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Global stability analysis of birhythmicity in a self-sustained oscillator
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We analyze global stability properties of birhythmicity ina self-sustained system with random excitations.
The model is a multi-limit cycles variation of the van der Poloscillator introduced to analyze enzymatic substrate
reactions in brain waves. We show that the two frequencies are strongly influenced by the nonlinear coefficients
α andβ. With a random excitation, such as a Gaussian white noise, the attractor’s global stability is measured
by the mean escape timeτ from one limit-cycle. An effective activation energy barrier is obtained by the slope
of the linear part of the variation of the escape timeτ versus the inverse noise-intensity1/D. We find that the
trapping barriers of the two frequencies can be very different, thus leaving the system on the same attractor for
an overwhelming time. However, we also find that the system isnearly symmetric in a narrow range of the
parameters.

PACS numbers: 74.40.+k;82.20.Wt;87.10.Mn

Some models employed to describe natural systems, such as for instance glycolysis reactions and circadian proteins
rhythmics, exhibit spontaneous oscillations at two distinct frequencies. The phenomenon is known as birhythmicity,
and the underlying dynamical structure is characterized bythe coexistence of two stable attractors, each displaying a
different frequency. Being the attractors locally stable,the system would however stay at a single frequency, the one
selected by the choice of the initial conditions, unless an external source disturbs the evolution and causes a switch tothe
other attractor. To investigate such process, we have focused on a particular system of biological interest, a modified van
der Pol oscillator (that displays birhythmicity), to determine the global stability properties of the attractors under the
influence of noise. More specifically, we have characterizedthe stability of the attractors with the escape times, or the
average time that the system requires to switch from an attractor to the other under the influence of random fluctuations.
Such analysis reveals that the two attractors can possess very different properties, with very different relative resi dence
times. Even excluding the most asymmetric cases, the systemcan spend something like 10 years on one attractor for each
second spent on the other. We conclude that although a systemcan be structurally biorhythmic for the contemporary
presence of two locally stable attractors at two different frequencies, actual switch from one frequency to the other could
be very difficult to observe. A global stability analysis cantherefore help to determine the region of the parameter space
in which birhythmic behavior will be genuinely observed.
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I. INTRODUCTION

Self-oscillating systems exhibit limit cycles, or periodic sustained oscillations. Examples are abundant, with periods ranging
from cardiac rhythms of seconds, glycolysis over the minutes, circadian oscillations over the 24 hours, while epidemiological
oscillations extend even over the years [1–3]. Birhythmicity refers to the coexistence of two attractors characterized by two
different amplitudes and two frequencies: depending on theinitial conditions, the system can produce self–oscillations at two
distinct periods. Such hysteretic behavior has been sometimes observed in biological systems [4]. Many more theoretical
studies have shown the possible occurrence of birhythmicity in models of glycolytic oscillations [5], chemical kinetic equations
[6], circadian proteins rhythmics [7–9], and biochemical reactions [10]. Perhaps the simplest model that exhibits birhythmicity
is a variation of the well known van der Pol oscillator proposed by Kaiser [11] to model enzyme reactions. In such a model it
has been shown that two attractors can coexist for some values of the parameters [11–13], and birhythmicity is robust enough
to enable two [14] or more [15] oscillators to synchronize. The aim of this work is to adopt the Kaiser modification of the van
der Pol oscillator [11, 16, 17] as a paradigm for birhythmicity to analyze the global stability properties of the attractors under
the influence of random excitations, i.e. the response to finite perturbations [18–20]. In fact while local stability properties that
refer to small perturbations of the steady state have been analyzed in Ref.[15], global stability refers to the responseto large
random fluctuations (large enough to drive the system from one attractor to the other). Such global stability property has not
been addressed for the model proposed in Ref. [11–13], and seldom investigated in birhythmic systems (see Ref. [21] for an
exception). Global stability is well studied in ac driven (and hence monorhythmical) systems [19, 20, 22, 23], for instance in
connection with the phenomenon of stochastic resonance [24] or of switching between chaotic attractors [25, 26]. We want
here to focus on the passage between two attractors characterized by two different frequencies, and therefore we will emphasize
the consequences of noise driven switching on the birhythmic properties, while in periodically driven systems the frequency is
pre-selected by the external drive.

When noise is added, the mean timeτ required to escape from a basin of attraction is a useful measure of the attractor’s global
stability also for non equilibrium or oscillating systems,such as ac-driven Josephson circuits with intrinsic thermal fluctuations
[18] or with finite-spectral-linewidth ac current [27]. In the same spirit, we propose to measure the attractor’s globalstability
with the mean escape timeτ from one stable limit-cycle attractor to another stable limit cycle attractor. Escape occurs when,
under the influence of a deterministic or random term, the system crosses the boundary of the basin of attraction (i.e. it is driven
across the unstable limit-cycle).

Let us remark that even if we focus on switches due to random perturbations, one could also drive the system from an attractor
to the other by means of a deterministic or structural change. This type of switch will be not considered in the present work,
however it is also possible from the deterministic dynamics– considering all possible paths that lead from one attractor to the
other with the appropriate noise-dependent weight – to retrieve the escape rate [18, 20, 28–30].

We will show that the reason that might hamper actual observation of birhythmicity in a noisy environment is the asymmetry
of the escape times. In such a case the system is likely to stayfor a much longer time on one attractor with respect to the other,
and therefore one would rarely observe the spontaneous transition from an attractor to the other [19, 20, 23]. We conclude that
although coexistence of two stable attractors with different frequencies is a prerequisite for birhythmicity, actualobservation
might be hindered by very asymmetric stability properties of the two attractors. In other words we will consider birhythmical
systems as bistable systems and the numerically evaluated escape times will serve as a measure of the relative stabilityof the
two solutions. For a glycolytic model it has indeed been proven by means of the Fokker-Planck equation associated to the weak
noise limit that the original system with two stable attractors (and hence with birhythmical behavior) changes structures and
becomes monorhythmical [21]. Our analysis arrives at a similar conclusion: the escape time from one of the attractors might
be very large compared to the escape time of the reverse process, even by many orders of magnitude. In addition, we find that
for some range of parameters the system is (approximately) symmetric. In this (indeed narrow) parameter space region the two
attractors have comparable properties, and birhythmicityis more likely to be observed.

The paper is organized as follows. In sectionII , we describe the self-sustained system with random excitation and the algo-
rithm of the numerical simulations. SectionIII deals with the dynamical attractors of free-noise multi-limit-cycles self-sustained
system. We will show that birhythmicity features are not uniform in the parameter region where it appears in the modified van
der Pol system. In sectionIV, we focus on numerical computed escape rates using the Box-Mueller random Gaussian generator
algorithm [31] for numerical integration with the Euler method. The Arrhenius factor (i.e. the relation between the escape time
τ , and the noise intensityD), allows us to determine an effective activation energy barrier∆Ui, or the slope of the linear part of
the variation of the escape time versus the inverse noise-intensity, as a useful method to summarize the results. The last section
is devoted to conclusions.
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II. THE SELF-SUSTAINED SYSTEM WITH RANDOM EXCITATION

A. The multi-limit cycle van der Pol oscillator

The model considered is a van der Pol-like oscillator with a nonlinear function of higher polynomial order described by the
following nonlinear equation (overdots as usual stand for the derivative with respect to time)

ẍ− µ(1− x2 + αx4 − βx6)ẋ+ x = 0, (1)

whereα, β andµ are positive parameters that tune the nonlinearity. Model (1) is therefore a prototype for self-sustained systems
and exhibits some interesting features of nonlinear dynamical systems; for instance Ref. [16, 17] have analyzed the super-
harmonic resonance structure and have found symmetry-breaking crisis and intermittence. The nonlinear dynamics and the
synchronization process of two such systems have been recently investigated in Ref.[13, 14], while the possibility that introduc-
ing an active control of chaos can be tamed for an appropriatechoice of the coupling parameters has been considered in Ref.
[32].

Eq. (1) describes several dynamic systems, ranging from physics to engineering and biochemistry [33]. In particular Eq. (1)
seems to be more appropriate for some biological processes than the classical van der Pol oscillator, as shown by Kaiser in Ref.
[34]. When employed to model biochemical systems, namely the enzymatic-substrate reactions,x in Eq. (1) is proportional to
the population of enzyme molecules in the excited polar state, the quantitiesα andβ measure the degree of tendency of the
system to a ferroelectric instability, whileµ is a positive parameter that tunes nonlinearity [13].

The nonlinear self-sustained oscillator Eq. (1) possessesmore than one stable limit-cycle solution [34], a conditionfor the
occurrence of birhythmicity. Birhythmic systems are of interest, for example in biology, to describe the coexistence of two
stable oscillatory states, a situation that can be found in some enzyme reactions [35]. Another example is the explanation of
the existence of multiple frequency and intensity windows in the reaction of biological systems when they are irradiated with
very weak electromagnetic fields [17, 34, 36–39]. In this work we will focus on model (1) as a prototype for the occurrence of
birhythmicity.

B. The model with random excitation and algorithm for numerical simulations

Let us consider the multi-limit-cycle van del Pol-like oscillator Eq. (1) to model coherent oscillations in biologicalsystems,
such as an enzymatic substrate reaction with ferroelectricbehavior in brain waves models (see Ref.[11–13] for more details).
In this case, one should include the electrical field appliedto the excited enzymes, which depends for example on the external
chemical influences (i.e., the flow of enzyme molecules through the transport phenomena). One can therefore assume that the
external chemical influence contains a random perturbation. Therefore, adding both the chemical and the dielectric contribution,
the activated enzymes are subject to a random excitation governed by the Langevin version of Eq. (1), namely:

ẍ− µ(1− x2 + αx4 − βx6)ẋ+ x = Γ(t), (2)

whereΓ(t) is a Gaussian additive white noise [40] whose statistical features are completely determined by the additional prop-
erties:

< Γ(t) >= 0

< Γ(t)Γ(t′) >= 2Dδ(t− t′). (3)

The white-noise quality ofΓ is contained in the Diracδ-function correlation (3). The parameterD is the intensity of the Gaussian
white noise.

In this work we will numerically integrate Eqs. (2,3) using aBox-Mueller algorithm [31] to generate the Gaussian white noise
from two random numbersa andb which are uniformly distributed on the unit interval[0, 1]. By introducing the new variable
ẋ = u, Eq. (2) can be written in the form

ẋ = u (4a)

u̇ = µ(1− x2 + αx4 − βx6)u− x+ Γ (4b)

The simple Euler algorithm version of the integration of equation (4) is given by

Γ∆t =
√

−4D∆t log(a) cos(2πb), (5a)

x|t+∆t = x+ u∆t, (5b)

u|t+∆t = u+ (µ(1 − x2 + αx4 − βx6)u − x)∆t+ Γ∆t. (5c)
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The step size used for numerical integration is generally equal to∆t = 0.0001, but in some cases we have used a smaller step.
We have also checked that averaging over as many as200 realizations the results converge within few percents. We notice that
there are more accurate methods to estimate the escape from abasin of attraction, or in general close to an absorbing barrier, to
avoid the inaccuracy due to a finite sampling of the random evolution [41]. However, we have carefully checked that the results
we have obtained are independent of the step size. This has been done in two ways: halving the step size until stable results
are reached (and with much attention to low noise intensityD[41]) and calibrating the numerical method with a potentialwith a
well defined activation barrier to retrieve the Kramer escape rate [42].

So, although analytical treatments based on the Fokker-Planck version of the Langevin equation (2) [43], the variational
approach [18, 20, 28–30], or faster numerical algorithms such as the stochastic version of the Runge-Kutta methods are available,
we have preferred to use the simple procedure given by Eq. (5)that proved fast enough for the present project.

Si = (α, β) Analytical Amplitude Numerical Amplitude Analytical FrequencyNumerical Frequency

A1=2.37720 A1=2.378 Ω1=1.00212 Ω1=1.00015

S1 = (0.114; 0.003) A2=5.02638 Unstable Ω2=1.00113 Unstable

A3=5.46665 A3=5.464 Ω3=1.0231 Ω3=1.019575

A1=2.3069 A1=2.30265 Ω1=0.987 Ω1=0.988

S2 = (0.1; 0.002) A2=4.8472 Unstable Ω2=1.000113 Unstable

A3=7.1541 A3=7.1345 Ω3=0.97123 Ω3=0.97831

A1=2.4269 A1=2.4259 Ω1=0.985 Ω1=0.988

S3 = (0.12; 0.003) A2=4.2556 Unstable Ω2=0.999 Unstable

A3=6.3245 A3=6.33918 Ω3=0.9865 Ω3=0.988

A1=2.4903 A1=2.48971 Ω1=1.000212 Ω1=1.000507

S4 = (0.13; 0.004) A2=4.4721 Unstable Ω2=1.000113 Unstable

A3=5.0791 A3=5.07739 Ω3=0.99912 Ω3=0.9989

A1=2.6605 A1=2.65963 Ω1=1.000212 Ω1=1.000507

S5 = (0.145; 0.005) A2=3.8305 Unstable Ω2=1.000113 Unstable

A3=4.964 A3=4.96336 Ω3=1.00049903 Ω3=1.000256

A1=2.7864 A1=2.78532 Ω1=0.99923 Ω1=0.9989

S6 = (0.154; 0.006) A2=3.8821 Unstable Ω2=1.000113 Unstable

A3=4.2698 A3=4.26807 Ω3=1.000231 Ω3=1.000507

Table 1:Comparison between analytical and numerical characteristics of the limit cycles. All data refer to the caseµ = 0.1.

In the absence of noise (Γ = 0), Eq. (2) reduces to the modified version of the van der Pol oscillator (see Eq. (1)), which has
steady-state solutions that correspond to attractors in state space and depend on the parametersα, β andµ. Before taking up the
subject of noise-induced transitions between dynamical attractors, we focus in the following section on the state-space structure
of the attractors and basin boundaries in the noise-free self-sustained system. We will show that the features of birhythmicity in
this modified van der Pol oscillator strongly depend onα andβ.

III. DYNAMICAL ATTRACTORS AND BIRHYTHMICITY PROPERTIES

In this Section we summarize the dynamical attractors of themodified van der Pol model (1) without Gaussian noise. The
periodic solutions of Eq. (1) can be approximated by

x(t) = A cosΩt. (6)

We recall that approximated analytic estimates of the amplitudeA and the frequencyΩ have been derived in Ref. [13], and it
has been found that the amplitudeA is independent of the coefficientµ, that only enters in the frequencyΩ.
It appears that, depending on the values of the parametersβ andα, the modified van der Pol equation (1) posses one or three
limit cycles. When three limit cycles are obtained, two of them are stable and one is unstable, a condition for birhythmicity; the
unstable limit cycle represents the separatrix between thebasins of attraction of the two stable limit cycles. We show in Fig.1
the bifurcation lines that contour the region of existence of birhythmicity in the two parameter phase space (β-α) [13, 14]. The
bifurcation line on the left denotes the passage from a single limit cycle to three limit cycles, while the right line denotes the
reverse passage from three limit cycles to a single solution. At the conjunction, a codimension-two bifurcation, or cusp[43],
appears . The first bifurcation encountered increasingα corresponds to the saddle-node bifurcation of the outer, orlarger
amplitude cycle, while the second bifurcation occurs in correspondence of a saddle-node bifurcation of the inner, or smaller
amplitude, cycle. The two frequencies associated to the limit cycles are very similar close to the lowestα bifurcation and clearly
distinct at the highestα bifurcation line, as will be discuss later in detail.
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Table1 provides, for some selected setsSi of the parameters in the domain of existence of three limit-cycles on which we will
focus our attention, the comparison between amplitudes andfrequencies derived from the analytical estimate of Ref.[13] and
from numerical simulations of Eq. (1). From the Table it is clear that birhythmicity is indeed present – the two stable attractors
are characterized by different frequencies. However, the two frequencies are very similar, and in practice it might prove very
difficult to resolve the difference. To illustrate the dynamics of the self-sustained oscillations, we report in Fig.2 the limit cycles
and in Fig.3 and 4 the time dependent oscillations. In Fig. 3,the two frequencies are very similar, while in Fig. 4 we report
the case of two clearly distinct frequencies. It is clear that for the slow oscillations (the solid line in Fig. 4, the behavior is not
well approximated by the sinusoidal approximation (6). It can also be noticed that the amplitude is still captured by thetheory,
while the agreement between the predicted and the observed frequency becomes poor at low frequencies. In fact for Fig. 4(i),
α = 0.12, β = 0.0014, the theoretical analysis [13] predictsA1 = 2.49 andA3 = 10.89, with frequenciesΩ1 = 0.999 and
Ω3 = 0.532, respectively, in good agreement with the numerical dataΩ1 = 1.00 andΩ3 = 0.516. For the case of Fig. 4(ii),
α = 0.13, β = 0.001, the theoretical analysis [13] givesA1 = 2.828 andA3 = 13.84, with frequenciesΩ1 = 0.998 and
Ω3 = 0.521, while the numerical data readΩ1 = 1.00 andΩ3 = 0.195. It is evident that the observed frequency of the large
cycle,0.195, is much less than the predicted value0.521.

In order to understand the effect of the parametersα andβ on the dynamical states, we have simulated Eq. (1) to numerically
derive the frequenciesΩi; the results are shown in Table2. Forα andβ in the white area of Fig.1, there exists only a single
limit-cycle solution. In the gray area of Fig. 1 there are multi-limit-cycle solutions withΩ1 6= Ω3. Fig. 5 shows the dependence
of the frequenciesΩi versus the coefficientβ when the parameterα is fixed. In this parameter region for each value ofα, the
two limit-cycle frequencies are different at lowβ values (see Fig. 4), but converge to the same frequency whenβ increases (see
Fig. 3). This reveals that the saddle-node bifurcation at the upper boundary of the multi-limit-cycles area in Fig. 1 occurs when
the two frequencies are very similar. Thus we conclude that birhythmicity smoothly disappears increasingβ because the two
frequencies become undistinguishable, while the attractors are clearly distinct at the saddle-node bifurcation.

Fig. 6 shows the dependence ofΩi versusα for different values ofβ. As α increases, we move from the boundaries of the
multi-limit-cycle area whereΩ1 = Ω3 to enter the region of the map in which the two limit-cycle frequencies are different (i.e.
Ω1 6= Ω3).

So we conclude that the saddle-node bifurcation at the righthand side refers not only to the appearance of a new limit cycle,
but also to a cycle with a definitely different frequency, andtherefore in this region birhythmicity is more easily observed. In
contrast, it is evident that it will be extremely difficult todetect birhythmicity for lowα.

IV. NUMERICAL ESTIMATE OF ESCAPE RATES AND GLOBAL STABILITY ANALYSIS

A. Escape times from the periodic attractors

At non zero noise intensity (D 6= 0), the random force causes the system to occasionally jump from one limit cycle to the
other. The system initialized on a given limit-cycle attractor (with amplitudeA1 or A3) is forced by the random fluctuations of
theΓ term in Eq. (2) to leave the attractor and to wander about in the neighboring state space. Escape occurs when this random
motion drives the system across the boundary of the basin of attraction (i.e. across the unstable limit-cycle with amplitudeA2).
The mean timeτ required for escape from a basin of attraction is a useful measure of the attractor’s global stability. This escape
time is analogous to the escape time of a system trapped in a minimum of the effective potential, and the escape implies that the
random force drives the system to the other minimum of the effective potential. The activation energies shown in Fig. 7 sketch
the escape process to be considered in the following subsection. In fact there are two metastable states:

1. The system is trapped at the effective potential minimum in the basin of attraction of the limit-cycle amplitudeA1. Then,
escape to the basin of attraction with limit-cycle amplitudeA3 occurs when the system under Gaussian white noise crosses
the unstable limit-cycle amplitudeA2 (i.e. |x| > A2). This can be numerically computed by choosing the initial conditions
close to the origin. Thus, the corresponding effective energy barrier to escape from the basin of attraction with limit-cycle
amplitudeA1 to the one with amplitudeA3 is called∆U1.

2. In the reverse situation, the system is trapped at the effective potential minimum in the basin of attraction of the limit-
cycle amplitudeA3. The initial conditions are chosen outside the basin of attraction of the limit cycleA1 and far of the
unstable limit-cycleA2. We will denote with∆U3, the effective energy barrier to escape from the basin of attraction with
limit-cycle amplitudeA3 across the unstable limit cycle with amplitudeA2 (i.e. |x| < A2) towards the limit-cycle with
amplitudeA1.

Fig. 7 sketches our notation and the most relevant cases:

• Case(i): Fig. 7(i) corresponds to the case where∆U1 is larger than∆U3. We shall see that∆U1 can became very large
(depending on the coefficientsα andβ); in such conditions the attractor of the limit-cycle amplitudeA1 is much more
stable than the limit-cycle amplitudeA3. Thus, the system is more likely to stay on the limit-cycle attractorA1.
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• Case(ii) : Fig. 7(ii) depicts the symmetric case∆U1 ≃ ∆U3. Both attractors are equivalent and we are in a symmetric
bistable double well. The system has approximately the sameprobability to stay in one or the other basins.

• Case(iii) : Fig. 7(iii) shows the case where the energy barrier∆U1 is less than∆U3. Here, is the reverse situation of the
case (i), and the first attractor is less stable. the system ismore likely to stay on the limit-cycle attractorA3.

Thus, while in principle bistability occurs for all values of the parametersα andβ in the gray area of Fig. 1, noise driven
bistability is more likely to be observed in a narrower region of the parameter space, see case (ii).

B. Numerical estimate of the escape rates and effective energy barriers

Although there exists a method for the calculation of activation energies in non-equilibrium systems that do not admit abona
fide potential using the principle of minimum available noise energy [18–20, 28–30], we adopt here the indirect approachof
computing the escape time and then we infer on the values of the activation energies. The mean escape timeτ is computed as
the average over a series of trials of the timeτi required for the system to move from one attractor to the other attractor under
the influence of noise. For each trial, integration is begun at t = 0 with the system initialized on the attractor and proceeds by
numerically solving the system equations with a finite difference integration method of step size∆t (see Eq. (5)). The fact that
the random motion of the system is due to a Gaussian white noise ensures that escape will occurs with probability1 within a
finite time [18]. Thus, the main question is how long the system stays in the same basin of attraction. We expect that the escape
time is given by the inverse Kramer escape rate, or from the Arrhenius factor [42]:

τ ≃ exp(∆Ui/D), (7)

where∆Ui (i=1,3) is the difference between maximum and minimum values of an effective potential.
We remark that a function plays the role of a thermodynamic potential for fluctuating dissipative systems that do not possess

a bona fide potential [30] if it correctly describes the asymptotic response to noise. In a sense, one reverses the Kramer logic:
it is called effective potential a functionU that gives the slope of the logarithm of the escape time vs theinverse of the noise
intensity for low noise strength (see Eq.(7) ):U ∝ log(τ/D) (for D → 0). In this framework, one could regard the potentialU
as a way to summarize the behavior of the escape times. In other words it is completely equivalent either to say that the escape
times are exponentially distributed vs the inverse of the noise (for low noise) with slopeU or that the effective potential readsU .

The relevant attractors and basins of attraction are those shown in Figs.2. The data show that the mean escape timesτ
obtained from simulations for both limit-cycle stateA1 andA3 state increase exponentially with the inverse noise intensity.
With the parameter setsSi, we find that the variation of the average escape time (on a logarithm scale) as function of the inverse
noise intensity1/D strongly depends to the nonlinear coefficientsα andβ. For example, the setsS1, S4, andS6 correspond to
case (i) in which the attractor of the limit-cycleA3 is less stable than the attractorA1. The symmetric bistable situation, case (ii)
is observed with the setS5. The last case (iii) is found for the setsS2 andS5. It is important to note that the case (ii) only occurs
in a very narrow range,0.08 < α < 0.09 and0.0012 < β < 0.0014 [19, 20]. Outside this narrow area the properties of the two
attractors are very different.

α = 0.07 α = 0.08 α = 0.09 α = 0.1 α = 0.12 α = 0.13

β = 0.004 ∆U1=0.074

∆U3= 0.0072

β = 0.003 ∆U1= 0.095 ∆U1=0.028

∆U3=1.656 ∆U3= 0.0075

β = 0.0025 ∆U1= 0.054 ∆U1=0.015

∆U3=2.7 ∆U3= 6.75

β = 0.002 ∆U1= 0.25 ∆U1=0.035 ∆U1= 0.0097

∆U3= 0.75 ∆U3=10.5 ∆U3=28.8

β = 0.0016 ∆U1=0.45 ∆U1= 0.183 ∆U1= 0.026 ∆U1=0.0035

∆U3= 0.93 ∆U3= 7.78 ∆U3= 68.2 ∆U3=224

β = 0.0014 ∆U1= 0.98 ∆U1= 0.34 ∆U1 = 0.16 ∆U1= 0.021 ∆U1= 0.0017

∆U3= 0.014 ∆U3= 3.78 ∆U3= 16.14 ∆U3= 152.3 ∆U3= 233.5

β = 0.0012 ∆U1= 0.62 ∆U1= 0.291 ∆U1= 0.13 ∆U1= 0.104 ∆U1=0.0015

∆U3=2.15 ∆U3= 11.6 ∆U3= 17.5 ∆U3=308 ∆U3= 791

β = 0.0011 ∆U1= 0.65 ∆U1=0.28 ∆U1= 0.123 ∆U1= 0.015 ∆U1= 0.003

∆U3=4.35 ∆U3=27.5 ∆U3= 104.9 ∆U3= 564 ∆U3 > 1000

β = 0.001 ∆U1=1.3 ∆U1= 0.52 ∆U1= 0.25 ∆U1=0.11 ∆U1= 0.014 ∆U1=0.0001

∆U3=0.53 ∆U3= 10.7 ∆U3= 16.05 ∆U3= 105.6 ∆U3 >1000 ∆U3 > 1000
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Table 2:Dependence of the energy barriers∆Ui in the parameters plane(α, β), withµ = 0.1.

Fitting a straight line through the data points in the linearpart of Eq.(7) and measuring its slope we obtain an estimate of
∆U1 and∆U3, the effective activation energies for the escape from the limit-cycle attractorA1 andA3, respectively. Since the
effective activation energy is defined by the low-noise intensity asymptote, the accuracy of numerical simulation estimates can
be affected if high-noise intensity points (i.e., points where the relation is not linear) are included in thefitting procedure. For
this reason, data points for which the resulting Arrhenius factor bends have been excluded from the fitting procedure (weemploy
aχ2 test to check for linearity). Fig. 8 shows the variation of the effective energy barriers versus the coefficientµ with the set
of parametersSi. The effective energy barriers increase whenµ increases, and the behaviors strongly depend upon the set ofthe
parametersSi. The scenarios mentioned in subsection IV-B can be found in the behaviors of∆U1,3 (i.e. cases (i), (ii), (iii)). The
case (i) appears in Fig. 8 for the setsS1, S4, S6, in which the energy barrier∆U1 quickly increases. Here, one concludes that
the limit-cycle attractorA1 of the modified van der Pol oscillator is much more stable thanthe attractorA3 (respect to Gaussian
white noise). The system will likely stay for a long time in the effective potential well of the limit-cycle attractorA1, for the
corresponding effective barrier is higher. For instance whenµ = 0.5 in S1, we observe∆U1/∆U3 ≃ 80. The setS5 corresponds
to the almost symmetric bistable situation,i.e. case (ii). Both effective energy barriers∆U1 and∆U3 increase whenµ increases
and are comparable: the system remains for approximately the same time in the two effective potential wells. In the last scenario
S2 andS3, i.e. case (iii), we have a phenomenon opposed to that of the case (i): the limit-cycle attractorA3 is much more stable
than the attractorA1. The system remains for a much longer time in the limit-cycleattractorA3 because the energy barrier is
too high, so if the noise level is large enough to cause a switch fromA3 to A1, the same noise will drive back the system toA3

in a very short time interval with very high probability.
Let us remark that ”short” and ”long” might be very different[19, 20, 23]. To measure the different properties, we compute

the average persistence or residence timeP1,3 on the attractor with limit cycle amplitudeA1,3 as:

Pj =
τj

τ1 + τ3
, j = 1, 3, (8)

whereτ1,3 is the escape time from the first attractorA1 or third attractorA3, see Eq. (7). For the parametersS1, for noise
intensity aroundD = 1/20, we getP3 = 0.018, and obviouslyP1 = 0.982 i.e. the system will spends1.8% of the time on the
third attractorA3 and98.2% on the first attractorA1. Decreasing the noise down toD = 1/100,P3 decreases toP3 ≃ 3.10−9.
In other words, for any second spent on the less stable attractor A3 the system will stay for about10 years on the most stable
stateA1. Such a dramatic change at low noise occurs for∆U1/∆U3 ≃ 50, from Table2 it is clear that ratio between energy
barrier can easily be much larger.

To analyze the dynamic structure in the various areas of the chart drawn on Fig. 1, we present in Table2 the effective energy
barriers as a function of the coefficientsα andβ selected in the dotted rectangle of Fig. 1. Whenβ is fixed andα increases, the
effective energy barrier∆U1 decreases, whereas the energy barrier∆U2 considerable increases. For example, forβ = 0.0014,
the effective energy barrier of the limit-cycle attractorA1 decreases from∆U1(α = 0.08) = 0.98 to the value∆U1(α = 0.13) =
0.0017, while the barrier∆U3 increases from∆U3(α = 0.08) = 0.014 to the value∆U3(α = 0.07) = 233.5. Then, there
is a high probability that the system remains for a longer time in the limit cycle attractorA3, see Eq. (7). A similar behavior
is reported whenα is fixed and thatβ increases. Let us note about Table2 that for lowβ value and highα values, the case
(iii) becomes predominant:∆U3 increases and becomes so large that we have not been able to compute such barrier even with
simulations as long astmax ≃ 1010 normalized units. We can only estimate the barrier to be larger than1000.

The behavior of the effective energy barriers can be also interpreted in the following manner: the right side of the gray area
of existence of bistable regime in Fig. 1, where the two frequencies are clearly different corresponds to the physical case where
one of the two limit-cycle attractors, namelyA3, has a very high effective activation energy while the other, namelyA1, vanishes
because the effective potential barrier becomes zero. Thisprocess explains the passage from birhythmicity to a singlelimit-cycle
attractor.

V. CONCLUSIONS

We have considered the characteristics of birhythmicity and the global stability properties of the attractors in a self-sustained
system. We have found that birhythmicity in a modified van derPol oscillator is strongly influenced by the nonlinear coefficients
α andβ: the two frequencies converge or diverge when the nonlinearcoefficients are varied, leading to almost undistinguishable
frequencies for lowα and highβ. Adding a random excitation, we have found that the system crosses the boundary between
the basins of attraction (i.e. moves across the unstable limit-cycle with amplitudeA2). The mean timeτ to escape from one
limit-cycle attractor to the other has been estimated in thelow-noise limit, and it is proposed as a measure of the attractor’s
global stability. By considering the variation of the mean escape timeτ versus the inverse noise intensity1/D, the slope of the
linear part has enabled us to summarize the results in the form of an effective activation energy barrier which is function of the
physical system parameters. We have found, as in other systems that exhibit noise induced switches between two attractors, that
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the escape times can be very different [19, 20, 23], so it could be difficult to observe birhythmicity for highα and lowβ. We
remark that systems [19, 20, 23] are periodically driven, and therefore monorhythmic.

We conclude that although birhythmicityper se refers just to the occurrence of two frequencies, actual observation is subject
to much more restrictive conditions. Our purpose is to go beyond the mere existence of birhythmicity, to show that there are
limitations that restrict the likeliness that birhythmicity spontaneously occurs. We speculate that there might be other models
that do possess two attractors with different frequencies,but noise driven birhythmicity is difficult to observe because of the
different stability properties of the attractors. This might be the reason why birhythmicity has been predicted in manymodels,
but rarely observed in experiments - actually there is to ourknowledge just one case of clear observation of birhythmic behavior
[4]. Moreover, the switch from an attractor to another in Ref. [4] is due to a change of the parameters, not to spontaneous
transition from a frequency to the other. We suggest that an analysis similar to that carried out in this work is thereforeuseful to
ascertain the birhythmic property in a real system.
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FIG. 1: Parameters domain for the existence of a single limit cycle (white area) and three limit cycles
(gray area) withµ = 0.1. The bifurcation line on the left denotes the saddle-node bifurcation of the outer
or large amplitude cycle (see Fig. 2) while the right hand side contour marks the saddle-node bifurcation
of the inner cycle. The rectangle denotes the parameter region of Table2.
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FIG. 2: The two stables coexisting limit cycle attractors obtainedby numerical integration of equation (1)
for µ = 0.1 and the sets of parametersSi (see Table1). The thin line refers to the attractor of smaller
amplitude (A1) and thick line to the larger amplitude (A3). The dashed line denotes the unstable limit cycle,
and separates the basin of attraction of the inner or smalleramplitude cycle from the basin of attraction of
the outer or larger amplitude cycle.
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FIG. 6: FrequencyΩi versus the parameterα for different values ofβ for the noise-free self-sustained
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FIG. 7: Sketch of the effective activation energies∆U1 and∆U3 for the free-noise self-sustained oscillator
with multi-limit-cycles. We underline that the barrier height has clear meaning as the slope of the escape
time 7, while the effective potentialU is qualitatively drawn only to help intuition.
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FIG. 8: Effective activation energies versus the coefficientµ with the set of parametersSi. The thick line
corresponds to escape from the outer cycleA3, while the dashed line refers to escape from the inner cycle,
A1. The parametersα andβ are the same as in Table1.
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