is displayed predicting the existence of regular spatio-temporal patterns.
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FIG. 4: (Color online) Numerically calculated power spectra obtained from averaging 800 realizations. Stochastic simulations
are performed via the Gillespie algorithm. Parameters are set as in Fig. 3.
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chemical species grows, because of the inclusion of suc-
cessive membrane constituents from the environment in
which it moves. Laboratory experiments indicate [11]
that a vesicle filled with water or solutes is kept in a
turgid spherical shape while growing by additional ma-
terial of a similar kind flowing in from the outside envi-
ronment. It is believed that the vesicle remains spherical
until a thermodynamic instability sets in which distorts
the structure [33], eventually leading to fissioning. Now
suppose that the vesicle is filled by a discrete population
of chemical constituents, which undergo an independent
dynamics of the autocatalytic type. As illustrated in this
paper, the chemicals experience a first rapid evolution to-
wards the stationary state, where enhanced oscillations
appear due to the intrinsic finiteness of the interacting
constituents. Such oscillations might seed an instabil-
ity [34, 35], which could resonate with the innate abil-
ity of the container to divide, so initiating the splitting
process. These ideas could be extended to protocells,
where enhanced oscillations could originate in the prim-
itive genetic material. These oscillations could signal to
the membrane that the genetic evolution had been virtu-
ally taken to completion and that the fission could now
occur, so ensuring that the genetic material is passed
on to the daughter protocells. This is a highly specu-
lative suggestion, which calls for further investigation in
the context of self-consistent formulations, where both
the membrane and the genetic material are dynamically
evolved.
It is clear that the work presented here can be ex-

tended in various ways. The nature of the lattice struc-
ture that is assumed can be generalized. For instance
it is straightforward to include next-nearest neighbors,
next-next nearest neighbor and so on. The analytical
treatment is analogous, and the results the same; only
the form of the operator ∆k changes. Numerical sim-
ulations could also be performed in higher dimensions.
In particular, a toroidal (donut-like) cell embedded in a
three-dimensional space can be straightforwardly simu-
lated. The inner volume of the cell is again partitioned
into micro-cells, and distinct diffusion rates are assigned
to the radial and longitudinal directions. Preliminary
simulations indicate that collective modes can develop
giving rise to organized spatio-temporal dynamics [36].
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Appendix A: The van-Kampen expansion

In this Appendix we will give more details of the appli-
cation of the van Kampen system-size expansion to the

master equation (9). A general discussion of the method
is given in van Kampen’s book [24] and a description of
the application to a simple model showing sustained and
enhanced stochastic fluctuations is given in [25]. The
calculations given below build upon those carried out for
the non-spatial version of the model considered in this
paper [23] and a spatial predator-prey model [28]. We
will occasionally refer back to these two papers below.
The starting point for the expansion in powers of

N−1/2 is the ansatz (14). From this the following two
results can be derived [24]. First, the left-hand side of
the master equation (9) is given by

dP (n, t)

dt
=

∂Π(ξim, t)

∂t
−N

1
2

Ω∑

j=1

k∑

s=1

∂Π(ξim, t)

∂ξjs

dφj
s

dt
,

(A1)
where Π(ξim, t) ≡ P (ni

m, t). Second, the step operator
E±1
s,j may be expanded:

E±1
s,j = 1±N− 1

2
∂

∂ξjs
+ (2N)−1 ∂2

∂(ξjs)2
+ . . .

≡ 1±N− 1
2 ∂ξjs + (2N)−1∂2

ξjs
+ . . . . (A2)

The right-hand side of the master equation may be also
expanded. We begin by defining new operators which are
the coefficients of N−1/2 and N−1 in the expansion of
the particular combinations of the step operators which
appear in the model. These are

(Es,jE−1
s+1,j − 1) ≃ N− 1

2

(
∂ξjs − ∂ξj

s+1

)

+
1

2

[
N− 1

2

(
∂ξjs − ∂ξjs+1

)]2
≡ N− 1

2 L̂1s +
1

2
N−1L̂2s,

(Es,jE−1
s,j′ − 1) ≃ N− 1

2

(
∂ξjs − ∂

ξj
′

s

)

+
1

2

[
N− 1

2

(
∂ξjs − ∂

ξj
′

s

)]2
≡ N− 1

2 L̂1j +
1

2
N−1L̂2j ,

where the operators L̂1s and L̂2s read

L̂1s =
(
∂ξjs − ∂ξj

s+1

)
, L̂2s =

(
∂ξjs − ∂ξj

s+1

)2
,

and where L̂1j and L̂2j read

L̂1j =
(
∂ξjs − ∂

ξj
′

s

)
, L̂2j =

(
∂ξjs − ∂

ξj
′

s

)2
.

In addition

(E−1
s,j − 1) ∼ −N− 1

2 ∂ξjs +
1

2
N−1∂2

ξjs
,

(Es,j − 1) ∼ N− 1
2 ∂ξjs +

1

2
N−1∂2

ξjs
.

For each of the three terms appearing in Eq. (9), namely
the local, migration and environmental terms, we can
now identify the various contributions in the van Kampen
expansion: those of order N−1/2, those of order N−1

involving a single derivative, and those of order N−1 but
involving two derivatives. We will examine these in turn.
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1. Right-hand side of the master equation: the

N−1/2 terms

The contribution from T j
loc, defined by Eq. (11), is

∑

s

ηs+1

Ω
L̂1s(φ

j
sφ

j
s+1).

Using the definition of L̂1s, shifting the sum on s and
remembering that quantities with subscripts k+1 are to
be identified with those with subscripts 1, we obtain

T j(1)
loc =

1

Ω

∑

s

(ηs+1φ
j
sφ

j
s+1 − ηsφ

j
s−1φ

j
s)∂ξjs , (A3)

where the superscript (1) indicates that this is only the

contribution to T j
loc from terms of order N−1/2. It should

be noted that Eq. (A3) operates on Π(ξim, t).

The contribution from T jj′

mig, defined by Eq. (12) and

using the definition of L̂1j, is

2

zΩ

∑

s

αs∂ξjs

(
φj
s(1−

∑

m

φj′

m)− φj′

s (1−
∑

m

φj
m)

)
.

To write this contribution in a way which naturally in-
volves the Laplacian operator we add to this sum two
terms which add to zero, namely

0 = φj
s

∑

m

φj
m − φj

s

∑

m

φj
m.

Summing the contribution over j′ ∈ j and introducing
the discrete Laplacian ∆f j

s = (2/z)
∑

j′∈j(f
j′

s − f j
s ) we

obtain

∑

j′

T jj′(1)
mig = −

∑

s

αs

Ω

(
∆φj

s(1−
∑

m

φj
m)+φj

s

∑

m

∆φj
m

)
.

(A4)
The contribution from T j

env, defined by Eq. (13), is
immediately found to be

T j(1)
env =

∑

s

[ ∂

∂ξjs

(γs
Ω
φj
s −

βs

Ω
(1 −

∑

m

φj
m)
)]

. (A5)

Adding the three terms (A3)-(A5) together, and let-
ting them act on Π(ξim, t) and summing over j, we may
equate the resulting expression to the order N1/2 term
in Eq. (A1), after the rescaling of time τ = t/(NΩ).
The resulting equation describes the deterministic time-
evolution of the species s in micro-cell j in the limit
N → ∞, and is given by Eq. (15) in the main text.

2. Right-hand side of the master equation: the N−1

terms with a single derivative

These contributions are expressed in terms of the op-

erators L̂1s and L̂1j, and so are a function of the first

derivatives in the fluctuation variables. We proceed as
we did for the terms of order N−1/2.
The contribution from T j

loc, defined by Eq. (11), is

T j(2)
loc =

k∑

s=1

ηs+1

Ω

[
L̂1s

(
φj
sξ

j
s+1 + φj

s+1ξ
j
s

)]

=
1

Ω

k∑

s=1

[ ∂

∂ξjs

(
φj
s(ηs+1ξ

j
s+1 − ηsξ

j
s−1)

+ ξjs(ηs+1φ
j
s+1 − ηsφ

j
s−1)

)]
, (A6)

where once again use has been made of the definition

L̂1s, the cyclic nature of the species, and the sum on s
has been shifted. Here the superscript (2) indicates that

this is only the contribution to T j
loc from terms of order

N−1 with a single derivative.

The contribution from T jj′

mig, defined by Eq. (12), is

2

zΩ

∑

s

αs

[
L̂1j

(
φj
s(−

∑

m

ξj
′

m) + ξjs(1−
∑

m

φj′

m)
)]

.

Performing the same manipulations as before, but also
inserting the identities

0 = ξjs
∑

m

φj
m − ξjs

∑

m

φj
m, 0 = φj

s

∑

m

ξjm − φj
s

∑

m

ξjm,

gives, after summing over j′ ∈ j,

∑

j′

T jj′(2)
mig = − 1

Ω

∑

s

αs

[ ∂

∂ξjs

(
∆ξjs + ξjs

∑

m

∆φj
m

− ∆φj
s

∑

m

ξjm + φj
s

∑

m

∆ξjm −∆ξjs
∑

m

φj
m

)]
. (A7)

Finally, the contribution from T j
env, defined by

Eq. (13), is immediately found to be

T j(2)
env =

∑

s

[ ∂

∂ξjs

(γs
Ω
ξjs +

βs

Ω

∑

m

ξjm

)]
. (A8)

3. Right-hand side of the master equation: the N−1

terms with two derivatives

These terms are expressed in terms of the operator

L̂2s and L̂2j, and so are a function of the second order
derivatives in the fluctuation variables. We proceed as
we did in the two previous cases.
The contribution from T j

loc is

T j(3)
loc =

1

Ω

∑

s

ηs+1
1

2
L̂2s(φ

j
sφ

j
s+1)

=
1

2Ω

∑

s

ηs+1(φ
j
sφ

j
s+1)

( ∂2

∂(ξjs)2

+
∂2

∂(ξjs+1)
2
− 2

∂2

∂ξjs∂ξ
j
s+1

)
. (A9)
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The contribution from T jj′

mig is

T jj′(3)
mig =

1

zΩ

∑

s

αs
1

2

[
L̂2j(φ

j
s(1 −

∑

m

φj′

m))
]
=

αs
1

zΩ

∑

s

(
φj
s(1 −

∑

m

φj′

m)
)[ ∂

∂ξjs
− ∂

∂ξj
′

s

]2
. (A10)

Finally, the contribution from T j
env is found to be

T j(3)
env =

1

2

∑

s

(βs

Ω
(1−

∑

m

φj
m) +

γs
Ω
φj
s

) ∂2

∂(ξjs)2
. (A11)

Adding the six terms (A6)-(A11) together, and let-
ting them act on Π(ξim, t) and summing over j, we may
equate the resulting expression to the order one term in
Eq. (A1), after the rescaling of time τ = t/(NΩ). The
resulting equation gives the stochastic time-evolution of
the species s in micro-cell j. It takes the form of a Fokker-
Planck equation which we now examine.

Appendix B: The form of the matrices M and B

To write down the differential equation for Π(ξjs , τ), it
is convenient to combine the indices s and j, labeling the
species and micro-cells respectively, by a single index p.
To do this we imagine the kΩ-dimensional vector with
components ξjs as an ordered sequence of Ω vectors, each
of k components. This can be achieved by defining p =
(j − 1)k + s, so that the component ξp represents the
fluctuations associated with the s-th species in the j-th
micro-cell.
Now the terms in Eqs. (A6)-(A8) take the form of a

single derivative of ξp acting on a linear combination of
ξl, l = 1, . . . , kΩ and the terms in Eqs. (A9)-(A11) are
a linear combination of second order derivatives. There-
fore using this more compact notation the Fokker-Planck
takes the form

∂Π

∂τ
= −

∑

p

∂

∂ξp

[
Ap(ξ)Π

]
+

1

2

∑

l,p

Blp
∂2Π

∂ξl∂ξp
,

(B1)

where the matrix A can be re-written as

Ap(ξ) =
∑

l

Mplξl. (B2)

So to specify the Fokker-Planck equation we need to
give the form of the two (kΩ) × (kΩ) matrices M and
B. We first note that although they do not depend on
the fluctuations ξp(τ), they do depend on the solution
of the deterministic differential equation (15), as well as
on the reaction rates ηs, αs, βs and γs. However since we
are only interested in the fluctuations about the station-
ary state φ∗ given by Eq, (16), and since we obtained this
solution under the assumption that ηs, βs and γs were in-
dependent of s, we take the two matrices to only depend

on φ∗, η, β, γ and αs. An inspection of Eqs. (A6)-(A11)
reveals that the only spatial dependence inM and B orig-
inates from the discrete Laplacian. This suggests that if
we introduce spatial Fourier transforms, we should be
able to diagonalize M and B, and so be left with matri-
ces only in the species space. This is most easily carried
out by not continuing to work with the Fokker-Planck
equation (B1), but instead with the equivalent Langevin
equation [31, 32]

dξp
dτ

= Ap(ξ) + λp(τ), (B3)

where

〈λp(τ)λq(τ
′) = Bpqδ(τ − τ ′), (B4)

and where the noise term, λp(τ), in Eq. (B3) is Gaussian
with zero mean. This is Eq. (17) in the main text, but
using the single index notation.
We follow the conventions and methods of [28] for the

spatial Fourier transforms. For simplicity, we shall as-
sume that the lattice is a d−dimensional hypercubic lat-
tice, with lattice spacing a. Then the Fourier transform,
fk
s , of a function f j

s, is defined by

fk
s = ad

∑

j

e−ik.aj f j
s, (B5)

where we have now written the lattice site label j as a vec-
tor to emphasize the d−dimensional nature of the trans-
form. We may now take the spatial Fourier transform
of the matrix M . Since the only spatial dependence
is through the discrete Laplacian, we may decompose
Eq. (B2) as follows:

Aj
s =

∑

j′

∑

r

M jj′

sr ξ
j′

r =
∑

r

[
M (NS)

sr ξjr +M (SP )
sr ∆ξjr

]
,

(B6)
where the two k × k matrices M (NS) and M (SP ) will be
specified below. It is now straightforward to take the
spatial Fourier transform of Eq. (B6) to obtain [28]

Ak
s =

∑

r

[
M (NS)

sr +M (SP )
sr ∆k

]
ξkr , (B7)

where ∆k is the Fourier transform of the discrete Lapla-
cian and is given by

∆k =
2

d

d∑

γ=1

[cos(kγa)− 1] . (B8)

Care should be taken not to confuse the components of
the wavevector k, and k, the number of chemical species.
We have denoted the γ-th component of the wave vector
k by kγ to help avoid this confusion.
The quantity within the square brackets in Eq. (B7)

is the spatial Fourier transform of the matrix M . It is
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diagonal in k−space and so depends on the single label
k. We may therefore write it as

Mk
sr = M (NS)

sr +M (SP )
sr ∆k, (B9)

where the two matrices M (NS) and M (SP ) may be read
off from Eqs. (A6)-(A8), and are given by

M (NS)
ss = −β − γ (B10)

M (NS)
sr =





−ηφ∗ − β, if r = s+ 1
ηφ∗ − β, if r = s− 1
−β, if |s− r| > 1,

(B11)

and

M (SP )
ss = αs [1 + (1− k)φ∗] (B12)

M (SP )
sr = αsφ

∗ if s 6= r. (B13)

The matrix M (NP ) is exactly the one found in the non-
spatial version of the model [23], which is why we have
attached the label ‘NS’ to it to signify the non-spatial
contribution to M . The spatial, or ‘SP ’, contribution is
simply M (SP )∆k.
To take the Fourier transform of the matrix B, we note

that out of the three terms — given by Eqs. (A9)-(A11)
— from which this matrix is constructed, the only non-
trivial spatial dependence comes from Eq. (A10). We
display the contribution containing this dependence by
noting the following relation:

∑

j

∑

j′∈j

[ ∂

∂ξjs
− ∂

∂ξj
′

s

]2
=

2
∑

j

∑

j′

[
z

∂2

∂(ξjs)2
δjj′ −

∂2

∂ξjs∂ξ
j′

s

J<jj′>

]
, (B14)

where J<jj′> is equal to 1 if j′ and j are nearest neighbors,
and zero otherwise. The part of the B matrix correspond-
ing to the expression (B14) is (2zδjj′ −2J<jj′>) which has
Fourier transform

ad

[
2z − 4

d∑

γ=1

cos(kγa)

]
= −zad∆k,

using Eq. (B8) and z = 2d. Therefore we may express the
matrix B in Fourier space in a similar way to Eq. (B9):

Bk
sr = B(NS)

sr + B(SP )
sr ∆k, (B15)

where the two k × k matrices B(NS) and B(SP ) may be
read off from Eqs. (A9)-(A11), and are given by

B(NS)
ss = ad

[
β(1 − kφ∗) + γφ∗ + 2η (φ∗)

2
]
(B16)

B(NS)
sr =





−adη (φ∗)2 , if r = s+ 1

−adη (φ∗)
2
, if r = s− 1

0 if |s− r| > 1,

(B17)

and

B(SP )
ss = −2adαsφ

∗ (1− kφ∗) (B18)

B(SP )
sr = 0 if s 6= r. (B19)

Once again, the matrix B(NS) is exactly the one found in
the non-spatial version of the model [23], up to a factor
of ad, which is why we have attached the label ‘NS’ to
it. The spatial contribution is B(SP )∆k.
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