文章编号:1004-0609(2010)02-0244-06

颗粒失效对 SiC 增强铝基复合材料屈服应力的影响模型

宋 旼,谢灿强,贺跃辉

(中南大学 粉末冶金国家重点实验室,长沙 410083)

摘 要:基于修正的剪切滞后模型、Eshelby等效夹杂理论以及 Weibull 统计分布,发展 SiC 增强铝基复合材料屈 服应力的本构模型。选取多种铝合金,包括工业纯铝、Al-Mg-Si 合金、Al-Cu-Mg 合金以及 Al-Zn-Mg 合金,作 为复合材料的基体材料进行屈服应力的测试,以验证模型的准确性。模型考虑变形过程中 SiC 颗粒失效(包括颗粒 脱粘和颗粒断裂)对复合材料屈服应力的影响。结果表明:复合材料的屈服应力随着 SiC 颗粒体积分数的增加而增 加,但随着 SiC 颗粒尺寸的增加而降低;该力学模型比传统的修正剪切滞后模型更加准确,这表明 SiC 颗粒失效 对复合材料的屈服应力产生重要的影响。

关键词:SiC/Al 复合材料;屈服应力;载荷转移;Weibull 统计中图分类号:TG 111

Model of effects of particle failure on yield stress of SiC reinforced aluminum alloy composites

SONG Min, XIE Can-qiang, HE Yue-hui

(State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)

Abstract: A constitutive model for the yield stress of SiC reinforced aluminum alloy composites was developed based on the modified shear lag model, Eshelby's equivalent inclusion approach and Weibull statistics. Several types of aluminum alloys including industry pure aluminum, Al-Mg-Si alloy, Al-Cu-Mg alloy and Al-Zn-Mg alloy were chosen as the matrix materials to verify the accuracy of the model. The failure of the SiC particles including particle debonding and cracking on the yield stress of composites during the deformation process was considered in the model. The results show that the yield stress of the composites increases with increasing volume fraction of SiC particles, but it decreases with increasing size of the SiC particles. The prediction of the present developed constitutive model agrees much better with the experimental data than the traditional modified shear lag model, which indicates that the failure of SiC particles has important effect on the yield stress of the SiC reinforced aluminum alloy composites.

Key words: SiC/Al composites; yield stress; load transferring; Weibull statistics

众所周知,在铝合金中添加 SiC 颗粒或 SiC 短纤 维将增加材料的屈服应力和弹性模量。早期的研究^[1-5] 表明:这种强化效应主要取决于两种因素。第一种因 素称之为剪切滞后效应,最早由 COX^[1]提出,随后得 到了 NARDONE 等^[2-5]的发展。剪切滞后模型的物理 原理基于铝合金基体将外部所施加的应力传递到硬的 SiC 增强体上,从而导致复合材料屈服应力和弹性模量的提高。第二种因素称之为淬火强化效应,由 ARSENAULT 等^[6-8]提出。淬火强化效应的物理原理 基于由于铝合金基体与 SiC 增强体有不同的热膨胀系数,在热处理过程中将会产生大量的位错增殖,从而导致复合材料屈服应力和弹性模量的提高。

基金项目:中国博士后科学基金资助项目(20070410303,200801345);教育部博士点基金资助项目(200805331044);湖南省科技计划博士后专项基 金资助项目(2008RS4020)

收稿日期:2009-01-09;修订日期:2009-06-25

通信作者:宋 旼,副研究员,博士;电话:0731-88877880;传真:0731-88710855;E-mail:msong@mail.csu.edu.cn

然而,无论是剪切滞后模型还是淬火强化理论都 没有考虑到复合材料所具有的两个重要特点,即时效 加速现象和颗粒失效对复合材料屈服应力的影响。模 拟复合材料的时效加速现象非常困难,主要源于量化 析出相非均匀形核与长大这一热力学和动力学过程的 困难。最近,本文作者通过考虑位错的管道扩散效应, 成功地发展了 SiC 增强铝基复合材料时效加速现象的 多尺度力学模型^[9]。模型的计算结果与 SiC 增强的 Al-Mg-Si 合金复合材料的实验结果吻合较好。

到目前为止,国际上还没有一个关于计算 SiC 颗 粒失效对复合材料屈服应力影响的有效的力学模型。 实际上 SiC 颗粒失效(包括 SiC 颗粒脱粘与颗粒断裂) 是 SiC 增强铝基复合材料在变形过程中存在的普遍现 象。忽略颗粒失效对复合材料屈服应力的影响将直接 导致计算结果与材料实际强度出现偏差。计算 SiC 颗 粒失效对复合材料屈服应力影响的主要困难在于量化 失效颗粒体积分数的困难。早期研究^[10-13]表明,颗粒 脱粘以及颗粒断裂均可以采用 Weibull 统计分布来计 算。但是采用 Weibull 统计分布计算颗粒失效需要知 道SiC颗粒在变形过程中的承载大小。WITHERS等[14] 指出, SiC 颗粒以及 SiC 短纤维在变形过程中的承载 大小可以采用 Eshelby 等效夹杂理论计算。因此,从 以上分析可知,通过合适的方法结合 Weibull 统计分 布和等效夹杂理论为计算颗粒失效对复合材料屈服应 力的影响提供了可能。

本文作者基于修正的剪切滞后模型与淬火强化理 论,结合 Weibull 统计分布与 Eshelby 等效夹杂理论, 发展了一个新的 SiC 增强铝基复合材料屈服应力的综 合力学模型,从复合材料的微观组织预测宏观的力学 性能。新发展的模型可以预测 SiC 颗粒体积分数、尺 度以及长径比对复合材料屈服应力的影响,为发展具 有高屈服应力的 SiC 增强铝基复合材料提供了理论依 据。同时采用一系列相关实验对新发展模型的准确性 进行了验证。

1 模型发展

1.1 修正的剪切滞后模型

修正的剪切滞后模型^[2-3]指出,复合材料屈服应力的提高源于基体材料将外加载荷传递到硬的增强体。 对于 SiC 增强的铝合金复合材料来说,屈服应力可以 表示为^[2-3]

$$\sigma_{\rm cy} = \sigma_{\rm my} [f_{\rm p} (A+2)/2 + f_{\rm m}] + \Delta \sigma_{\rm or} \tag{1}$$

式中: A 为 SiC 增强体的长径比; f_{p} 为 SiC 增强体的

体积分数; f_m 为基体铝合金的体积分数; σ_{my} 是基体铝 合金的屈服应力; $\Delta \sigma_{or}=2Gb/L$ 为位错绕过 SiC 颗粒所 引起的屈服应力的增加(即 Orowan 强化机制),其中 $L=0.6d(2\pi/f_p)^{1/2}$ 是 SiC 颗粒的间距 b 是位错的泊氏矢 量, G 是基体铝合金的剪切模量^[8]。

基体铝合金的屈服应力(σ_{my}),可以通过考虑基体 铝合金的本征屈服应力(σ_{in}),淬火强化效应(σ_{qs}),晶粒 细化强化效应(σ_{grs})以及几何必须位错强化效应(σ_{gnds}) 得到。因此,式(1)可表示为

$$\sigma_{\rm cy} = (\sigma_{\rm in} + \sigma_{\rm qs} + \sigma_{\rm grs} + \sigma_{\rm gnds}) \cdot [f_{\rm p}(A+2)/2 + f_{\rm m}] + \Delta\sigma_{\rm or}$$
(2)

淬火强化效应(σ_{qs})来源于基体与增强体热膨胀系 数差异造成的位错增殖形成的,可表示为^[7]

$$\sigma_{\rm qs} = \alpha_1 G b \rho^{1/2} \tag{3}$$

$$\rho = \frac{4f_{\rm p}\Delta T\Delta C}{b(1-f_{\rm p})} \left(\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3}\right) \tag{4}$$

式中: ΔT 是温度的变化; ΔC 是基体与增强体的热膨 胀系数差异; t_1 、 t_2 和 t_3 是增强体的三维参数; ρ 是位 错密度; $\alpha_1=1.4$ 是位错的强化系数。

晶粒细化强化效应(σ_{grs})来源于热加工过程中 SiC 颗粒诱发再结晶引起的晶粒细化效应。假定每一个 SiC 颗粒可以诱发形成一个新的晶粒,则晶粒细化强 化效应可表示为^[8]

$$D = d[(1 - f_{\rm p})/f_{\rm p}]^{1/3}$$
(5)

$$\sigma_{\rm grs} = K_{\rm v} / D^{1/2} \tag{6}$$

式中: $K_v = 0.1 \text{ MN·m}^{-3/2}$ 为常数^[15]。

几何必须位错强化效应(σ_{gnds})来源于基体与增强 体不同弹性模量,在变形过程中增强体的变形量比基 体的变形量小,为保持变形的连续性以及避免产生孔 洞,在基体中将产生位错来容纳基体与增强体的变形 量差值。根据 Ashby 梯度应变理论^[16],几何必须位错 强化效应可表示为

$$\sigma_{\text{gnds}} = 2G(1-\nu)f_{\text{p}}\varepsilon/(1-2\nu) \tag{7}$$

式中:v是基体材料的泊松比; *ε*=0.002 是复合材料的 屈服应变。

1.2 考虑颗粒失效的修正剪切滞后模型

修正的剪切滞后模型没有考虑到 SiC 颗粒失效对 复合材料屈服应力的影响。实际上,颗粒断裂和颗粒 脱 粘 是 复 合 材 料 在 变 形 过 程 中 存 在 的 普 遍 现 象^[10-13, 17]。由于失效的颗粒不再有承受载荷的能力, 因此颗粒断裂与颗粒脱粘将不可避免地降低复合材料 的屈服应力。早期的研究^[17-18]表明,颗粒断裂的体积 分数(*f*_{cr})和颗粒脱粘的体积分数(*f*_{de})均可以用 Weibull 统计分布描述:

$$f_{\rm de} = 1 - \exp\left[-\left(\frac{\sigma_{\rm c}}{P}\right)^m\right] \tag{8}$$

$$f_{\rm cr} = 1 - \exp\left[-\frac{f_p}{f_0} \left(\frac{\sigma_{\rm c}}{\sigma_0}\right)^m\right]$$
(9)

式中: σ_c 为增强体所承受的应力;*P* 是临界脱粘正应 力函数;*m*为 1~6 是 Weibull 常数; σ_0 是 SiC 颗粒的 断裂强度, f_0 为 SiC 颗粒在外加应力为 σ_0 时的参考体 积分数。LEE^[19]的研究表明,临界脱粘正应力函数(*P*) 可通过临界脱粘正应力(σ_d)和临界脱粘剪切应力(τ_d) 计算:

$$P = 0.7\sigma_{\rm d} \tag{10}$$

$$\sigma_{\rm d} = 2\tau_{\rm d} / [n \coth(nA)] \tag{11}$$

$$n = \left[\frac{E_{\rm m}}{E_{\rm p}(1+\nu)\ln(1/f_{\rm p})}\right]^{1/2}$$
(12)

式中: E_m 和 E_p 分别为基体和增强体的弹性模量。基于 Nardin-Schultz 模型^[20],临界脱粘剪切应力(τ_d)可表示为

$$\tau_{\rm d} = W_{\rm A} (E_{\rm m} / E_{\rm p})^{1/2} / \delta^{-1} \tag{14}$$

式中: $W_{\rm A}$ 为基体与增强体界面的结合功函数; $\delta^{-1}=0.5$ nm 为常数。

根据 Weibull 统计, 计算 SiC 颗粒失效的体积分数需要知道 SiC 颗粒承受载荷的大小(σ_c)。根据 WITHERS 等^[14]的研究 SiC 颗粒承受的载荷可以采用 Eshelby 等效夹杂理论计算:

$$\sigma_{\rm c} = \sigma_{\rm I} + \sigma_{\rm A} + \sigma_{\rm Im} =$$

$$C_{\rm m}(\varepsilon^{\rm c} - \varepsilon^{\rm T}) + C_{\rm m}\varepsilon^{\rm A} + C_{\rm m}\varepsilon^{\rm m}$$
(15)

式中: σ_{I} 、 σ_{A} 和 σ_{IM} 分别是 Eshelby 等效夹杂理论中由 自由形状改变、外加应力和镜像力引起的附加应力; ϵ^{A} 是在外力 σ_{A} 作用下不含增强体的基体材料的塑性应 变; ϵ^{c} 、 ϵ^{m} 和 ϵ^{T} 是分别是约束应变、平均基体应变和 等效转变应变; C_{m} 是基体的弹性常数张量。对于大多 数材料,由于存在对称性,为4阶张量的弹性常数可 以约化为6×6的矩阵(不再是张量)。基于 Withers 等^[14] 的研究,约束应变(ϵ^{c})、平均基体应变(ϵ^{m})和等效转变 应变(ε^{T})可表示为

$$\varepsilon^{\mathrm{T}} = -[(\boldsymbol{C}_{\mathrm{m}} - \boldsymbol{C}_{\mathrm{p}})[\boldsymbol{S} - \boldsymbol{f}_{\mathrm{p}}(\boldsymbol{S} - \boldsymbol{I})] - \boldsymbol{C}_{\mathrm{m}}]^{-1} \times [\boldsymbol{C}_{\mathrm{p}}\varepsilon^{\mathrm{T}^{*}} - (\boldsymbol{C}_{\mathrm{p}} - \boldsymbol{C}_{\mathrm{m}})\sigma^{A}/\boldsymbol{C}_{\mathrm{m}}]$$
(16)

$$\varepsilon^{c} = \mathbf{S}\varepsilon^{\mathrm{T}} \tag{17}$$

$$\varepsilon^{\rm M} = -f_{\rm p}(\boldsymbol{S} - \boldsymbol{I})\varepsilon^{\rm T} \tag{18}$$

式中:*I* 是单位矩阵;*S*为 Eshelby 张量; ϵ^{T^*} 是增强体的自由转变应变。由于断裂和脱粘的 SiC 颗粒不再 具有载荷转移功能,因此,具有增强效应的有效 SiC 颗粒的体积分数比实际 SiC 增强体的体积分数要小。 结合颗粒脱粘和颗粒断裂的体积分数以及修正的剪切 滞后模型,SiC 增强铝基复合材料的屈服应力可表示 为:

$$\sigma_{\rm cy} = (\sigma_{\rm in} + \sigma_{\rm qs} + \sigma_{\rm grs} + \sigma_{\rm gnds})$$

$$\{f_{\rm p}[1 - f_{\rm de} - (1 - f_{\rm de})f_{\rm cr}](A+2)/2 + f_{\rm m}\} + \Delta\sigma_{\rm or} \quad (19)$$

2 实验

实验中选择 4 种铝合金材料,包括纯度为 99.7% 的工业纯铝、Al-4.7%Mg-0.3%Si 合金、Al-4.5%Cu-0.6%Mg 合金和 Al-6.4%Zn-2.3%Mg 合金(质量分数), 作为基体材料来验证模型的准确性。复合材料采用粉 末冶金法制备。首先采用雾化法制备铝合金粉,将铝 合金粉与 SiC 粉混合搅拌后冷压成坯料,坯料经冷等 静压后真空烧结,然后经挤压比为 9 的热挤压成棒材。 挤压后的复合材料在 420 的温度下固溶 10 h 后水 淬至室温。复合材料的屈服应力采用拉伸实验测试, 试样的尺寸为 d5 mm × 25 mm 的标样,在 Instron 8802 拉伸实验机上进行。所有试样均沿挤压方向,拉 伸应变速率为 1 × 10⁻⁴ s⁻¹。

3 结果与讨论

采用本研究发展的力学模型计算 SiC 增强铝基复 合材料的屈服应力需要知道基体材料的一些基本常 数,如弹性模量、泊松比、基体材料的本征屈服应力, 剪切模量及位错的泊氏矢量等。这些材料常数分别列 于表1和2。

图 1 和 2 所示为模型计算以及实验所测得的 4 种 不同基体材料的 SiC 增强铝基复合材料屈服应力随 SiC 颗粒体积分数以及尺寸的变化。作为对比,修正 剪切滞后模型的计算结果也包含在图中。从图 1 和 2 中可以看出,与传统的修正剪切滞后模型相比,本研 究发展的模型计算的 SiC 增强铝基复合材料的屈服应 力与实验结果吻合更好。传统修正剪切滞后模型预测 的复合材料的屈服应力比本模型预测的复合材料的屈 服应力要高,且屈服应力与 SiC 颗粒的尺寸无关,这 与实验结果不相吻合。实际上,SiC 增强铝基复合材 料的屈服应力随着 SiC 颗粒体积分数的增加而增加, 但随着 SiC 颗粒尺寸的增加而减小。复合材料屈服应 力随 SiC 颗粒尺度的增加而减小的原因在于在相同的 体积分数下,小尺度的 SiC 颗粒对应着小的颗粒间距, 从而增大对位错的阻碍作用。

本研究发展的模型与传统修正剪切滞后模型的主 要差别在于本模型考虑了 SiC 颗粒在变形过程中出现 脱粘和断裂两种颗粒失效方式对复合材料屈服应力的 影响。从载荷转移的角度出发,当一个增强体颗粒出 现脱粘或断裂时,由于界面的出现导致应力集中而产

表1 计算所需的输入参数

Table 1 Summary of input data in simulation

Parameter	Value		
Matrix elastic modulus, $E_{\rm M}$ /GPa	67		
SiC elastic modulus, E_p /GPa	460		
Matrix shear modulus, $G_{\rm m}$ /GPa 25.2			
Matrix Poisson's ratio, $v_{\rm m}$	0.33		
SiC Poisson's ratio, v_p	0.17		
Reference volume of SiC particles, V_0/m^3	1.78×10^{-14}		
Reference fracture strength of	1 550		
SiC particles, σ_0 /MPa	1 550		
Thermal expansion coefficient of Al,	23.6×10^{-6}		
$C_{ m Al}$ / $^{-1}$			
Thermal expansion coefficient of SiC,	4.3×10^{-6}		
$C_{ m SiC}$ / $^{-1}$			
Magnitude of Burgers vector, <i>b</i> /m	2.86×10^{-10}		
Interface bonding working, $W_{\rm A}/({\rm mJ}\cdot{\rm m}^{-2})$	750		

表 2 计算所需基体材料的参数

 Table 2
 Parameters of matrix alloys for tested composites in present work

生的应变能得到释放,从而使得颗粒失去强化效应。 因此,采用传统修正剪切滞后模型计算的复合材料的 屈服应力明显高于实验值,而本研究发展的模型由于 考虑上述两种颗粒失效对复合材料屈服应力的影响, 其计算结果与实验值吻合。

值得注意的是,复合材料的屈服应力不仅取决于 增强体的尺度和体积分数,还取决于基体材料的种类。 而基体材料对复合材料屈服应力的影响体现在如下两 个方面:1) 基体材料的本征屈服应力;2) Weibull 常 数的值。从图1和2可以看出,高本征屈服应力的基 体材料对应着高屈服应力的复合材料,同时还对应着 较小的 Weibull 常数。一般来说, Weibull 常数的值随 着基体材料本征屈服应力的增加而减少,这表明较高 强度的基体材料对应着较小的 Weibull 常数。从统计 学的角度出发,较低的 Weibull 常数对应着较大的颗 粒断裂和脱粘的几率,这表明高本征屈服应力的基体 材料具有较高的颗粒失效分数。高本征屈服应力的基 体材料具有较高的硬化行为,在变形过程中将更大的 载荷转移到 SiC 增强体上,从而增加 SiC 颗粒失效的 几率。从另一个角度来说,高本征屈服应力的基体材 料由于具有较高的硬化行为,将在 SiC 颗粒与基体的 界面附近产生更多位错,使得 SiC 颗粒有更高的应力 集中,从而增加了 SiC 颗粒失效的几率。

4 结论

 基于修正的剪切滞后模型、Eshelby 等效夹杂 理论以及 Weibull 统计分布,发展了 SiC 增强铝基复 合材料屈服应力的本构模型。模型考虑了变形过程中 SiC 颗粒失效(包括颗粒断裂和颗粒脱粘)对复合材料 屈服应力的影响。

2) 选取工业纯铝、Al-Mg-Si, Al-Cu-Mg 及 Al-Zn-Mg 4 种合金作为复合材料的基体材料,进行屈

Table 2 Farameters of matrix anoys for tested composites in present work						
Alloy	Elastic modulus/	Shear modulus/	Thermal expansion	Poisson's ratio	Yield stress/	
	GPa	GPa	coefficient/ ⁻¹		MPa	
Pure aluminum	67	25.2	21.8×10^{-6}	0.33	53	
Al-Mg-Si	69	25.6	22.5×10^{-6}	0.33	179	
Al-Cu-Mg	70	25.9	22.1×10^{-6}	0.33	341	
Al-Zn-Mg	72	26.7	23.5×10^{-6}	0.33	448	

图 1 计算及实验测得的 SiC 增强铝基复合材料的屈服应力随 SiC 颗粒体积分数的变化 Fig.1 Changes of simulated and experimental yield stresses of SiC reinforced Al matrix composites with volume fraction of SiC particles (Size and aspect ratio of SiC particles are 20 µm and 1, respectively): (a) Pure aluminum; (b) Al-Mg-Si; (c) Al-Cu-Mg; (d) Al-Zn-Mg alloys

图 2 计算及实验测得的 SiC 增强铝基复合材料的屈服应力随 SiC 颗粒尺寸的变化

Fig.2 Changes of simulated and experimental yield stresses of SiC reinforced Al matrix composites with size of SiC particles (Volume fraction and aspect ratio of SiC particles are 10% and 1, respectively): (a) Pure aluminum; (b) Al-Mg-Si; (c) Al-Cu-Mg; (d) Al-Zn-Mg alloys

宋 旼,等:颗粒失效对 SiC 增强铝基复合材料屈服应力的影响模型

服应力的测试,对模型的准确性进行了验证。研究表 明模型计算的复合材料屈服应力的演变规律与实验数 据吻合很好,比传统的修正剪切滞后模型更加准确, 表明 SiC 颗粒失效对复合材料的屈服应力有重要的 影响;

3) 复合材料的屈服应力随着 SiC 颗粒体积分数 的增加而增加,但随着 SiC 颗粒尺寸的增加而降低。 复合材料的屈服应力不仅取决于增强体的尺度和体积 分数,还取决于基体材料的种类。高本征屈服应力的 基体材料对应着高屈服应力的复合材料,同时还对应 着小的 Weibull 常数。

REFERENCES

- COX H L. The elasticity and strength of paper and other fibrous materials[J]. Br J Appl Phys, 1952, 3(3): 72–79.
- [2] 陈康华,李 侠,宋 旼,黄大为. SiC_p/Al 合金复合材料时效 强化的综合模型[J]. 金属学报, 2006, 42(8): 887-891.
 CHEN Kang-hua, LI Xia, SONG Min, HUANG Da-wei. A combined model of the aging-strengthening of SiC_p/Al alloy composite[J]. Acta Metallurgica Sinica, 2006, 42(8): 887-891.
- [3] 宋 旼,陈康华,齐雄伟. 含有不同尺度微裂纹的铝合金伸 长率模型[J]. 特种铸造与有色合金, 2007, 27(1): 3-6.
 SONG Min, CHEN Kang-hua, QI Xiong-wei. A model for the tensile ductility of aluminum alloy with various-sized microcracks[J]. Special Casting & Nonferrous Alloys, 2007, 27(1): 3-6.
- [4] NARDONE V C, PREWO K M. On the strength of discontinuous silicon carbide reinforced aluminum composites[J]. Scripta Metallurgica, 1986, 20(1): 43–48.
- [5] 廖美春, 郭志昆, 陈万祥. 复合材料中纤维的抗拔机理[J]. 纤 维复合材料, 2005, 3(1): 35-41.
 LIAO Mei-Chun, GUO Zhi-kun, CHEN Wan-xiang. Study on Anti-Tensile Mechanism of Fiber in Composites[J]. Fiber Composites, 2005, 3(1): 35-41.
- [6] SONG M, HUANG D. Experimental and modeling of the coupled influences of variously sized particles on the tensile ductility of SiC_p/Al metal matrix composites[J]. Metallurgical and Materials Transactions A, 2007, 38(9): 2127–2137.
- [7] SONG M, CHEN K H, QI X W, HUANG L P. A multi-scaled model for the fracture toughness of an aluminum alloy[J]. J Mater Sci, 2007, 42(12): 4177–4282.
- [8] MILLE W S, HUMPHREYS F J. Strengthening mechanisms in particulate metal matrix composites[J]. Scripta Metall Mater, 1991, 25(1): 33–38.
- [9] SONG M, LI X, CHEN K H. Modeling the ageing hardening behavior of SiC/Al metal matrix composites[J]. Metall Mater Trans A, 2007, 38(3): 638–648.

- [10] SONG M, XIAO D. Modeling the fracture toughness and tensile ductility of SiC_p/Al metal matrix composites[J]. Mater Sci Eng A, 2008, 474(1/2): 371–375.
- [11] 宋 旼, 袁铁锤, 张福勤, 黄伯云, 陈康华. Al-Cu-Mg 合金的 断裂韧性及拉伸延性模拟[J]. 中国有色金属学报, 2007, 17(7): 1034-1040.
 SONG Min, YUAN Tie-chui, ZHANG Fu-qin, HUANG Bai-vun, CHEN Kang-hua, Modeling on fracture toughness and

Bai-yun, CHEN Kang-hua. Modeling on fracture toughness and tensile ductility of Al-Cu-Mg alloy[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(7): 1034–1040.

- [12] 陈康华,方 玲,李 侠,黄大为,方华婵.颗粒失效对 SiC_p/Al 复合材料强度的影响[J].中南大学学报:自然科学版, 2008, 39(3): 493-499.
 CHEN Kang-hua, FANG Ling, LI Xia, HUANG Da-wei, FANG Hua-chan. Influence of particle failure on strength of SiC_p/Al composites[J]. Journal of Central South University: Science and Technology, 2008, 39(3): 493-499.
- [13] MAIRE E, WILKINSON D S, EMBURY J D, FOUGERES R. Role of damage on the flow and fracture of particulate reinforced alloys and metal matrix composites[J]. Acta Materialia, 1997, 45(12): 5261–5274.
- [14] WITHERS P J, STOBBS W M, PEDERSEN O B. The application of the Eshelby method of internal stress determination to short fiber metal matrix composites[J]. Acta Metall, 1989, 37(11): 3061–3084.
- [15] SEKINE H, CHEN R. A combined microstructure strengthening analysis of SiC_p/Al metal matrix composites[J]. Composites, 1995, 26(2): 183–188.
- [16] LIU G, SUN J, NAN C W, CHEN K H. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys[J]. Acta Mater, 2005, 53(10): 3459–3468.
- [17] LEWIS C A, WITHERS P J. Weibull modeling of particle cracking in metal matrix composites[J]. Acta Metall Mater, 1995, 43(10): 3685–3699.
- [18] 李 侠,陈康华,黄大为. 增强颗粒对颗粒增强铝基复合材料强度的影响[J]. 铝加工, 2006, 167(2): 9-13.
 LI Xia, CHEN Kang-hua, HUANG Da-wei. Influence of reinforced particle on strength of particle-reinforced aluminum matrix composites[J]. Aluminum Fabrication, 2006, 167(2): 9-13.
- [19] LEE H K. A computational approach to the investigation of impact damage evolution in discontinuously reinforced fiber composites[J]. Comp Mech, 2001, 27(6): 504–512.
- [20] SHIMBO M, NAKA M, OKAMOTO I. Wettability of silicon carbide by aluminum, copper and silver[J]. J Mater Sci Lett, 1989, 8(6): 663-666.

(编辑 龙怀中)