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Abstract. Motion of a classical particle in 3-dimensional Lobachevsky and Riemann spaces
is studied in the presence of an external magnetic field which is analogous to a constant
uniform magnetic field in Euclidean space. In both cases three integrals of motions are
constructed and equations of motion are solved exactly in the special cylindrical coordinates
on the base of the method of separation of variables. In Lobachevsky space there exist
trajectories of two types, finite and infinite in radial variable, in Riemann space all motions
are finite and periodical. The invariance of the uniform magnetic field in tensor description
and gauge invariance of corresponding 4-potential description is demonstrated explicitly.
The role of the symmetry is clarified in classification of all possible solutions, based on the
geometric symmetry group, SO(3,1) and SO(4) respectively.
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1 Introduction

In the paper exact solutions for classical problem of a particle in a magnetic field on the back-
ground of hyperbolic Lobachevsky Hs and spherical Riemann S5 space models will be constructed
explicitly.

The grounds to examine these problems are as follows: these both are extensions for a well-
known problem in theoretical physics — a particle in a uniform magnetic field [15]; they can be
used to describe behavior of charged particles in macroscopic magnetic field in the context of
astrophysics. The form of the magnetic field in the models H3 and S3 was introduced earlier in
[2 13, 4] where the quantum-mechanical variant (for the Shrodinger equation) of the problem had
been solved as well and generalized formulas for Landau levels [I4], (15 [16] had been produced.
A part of results of the paper was presented in the talk given in [I3].

Previously, the main attention was given to Landau problem in 2-dimensional case: many
important mathematical and physical results were obtained, see in [1, 5] 6 [8, 9], 12} 17, 19]. Com-
prehensive discussion of the general problem of integrability of classical and quantum systems
in Lobachevsky and Riemann 3D and 2A models see in [7, [10, [I1] and references therein. It is
known that 2D and 3D systems exhibit properties which are radically different. Our treatment
will concern only a 3-dimensional case.

*This paper is a contribution to the Proceedings of the Eighth International Conference “Symmetry in
Nonlinear Mathematical Physics” (June 21-27, 2009, Kyiv, Ukraine). The full collection is available at
http://www.emis.de/journals/SIGMA /symmetry2009.html
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2 Newton second law in Lobachevsky space

Motion of a classical particle in external electromagnetic and gravitational fields is described by
the known equation [I5]

9 <d2xo‘ . dafdz®
me

- dte i R ap
T+ % ds) eForU, (2.1)

where Christoffel symbols are determined by metrical structure of a space-time (the signature

+ — — —is used). In (2] it is useful to perform (3 4 1)-splitting
d*z" 01 02 03
me*— =e(F"'Uy + F®Us + F®Us3), (2.2)
d?a! da? dax®
2 1 _ 10 12 13
me <?+r jkgg> = eF'VUy + eF2Us + eF1PUs3, (2.3)
d?z? da? dax®
2 2 _ 20 21 23
me <? + T jk%g) = eF Uy + eF* Uy + +eF*Us, (24)
d%ax3 da? da®
e’ <— + Fgﬂ%%) = e, + P, + P20, (25)

In (22)-(Z3) usual ST units are used, so the Christoffel symbols F;k are measured in (meter) '
With conventional notation [I5]

0 —-fr' —-E?2 _FE3

(Faﬁ) o El 0 _CB3 CB2
T | E? —¢B3 0 —cB' |’
E3 —cB? cB! 0
dt d , 1 ‘
U= ——(da®,dz") = —— 1, —
asai ) m<c>
) -1
Cdat . dax® dt+/1 —V?2/c? 1
VZ — i’ V2 — _gkz(x)vkvz’ i _ & /C -
dt ds cdt V1-V2/c?

equations (2.2)-(23]) give

mc2 i
T EI R

dt V1=V2/c?

d Vi 1 1 ; e e

@ vivk_ &1 € 3_ 2
dt\/l—V2/02+\/1—V2/c2F]kVV mE m(VzB Va5,
d & 1 ; e e

— 2, vivk= —g? - — (3B -, B?
dt\/l—Vz/cz—F\/1—‘/'2/62 i m m( s 157),

d v N 1
dt \/1-V2/2  \/1-VZ]?

8, Vivk = g8 - S(v,B® - ,BY).
m m

Firstly, we will be interested in non-relativistic cas, when all equations become simpler

i mV?2
dt 2

'Extension to the relativistic case will be performed in the end of the paper.

=e( — g E'VF), (2.6)
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d .
SV T VIVE = Z B - = (1B~ V3B?), (2.7)
d o 2 vk €2 € 1 3

Sy2ar2 vivk= 22 (B - iB 2.
VTR, —~ —(V 1B%), (2.8)
%V?’ + T3 VIVE = %E?’ - %(le2 — ,BY). (2.9)

3 Particle in a uniform magnetic field, hyperbolic model Hj

Let us start with the known 4-vector potential of a uniform magnetic field in flat space [15]

1 A* B
A= §CB X T, B = (0,0, B), = 5(0; —rsin ¢, r cos ¢, 0). (3.1)
From (B0]), after transformation to cylindric coordinates we obtain

cBr?
2

A=0, A.=0, A, =0, Ay=
The only non-vanishing constituent of the electromagnetic tensor reads
Fd)r = 8¢Ar — 87»14(1) = CBT7

which satisfies the Maxwell equations

1 0
V/—g 0x®
Now we are to extend the concept of a uniform magnetic field to the Lobachevsky model Hg.
Thirty four orthogonal coordinate systems in this space were found by Olevsky [I8]. An idea is
to select among them some curved analogue for cylindric coordinates and determine with their

help an appropriate solution to Maxwell equations in Lobachevsky space. In [18], under the
number XI we see the following coordinates

10 10 1
—gF* =0 = ;ET’F(W:;ET <ﬁ> cBr =0.

dS? = 2dt? — p? [cosh2 z(d?‘2 + sinh? rd¢2) + dzz],
z € (_007 +OO)7 re [07 +OO)7 ¢ € [0727T]7

u1 = cosh z sinh r cos ¢, ug = cosh z sinh r sin ¢,
ug = sinh z, ug = cosh z cosh r,
ud —uld —ui—uh =1, up = +v1+u? (3.2)

the curvature radius p is taken as a unit length. In the limit p — oo the coordinates ([B.2]) reduce
to ordinary cylindric ones in the flat space. By definition, the uniform magnetic field in the
Lobachevsky space is given by 4-potential of the form

Ay = —2cBp? sinh? % = —cBp*(coshr — 1).

It behaves properly in the limit p — oo, besides it corresponds to an electromagnetic tensor
which evidently satisfies the Maxwell equations in Hg

1
Fy. = ——0,A4 = cBpsinhr,
p

1 0

1
— cosh? zsinhr <

cosh? z sinh?r

_ Bsinhr = 0.
cosh? z sinh r Or ) i
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In the absence of an electric field, the non-relativistic equations ([27))—(Z3) read
avr

&g vivk= Sprey,
dt + ik m fo3)
dV¢ 1) ; (&
—— 4T VIV = — Y,
dt LT m '
dv= . -
e aVVE =0, (3:3)
where the Christoffel symbols are
0 0 tanh z 0 cothr 0
Frjk = 0 —sinh 7 coshr 0 , F¢jk = | cothr 0 tanh z |,
tanh z 0 0 0 tanh z 0
— cosh zsinh z 0 0
[ = 0 —sinh zcosh zsinh? 7 0
0 0 0

It makes sense to recall a similar problem in flat space, here the Christoffel symbols are
simpler

0 0 0 0 1 0
=0 —r 0|, T =1 0 0|, T7=0
0 0 0 0O 0 0

and equations of motion read in space FEj3,
dvr e B dv=
—rVoV?® = —Brv? — VTV = =V = 0. 3.4
a mo dt + r R dt (34)

In fact, a simplest solution of these equations is well-known: the particle moves on a cylin-
dric surface oriented along the axis z according to the law ¢(t) = wt + ¢g, correspondingly
equations (34]) take the form

d2r

ave 2

e dr1 e dr
ar —B), ——(2 —B):0:>—:0,
dt2 m(“’er ar\* dt
and the simplest solution is given by
eB .
w=——, o(t) = wt + ¢, r(t) = ro, z(t) = z(t) = zo + V5t

m

Now, let us turn to the problem in Lobachevsky model — equations ([B.3]) give

v’ inh
+ 2tanh 2V"V? — sinhr coshrVV? = B o 2T Ve,

dt cosh” z
dve 1
—— +2cothrV®V" + 2tanh 2VOV? = - B ————— V",

dt cosh? zsinh r
v

el sinh z cosh zV"V" — sinh z cosh z sinh? rV?V¢ = 0. (3.5)

It should be stressed that in (8.0 all quantities (coordinates ¢, r, ¢, z as well ) are dz’mensz’onlesﬂ;

in particular, symbol B stands for a special combination of magnetic field amplitude, charge,

mass, light velocity, and curvature radius
ct

B
B<:>£p—, t <— —, r =
m c p

z
) z = -.
p

2Bellow in the paper all relationships are written in that dimensionless form.

=
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4 Particular solutions in Lobachevsky model

Let us construct simple solutions when imposing the following constrain r = rg = const, equa-
tions (B3] give
Ve _ B 1

—
cosh g cosh? z

d B ! + 2 tanh B ! V=0
JR— J— n _— —_— p—
dt cosh 7y cosh? z A cosh rg cosh? z ’

dv~= sinh z
= (tanh? roB? . 4.1
dt ( 05%) cosh? z (4.1)

The second equation is an identity 0 = 0. With the notation

a = —B/ coshry, A= (tanh2 7‘032) >0,
two remaining equations in (£1]) read

do « A sinh z

@ _ , _ 4 , 42

dt  cosh?z dt cosh? z (42)

When B > 0, the angular velocity d¢/dt < 0; and when B < 0, the angular velocity d¢/dt > 0.
Second equation in ([£2) means that there exists effective repulsion to both sides from the center

z = 0. One can resolve the second equation
dz\? A
— ) =e— ———. 4.3
< dt ) ©7 cosh?z (43)

1
dV*)? = Ad | ————5—
V) < cosh? z)
Below we will see that the constant e can be related to a squared velocity V2/c? or differently
to the integral of motion — the energy of the non-relativistic particleﬁ. First, let A # €
n dsinh z _a
\/6(1 +sinh? 2) — A

Meaning of the signs + is evident: it corresponds to a motion along axis z in opposite directions.
Further we get

1
I. e>A, z € (—00,+00), :l:% arcsinh ( - _E i Sinhz> =t — to;

A— 1
II. e<A, sinh? z > 6, +— arccosh ( —° inh z> =t—to,
€ Ve VA—e

€ —

or

N

sinh /e(t — tg)

A— —
II. e<A, sinh? z > —6, sinhz(t) = + ‘
€ Ve

For motions of the type I, trajectories run through z = 0; for motions of the type II, the
particle is repulsed from the center z = 0 at the points sinhzy = +,/A/e — 1. Existence of

I. e>A, z € (—00,+00), sinh z(t) = +

ﬁ%

cosh v/e(t — tg).

*Relationship ([@3) in the limit of flat space will read (dz/dt)® = ¢ — A which means that A corresponds to
a transversal squared velocity V2 / 2. Also, equation (@3] points out that in Lobachevsky model the transversal
motion should vanish (to be frozen) when z — +oo.
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these two different regimes of motion along the axis z correlates with the mentioned effective
repulsion along the axis z.
Now let us consider the case e = A

2N\ a? (4.4)
— | = etanh”z. .
dt

We immediately see a trivial solution

B

z2(t) =0 = ¢(t) = ¢o + at, a= _coshro;

it corresponds to rotation of the particle along the circle r = ry in the absence of any motion
along the axis z. Also there are non-trivial solutions to equation (4.4])

dsinh z
sinh z

= ++/edt; (4.5)

here we have two different ones depending on sign (+) or (—). Continuous solutions of (.35
exist only for z > 0 and z < 0 with different and peculiar properties. In the case of sign (+) we
have

sinh z = sinh zpe ™V, (t=0, z= 2y #0); (4.6)

at any positive initial zp > 0 the particle goes to +o00; and at any negative initial zy < 0 the
particle goes to —oo. In the case of sign (—), we get quite different behavior

sinh z = sinh zpe ™V, (t=0, z= 2y #0); (4.7)
at any positive initial 2y > 0 the particle moves to z = 0 during infinite time ¢; at any negative

initial zy < 0 the particle moves to z = 0 during infinite time ¢.
Now we are to turn to the first equation in (£.2)) and find ¢(t)

@ A
€ > A, — ¢g = — arccoth — tanh et |,
¢ — o /i (\/ - Ve >
<A b— ¢ % arccoth <, /< tanh \/_t> (4.8)
€ , — g = —= — et | . .
0 7 2
One may note that when ¢ — +o00 we obtain a finite value for the rotation angle

« [A
€ > A7 (qb - ¢0)|t—>oo = ﬁ arccoth :,

« /
€ < A, (@ —00)|j00 = 7 arccoth %

In the same manner one should find ¢(t) in case (4.0)

A =g, sinh z = sinh zoe+‘/gt,
dt dt 9
—pg=a | —— =« , x = sinh ze+2‘ﬁt,
¢~ 9o / cosh? z / 1 + sinh? zget2vet 0
« z | « sinh? 2, sinh? 2
¢—po=5gF7=ln—— = n—; —In—7s7 ;
2ye w+1|,_, 2Ve| sinh®zy+ e 2ve sinh® zg + 1
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so that

« sinh? zp + 1
g = In s
2\/€ sinh? zy + e—2vet

¢_¢0 20750.

Again a peculiarity in the limit ¢ — 400 may be noted

« sinh? zg + 1

t — o0, — ¢ = n , 2 0.
= %o 2/e sinh? % 07
And the function ¢(t) in case (4.1
A =g, sinh z = sinh zoe_\/gt,
dt dt . 2 —2\[t
—do=a | —— =@ , T = sinh® zg eV,
¢~ o / cosh? z / 1 + sinh? zp e=2Ve 0
o z | « sinh? 2, sinh? 2
p—do= - = ] —n—2 ,
2Ve w+1|,_, 2\/e sinh? zg 4 et2Vet sinh® zg + 1
so that
o sinh? zp + 1
¢ —¢o=

— In ,
2\/e ~ sinh? 7y + et2Vet
Q@
0 t— —¢g=—=
20 7& ) +00, (25 ¢0 2\/E

Before going farther, let us note that from equation (2.6]) it follows the conservation of squared
velocity (or the energy) in the presence of a magnetic field

dr 2 do\? dz\?
_ 2 Ch2
€ = cosh Z[(dt) + sinh T<dt>]+<dt> .

For trajectories with constant r = rg, the energy looks simpler (which coincides with ([@3]))

¢ =sinh?r B ! +<%>2—i+<%>2
B 0 cosh? o cosh? z dz)  cosh?z dz ) -~

The above elementary treatment seems not to be completely satisfactory because we cannot
be sure that all possible motions of the particle in a magnetic field in the Lobachevsky space
have been found. So we turn to the Lagrange formalism.

(400).

5 Particle in a magnetic field and Lagrange formalism in Hj

Now, let us consider the problem using the Lagrange formalism [I5]

L=S(—gaV'VF) - guA'V*

1
2
1
=3 (cosh? 2V"V" + cosh? zsinh? rV?V? + V*V*) + B(coshr — 1)V?.

Euler-Lagrange equations read

d
T cosh? zV" = cosh? z sinh r cosh rV?V? 4+ BsinhrV?,

d
7 [(:osh2 zsinh?rV? + B(coshr — 1)] =0,
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d
Evz = cosh zsinh z(V'V" + sinh? 7’V¢V¢), (5.1)
or
v + 2tanh zV"V? — sinhr coshrVV? = B smhzr Ve,
dt cosh” z
dve 1
—— +2cothrVV" + 2tanh 2V?V? = —-B————— V",
dt cosh? z sinh r
dV'*®
e sinh z cosh z(V'V" + sinh? TV¢V¢),

which coincide with equations ([B.5)). Second equation in (5.]]) evidently determines a new con-
served quantity

I = cosh? zsinh? rV? 4 B(coshr — 1) = const. (5.2)

We will obtain more from Lagrange formalism, if we use three integrals of motion. Two of
them are already known

I = cosh? zsinh? 7V? + B(coshr — 1),
¢ = cosh® z(V"V" + sinh? rVOVe) 4+ VAV,

Having remembered equation (£3)), it is easy to guess the third

d 2
A = cosh? 2 [e — (d—j> ] = cosh? z(V"'V" + sinh® rVoV?). (5.3)

To see that A indeed conserves it suffices to rewrite A as

A= ( cosh? zvr)z + (cosh2 2 sinh? 7’V¢)2,

sinh? r

and takes into account the first and second equations in (G5.1I)

7 ( cosh? ZVT) = cosh? zsinh 7 cosh rVV? 4+ BsinhrV?,
d
pn (cosh? zsinh?rV?) = —Bsinh rV" =0,

then we arrive at dA/dt = 0. With the help of three integrals of motion we can reduce the prob-
lem in its most general form (without any additional and simplifying assumptions) to calculating
several integrals. Indeed, from (5.2) it follows

dp 1 I—DB(coshr—1) (5.4)

dt  cosh?z sinh? r ) )
Substituting it into (B.3]) we get

2 2
I —-—B hr —1
A = cosh? z <%> [ (.COSQ r=1)] )
dt sinh* r

therefore

dr 1 \/ [I — B(coshr —1)]2

— =4+—— /A - . 5.5

dt cosh? z sinh? r (5:5)
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In turn, from (&3] it follows

d 1
S Vecosh? z — A. (5.6)

dt ~ "~ coshz
Dividing (53] by (5.6]), we obtain
sinh rdr 1 dz

= 4+ ,
\/Asinhzr—(I—Bcoshr—kB)2 cosh 2 /e cosh? z — A

which represents trajectory equation in the form dF(r,z) = 0. In turn, dividing (&.3) by (E4),
we get trajectory equation in the form dF(r,¢) =0

[I — B(coshr — 1)]dr
sinhr\/A sinh?7 — [I — B(coshr — 1)]2

= do.

Thus, the solution of the problem — particle in a magnetic field on the background of
Lobachevsky space — reduces to the following integrals

dp 1 I—DB(coshr—1) (5.7)
dt  cosh®z sinh? r ' ‘
dr 1 \/ [I — B(coshr —1)]?
— =4 A— , 5.8
dt cosh? z sinh? r (58)
dz 1
— =4 Vecosh? z — A .
dt cosh z ceost < ’ (5.9)
inh rd 1 d

sinh rdr =+ o 22 , (5.10)

\/Asinhzr—(I—Bcoshr—kB)2 COS 2 \/ecosh”z — A
I—-B hr —1)|d

n [ (coshr — 1)]dr _ do. (5.11)

sinhr\/Asinh2 r —[I — B(coshr — 1)]?

The last five relations are valid for all possible solutions of the problem under consideration.
In particular, let us show that the restriction r = ry = const is compatible with equations (B.7])—

(EI1). Indeed they give

d _ _a %:i ! Vecosh? z — A,

dt — cosh?z’ dt cosh z
I — B(coshrg — 1 I — B(coshrg — 1)]?
o (.cos2 ro )7 s [ ((‘3082 ro — 1)] ' (5.12)
sinh“ rg sinh” rg
It should be noted that in Section Bl we had other representations for o and A
B
= — , A = tanh®roB>. (5.13)
cosh rq
However they are equivalent. Indeed, equating two expressions for «
I — B(coshrg—1 B 1 — cosh
(coshro =1) _ _ — - plTohn (5.14)
sinh” rq coshrg cosh rg

and substituting this into A in (5.12]) we get

[I — B(coshry — 1)]?

A= —
sinh” rg
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B2 (1 — coshry) 2 9 92
_ 1 — cosh = (tanh* roB
sinh? r( cosh g + (1= coshro) (tanh®ro5%),

which coincides with (&I3]). It should be specially noted that from (EI4]) we must conclude
that to the case of the most simple motion ry = const, there corresponds the inequality

1
coshrg = ——— > 1, that is
1+1/B 1+ B

> 1. (5.15)

From (5.I5]) we conclude that the motion with r = r( is possible if

B >0, —B <1< B <0, 0<I<—-B.

6 Possible solutions in Hj, radial finite and infinite motions

Now, with the use of general relationships (5.7)—(%.I1), let us examine the general case without
restriction r = rg. Let us A # e.
First, as shown above equation (5.9)) results in

A
L. e> A, z € (—00,+00), sinh z(t) = £4/1 — = sinh V/et;
€
.o A . A
II. A > e, sinh” z > o 1, sinh z(t) = + = 1 cosh \/et.

Equation (5.8]) can be rewritten as

dcoshr dt
= e (6.1)
\/A cosh?r — 1) — (I + B — Bcoshr)? cosh” z(t)

Integral in the right-hand side is known — see (L.8])

t 1 A
L. e> A, R:/Cosdm:\/—zarccoth (U:tanhﬁt) ;
II. e < A, R= / . arccoth <, / % tanh \/Et> .

For the integral in the left-hand side we get

dx

dx
L: \/?: , 4 3 x:COShT7
axs +ox +c \/a(x—k%)?—k —lac
a=A-B?  b=2B(I+B), c¢=-A-(+B)?<0. (6.2)

It should be noted the identity
a+b+c=—I

Depending on the values of a, b, ¢ there may be realized solutions of different types.
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6.1 Finite radial motions

Let it be a < 0, B2 — A > 0. The roots x; and 5 are

. b — Vb? — dac b+ Vb2 — 4dac
1=, —_—
—2a —2a

b* — dac = 4A[(I + B)* - (B* — A)],

Tro =

and inequality b — 4ac > 0 reduces to the following restriction (I + B)? — (B? — A) > 0. In

general, at a < 0 we might expect several possibilities
y(x) = az? +bxr +c¢ >0

1<z << a9

Ty )

y(x) = az? +bxr +c¢ >0

R 1=z <z<x9
561. ’ €X9

1 - @x =coshr

Fig. 1a. Finite motion.

y(x) = az* +br+c>0

1 <1<x<x9

331. ' €X9

1 . T = coshr

Fig. 1c. Finite motion.

BT : T = coshr

Fig. 1b. Finite motion.

y(z) =ax® +br+c>0

1}1. .~T2:1

T T = coshr

Fig. 1d. Very special state r = 0.

y(xr) =az* +br +c >0

12y
1 x = coshr

1

Fig. 1e. No physical solution.

Physically interesting cases, Figs. la—1c, can be characterized additionally by constrains on
a, b, c

Fig. 1a b+ 2a > 0, a+b+c<0 ==

BI+A>0, —I?<0 (true inequality);
Fig. 1b b+ 2a > 0, a+b+c=0 = A >0, I1=0
Fig. 1c a+b+c>0 = ~I*>0 (false statement).

Therefore, only Figs. 1la and 1b correspond to the physically possible solutions (with two turning
points in radial variable)

B?— A >0,
B? - A >0,

(I+B)?>—(B?>—A) >0,
A>0, 1=0.

Fig. 1a, BI+A>0,

Fig. 1b,
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Now let us turn to the integral (6:2) when (G3]) holds

I / dx 1 . —2ar—0b ey
= = arcsin ————, 1 X Z2.
2_ — 2 _
VJolo+ )2+ Bfas - V=a VBT~ dac
Therefore, equation (6.1]) gives (let € > A)
1 —2a cosh 7 —b 1 A
——— arcsin = +——arccoth | 1/ —tanh et |,
v—a Vb2 — dac VA < € Ve )
or
—2acoshr — b v—a [A
———— = +sin | —— arccoth — tanh+/et | | . 6.4
Vb2 — dac VA ( € Ve )] (64)
As expected, the variable cosh r runs within a finite segment
b —Vb?% — dac b+ Vb? — dac
x] = — 5. < coshr < T on = T3,

or (see Fig. la)

B? - A>0, (I+B)?*- (B>~ A) >0, BI+A>0,
2B(I + B) — \/4A[(I + B)? — (B2 — A)]

< coshr
2(B%2 — A) - ’
2B(I + B) + \/4A[(I + B)? — (B2 — A)]
coshr <
- 2(B? — A) ’

which at I = 0 takes a more simple form (see Fig. 1b)

B2+ A

A < B2, A >0, 1§coshr§B2_A

It should be noted that when
b —4ac=0  or equivalently = B?— A= (I + B)*
according to (64) the motion within the segment [x1,z9] reduces to the motion with a fixed
value rg

b 2B(I+B) B

—2acoshrg —b=0 — coshrg = 9. T 2BT_A4) IiD

which coincides with the expression for coshry given by (G.14]).

6.2 Infinite radial motions (a > 0)

One special case arises when @ = A — B% = 0, indeed then we have

dx 2 c
I — = Vbx +ec, b>0, x =coshr > ——,
/\/baz+c b b
¢ B?+4(I+ B)?
== v 7 > B(I+ B .
b~ aBim) -t T BUTB=0 o
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which corresponds to an infinite motion in radial variable (let € > A)
2 c 1 B?
——=4/coshr + - = £——— arccoth — tanh /et | . 6.6
2 e I () 5)

Now let us examine other possibilities related to inequality a > 0. When a = A — B? > 0,

the roots x1, xo are defined by

—b—Vb? — dac
T = 2 ) €2

b+ Vb? - 4dac
- 2a ’

and inequality b? — 4ac > 0 reduces to
(I+B)?*+(A-B%»>0.

In general, at the restrictions a > 0 we might expect the following cases

y(x) = az® + bz +c¢ >0

y(z) = az? +br +c >0

x> +1 T > x9=+1
T 5 T Ty
¢ ."1 x = coshr .'.' 1 x = coshr
Fig. 2a. Infinite motion. Fig. 2b. Infinite motion.
b+2a>0, a+b+c>0 b+2a>0, a+b+c=0
— BI+A>0, —I?>0 Impossible = A>0, =0 Possible
y(x) = az® + bx +c y(z) = az? +br +c >0
T >x9 > +1 T > Ty
‘.i R x = coshr T . T = coshr
Fig. 2c. Infinite motion. Fig. 2d. Infinite motion.
a+b+c<0 20+b<0, a+b+c=0
— —I2<0 Possible = A<0, I=0 Impossible
y(z)
) . x> x9 Infinite motion?
-1 2
1 . . - w=coshr
1 <z <z Finite motion?

Fig. 2e. Nonphysical case.

As concerns Fig. 2e, we should examine the following inequality

x> 1 — —b > \/b? —dac+2a — (c—a) > +Vb* — dac,

which is impossible.
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Therefore, only Figs. 2b and 2c¢ correspond to physically possible solutions (motions infinite
in radial variable 7). Integrating (6.2]) reduces to the elementary calculation

1 2ax +b
= —— arccosh

/\/ $+ 4ac Va b2 — dac

Therefore, equation ([6.1]) gives (with e > A)

1 2a coshr + b 1 [A
— arccosh ———— —— arccoth — tanh /et | ,
NG Vb2 — dac \/ A ( € Ve >

2 h A
% = cosh (% arccoth <\/ - tanh \/Et>> , (6.7)

Evidently, equation (6.7) leads to (see Fig. 2¢)

—b+ Vb? —dac

coshr > , b+ 2a > 0,
2a

or

or

—2B(I + B) + \/4A[(I + B)? + (A — B?)]
2(A — B?)

coshr > ) A+ 1B >0, B? < A;

from whence at I = 0 it follows (see Fig. 2b) coshr > +1, A > 0.

7 Trajectory equation in the form F(r, z) = 0, model Hj

Now, let us consider the trajectory equation F(r,z) = 0 according to (&.I0).

sinh rdr _ 4 / 1 dz
)?

/\/Asmh2 (I — Bcoshr + B coshz \/ecosh? z — A

Its right-hand side gives

1
I. e> A, z € (—00,+0), R = +—— arcsinh

A
VA e— A
A— 1 /| A
II. e< A, sinh? z > - 6, R= iﬁ arccosh e tanh z.

The left-hand side gives (two different possibilities depending on (B2, A) relation)

tanh z;

L —2qcoshr —

(a) (B? > A, finite) L= arcsin —2acoshr b
V-a b? — dac

2acoshr + b

1
b B? < A, infinite L =—arccosh ——.
(%) ( - ) Va b? — 4ac

Therefore, the trajectories F'(r, z) (.10) have the form (four different cases)

(Ia) e>A, B*>A, (I+B?>B*-A, z¢€(~00,+00), 7€ (ry,r),
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! arcsin —2acoshr —b = j:i arcsinh | 4/ i tanh z | ;
v—a b2 — dac VA e—A ’
A
(Ila) e<A, B*>A, (I+B)?>B?*-A, sinh?z> ~ =L re(mmn),

L arcsin M = :l:L arccosh i tanhz | ;
vJ—a V% — dac VA VA= ’

(Ib) e>A, B*<A, z€(—o0,4+00), 1€ (r,o00),

L arccosh QGLW = :l:i arcsinh | 4/ A tanh z | ;
Va Vb2 — dac VA e— A ’

(11b) e<A, B?<A, sinh2z>é—1, r € (ry,00),
€

L arccosh w = j:L arccosh i tanh z
Va VP —dac VA Va—e '

8 Trajectory equation F'(r, ¢) = 0, the role of Lorentz SO(3,1)
transversal shifts in Lobachevsky space
Now, let us consider the trajectory equation F(r, ) GII)
(I + B) — Bcoshrldr
sinh\/Asinh?r — (I + B) — Bcoshr]?

= dg. (8.1)

With the help of a new variable, the integral in the left-hand side reads

(I + B)coshr — B o du
sinh r ’ L= /\/[(A—B2)—|—(I+B)2]—u2.

(8.2)

In connection to this integral we must require [(A — B2) + (I + B)?] — u? > 0, which can be
transformed to the form

(A— B?*) cosh?r +2B(I + B)coshr —A— (I +B)*>0

or (see Section [B) x = coshr, ax? + bx + ¢ > 0; therefore, all analysis given in Section [Blis valid
here as well. In particular, we should remember about necessary condition

b? — 4ac > 0 = (I +B)?+(A—-B%)=0C?>0.

Integral (8.2]) equals to

u (I + B)coshr — B
L = arccos — = arccos ;
C sinhr\/(I + B)2 + (A — B?)

correspondingly, equation (8I]) gives

(I + B)coshr — B
arccos =

V(I + B)2+ (A — B?)sinhr

)

or

(I + B)coshr — /(I + B)? + (A — B2)sinhrcos ¢ = B. (8.3)
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This is the most general form of the trajectory equation F(r,¢) = 0. In particular, when
(I +B)?+ (A~ B?) =0, equation (B3] reads as relationship defining the motion of fixed radius
(I + B)coshr = B, which coincides with (5.14]).

One may assume that equation [83]) when B2 > A will describe a circle of fixed radius with
shifted center in Lobachevsky space. As we see below this assumption is true. Indeed, let us
introduce two coordinate systems in Lobachevsky space Hg

u1 = cosh z sinh r cos ¢, ug = cosh z sinh r sin ¢, ugz = sinh z, g = cosh z cosh r;

/ ! / / /! ! ! / !/ . / !/ / /
uy = cosh 2’ sinh ' cos ¢’, wy = cosh 2’ sinhr'sin¢’, w3 =sinhz’, wuy = coshz’ coshr

related by a (Lorentz) shift in the plane (0-1)

w cosh3 sinhf 0 0 || ug
/ .
uwy | | sinhp cosh 0 0 U1
ubh | 0 0 1 0 || u (8:4)
ug 0 0 01 us
Equations (84]) result in

7 =z, sinh 7’ sin ¢’ = sinh r sin ¢,

sinh 7’ cos ¢’ = sinh 3 cosh r + cosh 3 sinh r cos ¢,

cosh 7’ = cosh 3 cosh r + sinh 3sinh r cos ¢. (8.5)

In particular, S-shifted circle with fixed value ' = r{, will be described in coordinates (r, ¢) by
the following equation

cosh (3 cosh r + sinh B sinh r cos ¢ = cosh 7. (8.6)

This equation should be compared with the above equation (B3]

(I + B)coshr — /(I + B)2 — (A — B2)sinhrcos ¢ = B,

or (for simplicity, let B and I + B are both positive)

I+ B)?—(A— B?
Mcoshr— v+ B~ )sinhrcosqb: L (8.7)
B2-A B2- A B2- A

Relations (8.6 and (81) coincide if the parameter 8 and the radius of the shifted trajectory r(,
are defined according to

JI+ B2 —(A-B?) B

inh f = — , hr) = ——.
sinh 3 = cosh 7 P

Let us turn back to the general equation for trajectories F(r, ¢) = 0 according to (B3])

(I + B)coshr — /(I + B)2+ (A — B2)sinhrcos ¢ = B, (8.8)
and describe its behavior under (0-1)-shift (83

sinh 7 sin ¢ = sinh ' sin ¢/,
sinh r cos ¢ = — sinh 3 cosh 7’ + cosh 3 sinh ' cos ¢/,

/ . . /
cosh r = cosh S coshr’ — sinh Bsinh 7’ cos ¢'.
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Trajectory equation F(r,¢) = 0 translated to the coordinates (r/,¢’) looks
(I + B)[cosh B coshr’ — sinh 8sinh 7’ cos ¢/
— /(I + B)?2 + (A — B2)[—sinh 8 coshr’ + cosh Bsinh7’ cos ¢'] = B,

or

[coshﬁ(] + B) +sinh 8y/(I + B)2 + (A — B2)} coshr’

- [sinhﬂ([ + B) +cosh /(I + B)2 + (A — B2)] sinh 7’ cos ¢’ = B. (8.9)

Comparing ([88) and ([83) we conclude that they are of the same form if two simple combi-
nations of parameters are transformed by means of a Lorentz shiffd
I' + B = cosh B(I + B) 4 sinh /(I + B)2 + (A — B2),
V(I' + B)2 + (A’ — B2) = sinh (I + B) + cosh 81/(I + B)2 + (A — B2). (8.10)

These Lorentz shifts leave invariant the following combination in the parametric space

inv = (I + B)? — (\/(I+B)2 T (A- B2)>2 =B A

This means that the Lorentz shifts vary in fact only the parameter I, whereas A’ = A. It makes
sense to introduce new parameters J, C'

J=I+B, C=+/I+B?2+(A—B2)=+\I24+2IB+A
then equations (8I0) read
J' = Jcosh B+ C'sinh 3, ¢’ = Jsinh 8 + C cosh B

and invariant form of the trajectory equation F(r,¢) = 0 can be presented as
Jcoshr — C'sinhrcos¢ = B,

in any other shifted reference frame it must look as (this is a direct result from invariance
property B’ = B with respect to transversal Lorentz shifts)

J' coshr’ — ' sinh 7’ cos ¢' = B.
Correspondingly, the main invariant reads
inv=J?-C?=J%-C"%=DB*- A
Depending on the sign of this invariant one can reach the most simple description by means
of appropriate shifts
1) B2 — A > 0 (finite motion)
Jg = B?— A, Cy=0, trajectory Jycoshr = B;
2) B2 — A < 0 (infinite motion)
Jo =0, 002 =A - B? trajectory — Cysinhrcos¢p = B.
One special case exists, see (6.5), (60]).
3) B? = A (infinite motion)
B
I+B

By symmetry reasons, Lorentzian shifts of the type (0-2) will manifest themselves in the

J=1+ B, C=1+B, trajectory  coshr —sinhrcos¢ =

samme manner.

4Below in Section we will show that a magnetic field turns to be invariant under these Lorentz shifts, so
B’ = B.
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9 Lorentzian shifts and symmetry of a magnetic field in Hj

Let us turn again to a pair of coordinate systems in space Hg

u1 = cosh z sinh r cos ¢, ug = cosh z sinh r sin ¢,

ug = sinh z, ug = cosh z cosh r;

u} = cosh 2’ sinh 7/ cos ¢/, uf, = cosh 2’ sinh ' sin ¢/,
ufy = sinh 2/, ug, = cosh 2’ cosh 1,

related by the shift (0-1)

ug) coshfg sinh 8 0 0 || ug
uy | | sinh B cosh B 0 0| w
S 0 1 0||w|
uf 0 0 0 1 || us

or in cylindric coordinates (direct and inverse formulas)

2 =z, sinh 7’ sin ¢’ = sinh r sin ¢,

sinh 7’ cos ¢’ = sinh 3 cosh r 4 cosh 3 sinh 7 cos ¢,
cosh 7’ = cosh 3 cosh r + sinh 3 sinh r cos ¢;

z=2, sinh 7 sin ¢ = sinh ' sin ¢’,

sinh 7 cos ¢ = — sinh 3 cosh 7’ + cosh 3sinh 7’ cos ¢,

/ : : / /
cosh r = cosh B cosh ' — sinh g sinh r’ cos ¢'.

With respect to that coordinate change (r,¢) = (', ¢'), the uniform magnetic field trans-
forms according to

(0%
Fd)’r’ = %%—fif’oﬁ = <g—:§,% — g—;%) Fd)m Fd)r = Bsinhr,
so that the magnetic field transforms by means of the Jacobian
Oor  Or
Fd)’r’ = JF¢T,, J = 2;/ 8;;/ 5 F¢r = Bsinhr.
or’ 0¢'

It is convenient to represent the coordinate transformation in the form

s ; sinh ' sin ¢/
= arctan

— sinh 5 cosh r’ + cosh g sinh 1/ cos ¢’
r = arccosh (cosh B coshr’ — sinh Bsinh ' cos (b/) = arccosh B;

> = arctan A,

correspondingly the Jacobian looks

__ 11 (9BoA 0BoA
CVBE 11+ A2\ a¢ 9 or' )’

Taking into account the identity

J

1 1 1 1 cos? ¢

VB2 — 11+ A2 - 1/Cosh2r_11—1—‘5&112(;5_ sinh7r’
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and the formulas

= ——(cosh B coshr’ — sinh Bsinh 7’ cos ¢’) = cosh Bsinh " — sinh 3 cosh ' cos ¢/,

08 _ 0

or' or'

8B a / . . / / . . ! . /
o0 = 8—¢’(COSh B coshr’ — sinh S sinh 7’ cos ¢') = sinh #sinh 7’ sin ¢,
0A 9 sinh r’ sin ¢/

0@  O0¢' \ —sinh B coshr’ 4 cosh B sinh 7’ cos ¢’

sinh 7/(— sinh 3 cosh 1’ cos ¢’ 4 cosh B sinh )
(— sinh 3 cosh 7/ + cosh § sinh 1/ cos ¢)?

_ sinh7/(—sinh 3 cosh 7’ cos ¢’ + cosh 3 sinh 1)

sinh? r cos? ¢

oA 0 sinh 7’ sin ¢/
or' or
— sinh Bsin ¢/

— sinh B cosh r’ + cosh § sinh 7/ cos ¢’

Y

)

— sinh Bsin ¢/

~ (—sinh Bcosh 7’ + cosh Bsinh 7’ cos ¢')2

for the Jacobian we get

_ sinhy’ 1

. )
sinh? r cos? ¢

J=—_ - [(cosh Bsinh 7’ — sinh 3 cosh 1’ cos ¢')

sinh 7 sinh? r

x (—sinh 3 cosh 1’ cos ¢’ + cosh Bsinh7’) + sinh? 3 sin® qﬁ’] .

It is matter of simple calculation to verify that the denominator and numerator

sinh? = cosh? 7 — 1 = (cosh f cosh ' — sinh Bsinh 7’ cos ¢/)? — 1

= cosh? 8 cosh? 7’ — 2 cosh 8 sinh § cosh ' sinh 7’ cos ¢ + sinh? Bsinh? 7 cos? ¢’ — 1,

(cosh Bsinh 7’ — sinh 3 cosh 1’ cos ¢)(— sinh 3 cosh 7’ cos ¢’ + cosh Bsinh ')

+ sinh? Bsin? ¢/ = —2cosh B sinh § cosh ' sinh 7’ cos ¢’
+ cosh? Bsinh? v’ + sinh? B cosh? 1 cos? ¢’ + sinh? B sin? ¢/

are equal to each other. Thus, the Jacobian of the shift (0-1) in hyperbolic space is

sinh r’

sinh r

and therefore this shift leaves invariant the uniform magnetic field under consideration

Fyrpr = JFy,, Fy, = Bsinhr, Fy,» = Bsinhr'.

By symmetry reason, we can conclude the same result for the shifts of the type (0-2). How-
ever, in that sense shifts of the type (0-3) behave differently. Indeed,

w) coshg 0 0 sinh 8 || ug
uy | 0 10 0 uy
u’z - 0 0 1 0 (15
us sinh 8 0 0 cosh 8 || us

Equation (@) leads to relation between (r, z) and (17, 2’)

cosh 2’ cosh r’ = cosh f3 cosh z cosh r + sinh B sinh z,

sinh 2’ = sinh /3 cosh z cosh r + cosh 3 sinh z,
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. . /
cosh 2’ sinh ' = cosh z sinh r, ¢ = ¢.

FElectromagnetic field is transformed according to

P ¢ Or or 0¢
BT\ 0xa 9B 9x'™ 9B

or or
>F¢T’ = F¢'T” = %Fqbr, Fqﬁ’z’ = w}%m

so the uniform magnetic field in the space Hs is not invariant with respect to the shifts (0-3).
One may describe electromagnetic field in terms of 4-potential, and the rule to transform the
field with respect to the shift (0-1) looks

a(b A,/ - 8—¢A

Ay =—B(coshr —1) = A, = 8—¢’Ad)’ WA

In flat space, the shift (0-1) generates a definite gauge transformation

A(r):%er, r=r+b,

A/(I'/) = %B xr' — %B xb= %B xr' + Vr,A(aj/,y/,z/),
/A bB,
B=(0,0,B), b=(00), Aly,2)=-7"

By analogy reason, one could expect something similar in the case of Lobachevsky space as well

, 09 ) 09 )

@ = 8—(Z§/A¢ = —B(COShT/ — 1) + a—(b,A, A;/ = %A(z) = %A (92)
It is indeed so. Let us demonstrate this. Accounting for two formulas
J¢ 1 9A _ sinhr'(—sinh B coshr’cos ¢’ + cosh sinhr’)
o9 1+ A20¢ sinh? r ’
9o 1 %_—sinhﬂsind
or' 1+ A20r  sinh?r

we conclude that the gauge function A in ([@.2) is defined by its partial derivatives in accordance
with

oA B sinh 3 sin ¢’
Or' 1+ cosh 8 cosh r’ — sinh Bsinh 7/ cos ¢’
oA sinh r’(cosh 8 sinh 7’ — sinh 3 cosh 1’ cos ¢)

= B(coshr’ —1) — B

8—<z5’ 1 + cosh B cosh ' — sinh 3 sinh r/ cos ¢’
(coshr’ —1)(1 — cosh ) + sinh 8 sinh 7’ cos ¢/

=B
1 + cosh B cosh ' — sinh 3 sinh r/ cos ¢’

(9.3)

The integrability condition 9?A/0¢'0r' = 9?A/0r'd¢' in an explicit form looks

0 sinh 3 sin ¢
0¢' 1 + cosh 3 cosh ' — sinh £ sinh / cos ¢’
0 (coshr’ —1)(1 — cosh ) 4 sinh  sinh 7’ cos ¢

o 1 + cosh 8 cosh / — sinh /3 sinh v/ cos ¢/

It is the matter of simple direct calculation to verify it. Now we are to find an explicit form of
the gauge function A. For better understanding, it is helpful first to consider a similar problem
in flat space

oA asin ¢’ oA B ar’ cos ¢’

space Ej, o = — 5

oy 2
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Integrating the first equation we obtain
B
A= _704 sin ¢'r’ + A(¢')

and further from the second equation we derive

Ba , ., od o, ar’ cos ¢’ ,
== = —_p— "7 =\
5 cos @'r +d¢)\(¢) 5 = A=A
Therefore, the gauge function is
B B
A(r',¢) = —TQ sin ¢'r’ + \ = —TQy' + A

The similar problem in space H3 should be considered by the same scheme. Let us integrate
the first equation in (@.3))

dr’
1 + cosh B cosh ' — sinh 3 sinh r/ cos ¢’ +

A = Bsinh Bsin ¢’ / A(@).

2

Introducing the notation cosh 8 = ¢, sinh § = s, ¢ — s> = 1, and new variable

/
tanh % =1, dr’ = 2cosh?r'dy,
dr’
1 + cosh B cosh r’ — sinh 5 sinh r/ cos ¢/
2 cosh? r'dy 2dy

1+ c(cosh? % + sinh? %) - s2sinh%’ cosh % cos¢/ Y c—1)—2yscos¢/ +c+1’

for A we get

(¢c— 1)y — scos ¢’
ssin ¢/

A = \(¢') + 2B arctan

9

from whence it follows

(¢ —1)(coshr’ — 1) — ssinh 7’ cos ¢’

A =X¢')+2B
A(¢f) + 2B arctan s sinh 7/ sin ¢/

Now we are to calculate

OA _dx 9B s2sinh? 7’ sin? ¢’ — [(¢ — 1)(cosh’ — 1) — ssinh 7/ cos ¢']s sinh ’ cos ¢’
o' d¢f s2sinh? 1/ sin? ¢ + [(¢ — 1)(cosh 1/ — 1) — s sinh 7/ cos ¢/ |2
_dx B (¢+1)(coshr’ + 1) — ssinh 7’ cos ¢/
dg¢’ (¢ +1)(coshr’ 4+ 1) + (¢ — 1)(cosh 7’ — 1) — 2s sinh r/ cos ¢/

and finally

oA dX (coshr’ +1)(c+ 1) — ssinh 7’ cos ¢’
o do ccoshr’ + 1 — ssinhr’ cos ¢/

After substituting into the second equation in (Q.3]) the expression for A gives

dx B(coshr’ —1)(—=¢+ 1) + ssinh 7’ cos ¢’

dTﬁ’ 1+ ccoshr’ — ssinh 7’ cos ¢/
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/ o : /
+B(cosh7‘ +1)(—c 1).—|—SSIDh’r’ Ccos ¢ _ _op
1+ ccoshr’ — ssinh 7/ cos ¢’
Therefore,
AMp) = —2Bop+ N\

and the gauge function A(r’,¢’) is found as

(¢ —1)(coshr’ — 1) — ssinh 7’ cos ¢’

A(r',¢') = +2Barct
(r',¢") = +2B arctan ssinh 7/ sin ¢/

— 23(}5/ + )\0

remembering that ¢ = cosh 8, s = sinh 3.

10 Particle in a magnetic field, spherical Riemann model S;
In [I8] under number XI we see the following system of coordinates in spherical space S

dS? = 2dt* — p?[cos? z(dr? + sin® rd¢?) + dz?],
z € [-7/2,+7/2], r € [0, +n], ¢ € [0,2m],
! u? = cos z sin r sin @,

(W) + () + ()% + (u®)? = 1.

= cos zsin r cos ¢, u” = sin z,

UO = COS zZCOST,

In these coordinates, let us introduce a magnetic field
Ay = —2Bsin? g = B(cosr — 1), Fyp = 04A, — 0, Ay = Bsinr,

which satisfies the Maxwell equations in S3

1 9 . 1 .
- - - B =0.
o2 asnr or cos® zsinr (COS4 P r) sinr
The Christoffel symbols read
0 0 —tan z 0 cot r 0
I‘Tjk = 0 —sinrcosr 0 , Fd)jk = cotr 0 —tanz |,
—tan z 0 0 0 —tan z 0
sin z cos z 0 0
[ = 0 sin z cos zsin?r 0
0 0 0

The non-relativistic equations of motion (2.9]) in coordinates (r, ¢, z) in a magnetic field look

T .

v 2tan 2V'V? — sinrcosrVV® = Bl Ve,

dt cos? z
A 1
4 2cotrVOV" —2tan2V¢V¥ = -B——— V"

dt cos? zsinr
A

7 + sin z cos 2V V" + sin z cos zsin? rVOV? = 0. (10.1)

The last equation in (I0.1]) points that along the axis z the effective attractive force acts to the

center z = 0.
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11 Simplest solutions in spherical space

Let us search for solutions with a fixed radius r = rg; equations (I0.1]) give

B 1 d B 1 B 1
Ve — _ s ~ (= —2tanz | — VE=0,
cos rg cos? z dt cosrg cos? z cosrg cos? z
avz 9 9y Sinz
=—(t B
dt (tan®rg )0053 z’
where the second equation is an identity 0 = 0. With notation a = —B/ cosrg, A = B?tan? ry,
the problem reduces to
do « dv= sin z
- =_A . 11.1
dt  cos?z’ dt cos? 2 (11.1)
The second equation gives
1 dz\? A
d(V*)? = Ad [ — —) =- , 11.2
V%) < cos2z> <dt> o2z € (112)

the constant e will be related to the squared velocity. First, let A # €, then equation (IT.2]) gives
(in contrast to Lobachevsky model, now only one possibility is realized: € > A)

dsin z

= dt.
Vel —sin?z) — A

Two different signs (£) correspond to the motion of the particle in opposite directions along
the axis z. The calculations below are evident (let ¢y = 0)

i/_g A sin y/et.

Let us examine a special case when € = A, equation ([I.2)) becomes

dz\? 9
) = —etan” z. (11.3)

A # e, sinz(t) = +

Equation (IT.3]) has only a trivial solution

B

2(t) =0, so that o(t) = do + o, = T osh ro’

it corresponds to the rotation with constant angular velocity around the circle » = ry in the
absence of any motion along the axis z.
Now we are to turn to the first equation in (I1.I]) and find ¢(¢)

" / dt / dt
=a | — =« ,
cos? z cos? /et + 4 sin? \/et

A # e,
so that

A # e, ¢ = \/iz arctan (\/gtan \/Et> : (11.4)

Thus, we construct the following solution

r = ry = const, A # e,
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: _ Ve—A o« \/Z
sinz(t) = + 7e sin v/et, gb—ﬁarctan( ?tan\/Et>.

Distinctive feature of the motion is its periodicity and closeness of corresponding trajectories.
The period T' is determined by the energy e

T T
T=— or in usual units T = _p.

Ve 4
12 Particle in a magnetic field and Lagrange formalism in Sj

Let us consider the problem of a particle in a magnetic field in S3 on the base of the Lagrange
function

1
L= 5 ( cos? 2ZVVT + cos? zsin? rVOV? + V*V?) — B(cosT — nHve.
Fuler-Lagrange equations in the explicit form are

d

T cos? V" = cos? zsinr cos rVOV? 4+ B sinrV?,
d
7 [ cos? z sin® rV® — B(cosr — ] =0,
d
EVZ = —coszsin z(V'V" +sin? rVoV?),

or differently

T .
v — 2tan zV"V? —sinrcosrVeV? = B ST Ve,
dt cos? z
d
7 [0082 2 sin?r VO — B(cosr — 1)] =0,

d
EVZ = —coszsinz(V'V" +sin? rvVev?),

which coincide with equations (I0]). Two integrals of motion in S5 are known
I = cos? zsin? rV? — B(cosr — 1), € =cos? z(VTV" 4 sin? rVOV?) + VZV?,

the third one can be constructed as follows

2
A =cos? 2 [e - <%> ] = cos? 2(V"V" + sin? rVOV?),
With the help of tree integrals of motion one can readily transform the problem under con-

sideration to calculating several integrals

dp 1 I+ B(cosr—1)

Zr 12.1
dt cos?z sin2 r ’ ( )
dr 1 \/ [I + B(cosr — 1)]?
— ==+ A — 12.2
dt cos? z sin? r ’ ( )
dz 1
— =+ Vecos?z — A, (12.3)
dt CoS

sin rdr _ 4 1 dz (12.4)

V/Asin?r — (I + Bcosr — B)2 coszv/ecos2z — A’
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[I + B(cosr — 1)]dr
sinry/Asin?r — [I + B(cosr — 1)]2

= do. (12.5)

For the most simple case when r = ry = const, these relations give

1
b __a %::t Ve cos?z — A,

dt ~ cosh?z’ dt COos 2

I+ B -1 I+B — 1))
a=" (_COQS n-l) 4 U+ (?Os ro— DI (12.6)
sin“ rg s~ ro
In Section [[Il for o and A we had other expressions
B 2 2
oa=— , A = (tan” roB~), (12.7)
cosTg

which were equivalent to the present ones. Indeed, from the identity o = « we get

I+ B —1 B —1
+ (.C(;S ro — 1) _ . 7 — gCosro
sin® rg cos Ty cos g

substituting it into (I2.6]) we arrive at

I+B - B? —1 2
i (‘cos ro — 1) = (cosro — 1) + (cosrg —1)| = (tan2 7‘032),
sin® rg sin®rg cos

A:[

which coincides with (I2.7]).

13 All trajectories and SO(4) symmetry of the space S;

Now, using general relations (I2I)-([IZ3]), let us examine the general case of possible solutions.
First, let A # €. Relation (I2.3]) is integrated straightforwardly

ve—A
\/E

Equation (I2.2) reads

sinz = +

sin /et.

sin rdr —:l:/ dt
V/Asin?r — (I + Bceosr — B)2 cos? 2’

The integral in the right-hand side is known, see (I1.4)),

dt 1 [A
Rz:l:/—zzzlz—arctan< —tanﬁt).
cos? z VA €

The integral in the left-hand side isﬁ

L—/ sinrdr __/ dx
VA1 —cos?r) — (I + Bcosr — B)? \/a(:n+%)2+52__44507
x = CosT, a=—A—B*<0, b=-2B(I — B), c=A—(I-B)>~ (13.1)

®In should be stressed that in the spherical model S3 always a < 0 which means that here only finite motions
are possible.
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y(z) = ax?® + bx + ¢

—l<r<x<axy<l1

T e T9

R <1 “x =cosr

Fig. 3. Finite motion.

We may expect physical solutions when

b— Vb2 —4 b+ Vb?—4
a <0, b? — dac > 0, —1§_—2aac::131<3:<:n2:+Taac§1.

First of all, we require b> — 4ac = 4A[A + B?> — (I — B)?] > 0, that is

b? — dac > 0 — A+ B?> (I - B2 (13.2)
Also, we require

<z <za<+l =  b—2a>+V0 —dac, b+2a<—Vb?—dac. (13.3)
From the first and second inequalities, it follows respectively:

b—2a>0, a+c—0b<0, b+ 2a <0, da+c+b<0;
they are equivalent to

b—2a >0, — (I -2B)?* <0, —1 <,
b+2a <0, —I?’ <o, Ty < +1.

Therefore, (I33]) will be satisfied if
204 < b< —2a — —(A+ B* < -B(I - B) < (A + B?). (13.4)

Relationships (I3.21 ) and (I3.4)) provide us with the constrains on parameters (A, I, B) en-
suring the existence of solutions in spherical space S3. The integral (I3.]) reduces to

I / —dx 1 . 2acosr+b
= = arcsin ————.
\/CL(I’ + 2_111)2 + bz__fgc vV —a V b2 — 4ac

Therefore, equation (I2:2]) results in

2acosr + b | V—a [A
—————— —sin | —=— arccoth — tanh+/et | +A|.
Vb?% — 4ac [\/A < € \/_>

Now let us consider the trajectory equation (I24]) in the form F(r,z) = 0. Its right-hand
side after integration gives

1 d
c = +——arcsin

A
cosz/ecos?z — A VA e—A

tan z.
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Therefore, the trajectory equation ([I24) is

1 . 2acosr—+b Aot 1 . A ;
——— arcsin —————= — A = +—— arcsin |/ —— tan z.
v—a Vb2 — 4ac VA e— A

Now, let us consider equation (IZ3]) in the form F(r,¢) =0

I+B -1

/ [I + B(cosr — 1)]dr _ 4. (13.5)

sinry/Asin?r — [I + B(cosr — 1)]2
Let us introduce a new variable
(I —DB)cosr+B
N sinr '
the integral in (I3.0]) takes the form
/ du (I — B)cosr + B
L=—- = arccos .
V(A+ B?) — (I — B)2 — u? sinry/(A + B%) — (I — B)?

Therefore, the general trajectory equation F'(r,¢) = 0 in the model S5 looks

(B—1I)cosr++/(A+ B2 — (I — B)?sinrcos ¢ = B. (13.6)

Let us consider the behavior of this equation with respect to (Euclidean) shifts (0-1) in
spherical space. To this end, let us introduce two coordinate systems in Sg

U1 = €oS z sin r cos ¢, Uy = €OS z sin r sin ¢, u3 = sin z, Uy = COS Z COS T,

/ ! / / !/ ! ! _: / /! . / !/ / /
up = cos 2’ sinr’ cos ¢, Uy = C€OS 2’ sinr' sin ¢, Ug =sin 2, Uy = COS 2’ cos T,

related by the shift

Ug cosaa  sina 0 0 || up
uy —sina cosa 0 0 || w
;= (13.7)
Ug 0 0 1 01| u
ufy 0 0 0 1| us
Equation (I3.7) gives the relation between two cylindric coordinate systems
/ . /. / . .
Z =z, sinr’ sin ¢" = sinrsin ¢,
. / / . . / . .
sinr’ cos ¢ = — sin acos T + €os o sin 7 cos ¢, cos 7’ = cOS cos T + sin v sin 7 cos ¢,
and inverse ones
/ . . . /. /
z=2z, sinrsin¢ = sinr’ sin¢',
. . / . / / / . . / /
sinr cos ¢ = sinacosr’ + cos asinr’ cos ¢, CoST = cosacosT — sinasinr’ cos ¢'.

Let us transform equation (I3.6)) to shifted coordinate (7', ")

(B — I)[cos accosr’ — sin asin’ cos ¢/']

+ /(A + B2) + (I — B)2[sinacos’ 4 cosasinr’ cos ¢'] = B.

After elementary regrouping it reads

[cosoz(B —1I) +sinay/(A+ B2) — (I — B)?| cosv’
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+ [— sina(B — 1) + cosay/(A+ B2) — (I — B)2] sinr’ cos ¢’ = B. (13.8)

Comparing (I3.8) with (I3.6]), we see the invariance property of the trajectory equation if
the parameters are transformed according to Euclidean rotation

B'—TI'=cosa (B —1I)+sinay/(A + B2) — (I — B)2,
V(A" + B2) — (I' = B)2 = —sina(B — I) + cosa/(A + B2) — (I — B)2,

with notation B—1 = J, C = /(A + B2) — (I — B)2, the trajectory equation has the following
invariant form

Jcosr+ Csinrcos¢p = B = J cosr’ + C'sinr’ cos ¢’ = B, (13.9)
with respect to Euclidean shifts (0-1) in S5 parameters J, C' transform according to
J' = Jcosa+ Csina, ¢’ = —Jsina + C cos a.

This parametric shift generated by symmetry of the system leaves invariant the following (Eucli-
dean) combination of two parameters

inv=J>+C?’=J%+C"%= A+ B? — A=A =inv.

By a special choice of a shift one can translate the above equation (I3.9) to more simple
forms: for instance, to

Jo =V A+ B2, Co=0 — Jo cosrg = B;
Jo =0, Co=VA+ B2 — Copsinrcos¢ = B.

14 Space shifts in space S3 and gauge symmetry in Sj

Let us introduce two cylindric coordinate systems

U] = €OS z sin 7 cos @, Ug = COS z sin 7 sin ¢,

u3 = sin z, UQ = COS Z COS T’;

uy = cos 2’ sinr’ cos ¢/, uh = cos 2’ sin7’ sin ¢,
ufy = sin 2/, u, = cos 2’ cos ',

related by the shift (0-1)

Ug cosa  sina 0 0 || up
/ .

u —sina cosaa 0 O uq . . . .
L= , 2 =z, sin7’ sin ¢’ = sin r sin ¢,

Uy 0 0 10 U9

ufy 0 0 0 1| us

. / / . . / . .
sinr’ cos ¢ = —sina cosr + cos o sin 7 cos @, cos T’ = cos a cos T + sin asin r cos ¢.

Under this change of variables, (r,¢) = (r/,¢'), the uniform magnetic field is transformed
according to

Fd)’?“’

_ 02028 (09 Or  Or 09
~ o o7 T \o¢ar  9¢ or

) Fy,, Fy,. = B sinh r,
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or in terms of the Jacobian

g_?“ g_?“

Tl d)/ .

Fypr = JFyy, J = 9 06 | Fy, = Bsinr.
a7’

The coordinate transformation can be presented as

sin 7’ sin ¢/’

¢ = arctan < ) = arctan A,

/ . : / /
7 = arccos (COS QG COST — SInasiT”r COoS qb ) = arccos B.

sin v cos ' + cos asin 1’ cos ¢’

The Jacobian reads
j__ L 1 (opoA oBoA
_‘/l—le-i-Az awaw a(b/ar/ .
With the help of an identity

-1 1 -1 1 B cos® ¢

1/1_B21—|—A,42_‘/1_(3()527*1—|—tan2¢5_ sinr ’

and the formulas

% = %(cos acosr’ — sinasin?’ cos ¢/) = —cosasin?’ — sinacosr’ cos ¢/,

g—f/ = % (cos a cos r’ — sin acsin 7’ cos gb/) = sinasin 7’ sin ¢/,

0A 0 sin 7’ sin ¢’

o'~ 8¢ <sinacos r’ + cos asinr’ cos (b’)
_ sinr/(sinacos 1’ cos ¢’ + cosasing’)  siny’(sin o cos 1’ cos ¢’ + cos asint)
~ (sinacost’ +cosasinr’/cos @) sinr cos? ¢ '

0A 0 sin r’ sin ¢/

ar' — or' <sinacos r’ 4 cos asinr’ cos gb’)

sin a sin ¢/ _ sinasing’
2

(sinacosr’ + cosasinr’cos ¢')2  sinrcos? ¢’

for the Jacobian we get

sinr’ (cos asin 7’ + sin a cos 7/ cos ¢') (sin a cos 1’ cos ¢’ 4 cos asin ') + sin?
sinr sin? r

asin? ¢/

From whence it follows

sin 7/

sinr’
therefore, a magnetic field is invariant under the shift (0-1) in space S3
Fyrpr = JFy,, Fy,. = Bsinr, Fy, = Bsinr'.

By symmetry reason, the same behavior of a magnetic field will take place for shifts of the
type (0-2). However, for shifts of the type (0-3)

) cosa 0 0 sina || ug

Sl = , cos 2’ cos 1’ = cos acos z cos T + sin asin zz,
Uy 0 01 0 U
ufy —sinae 0 0 cosa || us
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. / . . /. .
S180 974 :—smacoszcosr—l—cosasmz, COS z SIHT/:COSZSIHT, ¢/:¢

electromagnetic field is transformed as

¢ Or or 0¢ or or
Forty = <8:E’O‘ 0x'8 Oz’ 8:E’5> For — For = %Fw’ Foo = _sz’

therefore a magnetic field is not invariant under these shifts (0-3).
In terms of 4-potentials, the transformation rule reads

¢ ¢
A¢ = B(COST — 1) — Zb/ = 8—¢/A¢, A;n/ = WA(t)
and we may expect
foler 0 foler 0
;5/ = 8—(25/A¢ = B(COS 7"/ — 1) + 8—(25/A7 A;,/ = WAd) = 7A (141)
Accounting for two relations
dp 1 0A  sinr/(sinacosr’cos @’ + cosasinr’)
a1+ A20¢ sin? r ’
dp 1 0A sinasing’
or' 14+ A20r  sin?r
for a 4-potential in shifted coordinates we have
= sin 7/(cos asin T/-+28in acost’ cos @) (Blcosr — 1),
sin” r
sin a sin ¢/
Ay, = ————[B(cosr —1)],
sin” r

from whence it follows

, sin7’(cos asin 7’ 4 sin avcos 1’ cos ¢')

/ . .
¢ 1+ cosacosr’ — sinasin?’ cos ¢’
A —_B sin a sin ¢’
;= — - - .
" 1+ cosacosr’ — sinasinr’ cos ¢’

The gauge function A in (4] is defined by its partial derivatives

oA sin a sin ¢/

or' 1+ cosacosr’ — sinasin’ cos @'’

oA _Bleosr' —1)— B sin 7’ (cos acsin 1’ +s‘inac.osr’cos¢’)

¢’ 1+ cosacosr’ —sinasinr’ cos ¢’
:_B(cosr’—1)(1—cosa)+sinasinr’cos¢’ (14.2)

1+ cosacosr’ — sin asin 7’ cos ¢’

Integrability condition in the explicit form reads

9 <—B sin v sin ¢/ )
o 1+ cos avcosr’ — sin asin 1’ cos ¢/
0 <—B (cosr’ —1)(1 — cos «) + sin asin 7’ cos (b’)
or! 1+ cos acosr’ — sin acsin 1’ cos ¢’ )
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Now we are to find the gauge function A. Let us integrate the first equation in (I4.2])

dr’
1+ cosacosr’ — sin asin 7’ cos ¢’

A=-B sinasinqﬁ'/ + A(¢).

With the notation

/

cosa = ¢, sina = s, 4% =1, tan 3=V dr' = 2 cos? r'dy,
dr’
1+ cosacosr’ —sina sinr’ cos ¢’
2 cos?r! dy 2dy

C 14c(cos?t —sin? L) —2ssin’y cos cos¢! Y1 —c¢) —2yscos ¢ +c+ 1
for A we obtain

A = \(¢') — 2B arctan (1 —c)(1 —cosr’) — ssinr’cos ¢/

ssin 7’ sin ¢’

Now, let us proceed further

oA dA 2BS2 sin? 7’ sin? ¢ — [(1 — ¢)(1 — cosr’) — ssinr’ cos ¢']s sin 7’ cos ¢’
a9 dg s2sin? 1/ sin? ¢/ 4 [(1 — ¢)(1 — cos 1) — ssinr’ cos ¢']2
d\ (1+¢)(1+ cosr’) — ssinr’ cos ¢

— — 2B
ol (14+¢)(1+cosr’)+ (1 —¢)(1 —cosr’) —2ssinr! cos ¢’
and finally

oA dX _B(1+c)(1+cosr’)—ssinhr’COS(b
a¢'  d¢/ 1+ ccosr’ —ssinr’cos¢/

Substituting it into the second equation in (I4.2]) we get

d\ (cosr’ —1)(1 —¢) + ssinr’ cos ¢’ (I+¢)(1 4+ cosr’) — ssinh 7’ cos ¢

—=-B - + B - = 2B.

do’ 1+ ccosr’ — ssinr’ cos ¢ 1+ ccosr’ — ssinr’ cos ¢/
Therefore,

M) = 2B¢' + Xo.
Thus, the gauge function A(r’, ¢’) is found (where ¢ = cos «, s = sin «)

(I —¢)(1 —cosr’) — ssinr’ cos ¢’

A(r',¢') = —2B arctan +2B¢ + \g.

ssin 7’ sin ¢’

15 Extension to relativistic case

Now let us briefly consider an extension to the relativistic problem — particle in a magnetic field
in spaces Hs and Ss. It suffices to discuss the hyperbolic case, then the relativistic equations
have the form

i(;)—O ;—l—const )\—m—02<1
dt*\/1=Vv2/2" VI-V2)2 A 7 - E
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and

d Vi 1 | dad da®

— e B3 o VB2
dt \/T=V?2]c? i JI-VZ/2 hdt dt (V2 357,
d & 1 o dxd da¥ 1 3
— = = _(V3B'—ViB
i T—veE  JioviE M d (BB =B,
d %% 1 5 dal dat

= —q(V\B* — V,B')

G ioveE  ioveE Nd dt

or in the explicit form

T : h
WV otanh V"V — sinhrcosh rVOVe = ARSI o
dt cosh” z
A 1
— +2cothrV®V" + 2tanh 2VOV? = - \B————— V",
dt covnr Atz cosh? z sinh r

avz
dt

— sinh z cosh 2V"V" — sinh 2 cosh z sinh? rV®V? = 0.

Therefore, all calculations performed for non-relativistic case are valid for relativistic case as
well with the only change B = AB and additional restriction € < 1.

16 Discussion

Let us summarize the main results of the paper.

Motion of a classical particle in 3-dimensional Lobachevsky and Riemann spaces is studied in
the presence of an external magnetic field which is analogous to a constant uniform magnetic field
in Euclidean space. In both cases the equations of motion are solved exactly in special cylindrical
coordinates. In Lobachevsky space there exist trajectories of two types: finite and infinite in
radial variable, in Riemann space all motions are finite and periodical. The invariance of the
uniform magnetic field in tensor description and gauge invariance of corresponding 4-potential
description is demonstrated explicitly. The role of the symmetry is clarified in classification
of all possible solutions given, based on the geometric symmetry group, SO(3,1) and SO(4)
respectively.

Several additional points should be mentioned. Magnetic fields introduced in the mo-
dels Hs, S3 are not invariant under geometrical shift of the type (0-3), instead these geometrical
transformations generate some additional electric fields. So, instead of four symmetry genera-
tors in Euclidean space, (Pp, P, Ps,J.), in curved space models we have only 3 generators for
symmetries, (Jo1, Jo2,J.). This means that the magnetic fields under consideration in curved
spaces are “less uniform” than in Euclidean space.

The choice of special coordinate systems is a matter of principal importance when exploring
any problem, and our special choice of cylindrical coordinates is not accidental but turns to be
decisive one. For instance, in Lobachevsky and Riemann models there exist other cylindrical
coordinates in which Maxwell equations can be solved as well. In this case, electromagnetic
potential is (in Hs model)

dS? = dt* — dr* — dr* — sinh? d¢* — cosh? dz?, Ay = const [In(cosh )]
ug = cosh r cosh z, ug = cosh r sinh z, u1 = sinhr cos ¢, ug = sinh 7 sin ¢,
such a potential has a good limiting behavior at vanishing curvature limit and admits separating

of variables, but it hardly could be brought to explicit analytical solutions when dealing with
a particle behavior in this field.
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Up to now, the most attention in the literature was given to a Kepler problem (quantum
mechanical and classical) in Lobachevsky and Riemann models and to the magnetic monopole
problem. Corresponding electromagnetic potentials (in spherical coordinates) are

¢ Ay = gcosb; Ss, Ag = ¢ Ay = gcosb.

Ha, Ao = ~ tanr’

~ tanhr’

Magnetic field potentials used by us are
Hj, Ay = —B(cosh r —1); Ss, Ay = B(cosr —1).

They all provide us with solutions of the Maxwell equations. So all three potentials are equally
correct. They are equally interesting as problems simple enough for their analytical treatment
and as extensions of classical physical problems in flat space. At present time, we think, the
third one is most interesting because one may expect new results on this field. For instance, as
shown in [4] there exists special additional electric field that allows for solutions of corresponding
Schrodinger equations in terms of hypergeometric functions, so one may expect the respective
solutions of the classical equations in the presence of these additional electric fields as well.
In this case one might expect to extend symmetry operations governing the structure of all
solutions in presence of both uniform magnetic and electric fields.
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