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Equilibrium Distributions in Open and Closed Statistical Systems
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Abstract: In this communication, the derivation of the Boltzmann-Gibbs and the Maxwellian distributions is presented from
a geometrical point of view under the hypothesis of equiprobability. It is shown that both distributions can be obtainedby
working out the properties of the volume or the surface of therespective geometries delimited in phase space by an additive
constraint. That is, the asymptotic equilibrium distributions in the thermodynamic limit are independent of considering open
or closed homogeneous statistical systems.
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1 Introduction

In this paper, different classical results [1, 2] are ob-
tained from a geometrical interpretation of different
multi-agent systems evolving in phase space under the
hypothesis of equiprobability.

We start by deriving in section 2 the Boltzmann-
Gibbs (exponential) distribution by means of the
geometrical properties of the volume of anN -
dimensional pyramid. The same result is obtained
when the calculation is performed over the surface of
a suchN -dimensional body. In both cases, the moti-
vation is a multi-agent economic system with an open
or closed economy, respectively.

Also, the Maxwellian (Gaussian) distribution is
derived in section 3 from geometrical arguments over
the volume or the surface of anN -sphere. Here, the
motivation is a multi-particle gas system in contact
with a heat reservoir (non-isolated or open system) or
with a fixed energy (isolated or closed system), re-
spectively.

Last section contains our conclusions.

2 Derivation of the Boltzmann-
Gibbs Distribution

2.1 Multi-agent economic open systems

Here we assumeN agents, each one with coordinate
xi, i = 1, . . . , N , with xi ≥ 0 representing the wealth
or money of the agenti, and a total available amount
of moneyE:

x1 + x2 + · · ·+ xN−1 + xN ≤ E. (1)

Under random or deterministic evolution rules for the
exchanging of money among agents, let us suppose
that this system evolves in the interior of theN -
dimensional pyramid given by Eq. (1). The role of
a heat reservoir, that in this model supplies money in-
stead of energy, could be played by the state or by
the bank system in western societies. The formula for
the volumeVN (E) of an equilateralN -dimensional
pyramid formed byN + 1 vertices linked byN per-
pendicular sides of lengthE is

VN (E) =
EN

N !
. (2)

We suppose that each point on theN -dimensional
pyramid is equiprobable, then the probability
f(xi)dxi of finding the agenti with money xi is
proportional to the volume formed by all the points
into the(N − 1)-dimensional pyramid having theith-
coordinate equal toxi. We show now thatf(xi) is the
Boltzmann factor (or the Maxwell-Boltzmann distri-
bution), with the normalization condition

∫ E

0

f(xi)dxi = 1. (3)

If the ith agent has coordinatexi, theN − 1 re-
maining agents share, at most, the moneyE − xi on
the(N − 1)-dimensional pyramid

x1 + x2 · · ·+ xi−1 + xi+1 · · ·+ xN ≤ E − xi, (4)

whose volume isVN−1(E − xi). It can be easily
proved that

VN (E) =

∫ E

0

VN−1(E − xi)dxi. (5)
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Hence, the volume of theN -dimensional pyramid
for which theith coordinate is betweenxi andxi +
dxi is VN−1(E − xi)dxi. We normalize it to satisfy
Eq. (3), and obtain

f(xi) =
VN−1(E − xi)

VN (E)
, (6)

whose final form, after some calculation is

f(xi) = NE−1
(

1−
xi
E

)N−1

, (7)

If we call ǫ the mean wealth per agent,E = Nǫ, then
in the limit of largeN we have

lim
N≫1

(

1−
xi
E

)N−1

≃ e−xi/ǫ. (8)

The Boltzmann factore−xi/ǫ is found whenN ≫ 1
but, even for smallN , it can be a good approximation
for agents with low wealth. After substituting Eq. (8)
into Eq. (7), we obtain the Maxwell-Boltzmann distri-
bution in the asymptotic regimeN → ∞ (which also
impliesE → ∞):

f(x)dx =
1

ǫ
e−x/ǫdx, (9)

where the indexi has been removed because the distri-
bution is the same for each agent, and thus the wealth
distribution can be obtained by averaging over all the
agents. This distribution has been found to fit the real
distribution of incomes in western societies [3].

This means that the geometrical image of the
volume-based statistical ensemble allows us to re-
cover the same result than that obtained from the mi-
crocanonical ensemble [4] that we show in the next
section.

2.2 Multi-agent economic closed systems

Here, we derive the Boltzmann-Gibbs distribution by
considering the system in isolation, that is, a closed
economy. Without loss of generality, let us assumeN
interacting economic agents, each one with coordinate
xi, i = 1, . . . , N , with xi ≥ 0, and wherexi repre-
sents an amount of money. If we suppose now that the
total amount of moneyE is conserved,

x1 + x2 + · · ·+ xN−1 + xN = E, (10)

then this isolated system evolves on the positive part
of an equilateralN -hyperplane. The surface area
SN (E) of an equilateralN -hyperplane of sideE is
given by

SN (E) =

√
N

(N − 1)!
EN−1. (11)

Different rules, deterministic or random, for the ex-
change of money between agents can be given [2].
Depending on these rules, the system can visit the
N -hyperplane in an equiprobable manner or not. If
the ergodic hypothesis is assumed, each point on the
N -hyperplane is equiprobable. Then the probability
f(xi)dxi of finding agenti with moneyxi is pro-
portional to the surface area formed by all the points
on theN -hyperplane having theith-coordinate equal
to xi. We show thatf(xi) is the Boltzmann factor
(Boltzmann-Gibbs distribution), with the normaliza-
tion condition (3).

If the ith agent has coordinatexi, theN − 1 re-
maining agents share the moneyE−xi on the(N−1)-
hyperplane

x1 + x2 · · ·+xi−1 +xi+1 · · ·+xN = E− xi, (12)

whose surface area isSN−1(E − xi). If we define the
coordinateθN as satisfying

sin θN =

√

N − 1

N
, (13)

it can be easily shown that

SN (E) =

∫ E

0

SN−1(E − xi)
dxi

sin θN
. (14)

Hence, the surface area of theN -hyperplane for
which theith coordinate is betweenxi andxi + dxi
is proportional toSN−1(E − xi)dxi/ sin θN . If we
take into account the normalization condition (3), we
obtain

f(xi) =
1

SN (E)

SN−1(E − xi)

sin θN
, (15)

whose form after some calculation is

f(xi) = (N − 1)E−1
(

1−
xi
E

)N−2

, (16)

If we call ǫ the mean wealth per agent,E = Nǫ, then
in the limit of largeN we have

lim
N≫1

(

1−
xi
E

)N−2

≃ e−xi/ǫ. (17)

As in the former section, the Boltzmann factore−xi/ǫ

is found whenN ≫ 1 but, even for smallN , it can
be a good approximation for agents with low wealth.
After substituting Eq. (17) into Eq. (16), we obtain
the Boltzmann distribution (9) in the limitN → ∞
(which also impliesE → ∞). This asymptotic re-
sult reproduces the distribution of real economic data
[3] and also the results obtained in several models of



economic agents with random exchange interactions
[2].

Depending on the physical situation, the mean
wealth per agentǫ takes different expressions and in-
terpretations. For instance, we can calculate the de-
pendence ofǫ on the temperature, which in the micro-
canonical ensemble is defined by the derivative of the
entropy with respect to the energy. The entropy can be
written asS = −kN

∫

∞

0
f(x) ln f(x) dx, wheref(x)

is given by Eq. (9) andk is Boltzmann’s constant. If
we recall thatǫ = E/N , we obtain

S(E) = kN ln
E

N
+ kN. (18)

The calculation of the temperatureT gives

T−1 =

(

∂S

∂E

)

N
=

kN

E
=

k

ǫ
. (19)

Thusǫ = kT , and the Boltzmann distribution is ob-
tained in its usual form:

f(x)dx =
1

kT
e−x/kTdx. (20)

3 Derivation of the Maxwellian Dis-
tribution

3.1 Multi-particle open systems

Let us suppose a one-dimensional ideal gas ofN non-
identical classical particles with massesmi, with i =
1, . . . , N , and total maximum energyE. If particle i
has a momentummivi, we define a kinetic energy:

Ki ≡ p2i ≡
1

2
miv

2
i , (21)

wherepi is the square root of the kinetic energyKi. If
the total maximum energy is defined asE ≡ R2, we
have

p21 + p22 + · · · + p2N−1 + p2N ≤ R2. (22)

We see that the system has accessible states with dif-
ferent energy, which can be supplied by a heat reser-
voir. These states are all those enclosed into the vol-
ume of theN -sphere given by Eq. (22). The formula
for the volumeVN (R) of anN -sphere of radiusR is

VN (R) =
π

N

2

Γ(N
2
+ 1)

RN , (23)

whereΓ(·) is the gamma function. If we suppose that
each point into theN -sphere is equiprobable, then the

probability f(pi)dpi of finding the particlei with co-
ordinatepi (energyp2i ) is proportional to the volume
formed by all the points on theN -sphere having the
ith-coordinate equal topi. We proceed to show that
f(pi) is the Maxwellian distribution, with the normal-
ization condition

∫ R

−R
f(pi)dpi = 1. (24)

If the ith particle has coordinatepi, the(N − 1)
remaining particles share an energy less than the max-
imum energyR2 − p2i on the(N − 1)-sphere

p21+ p22 · · ·+ p2i−1+ p2i+1 · · ·+ p2N ≤ R2− p2i , (25)

whose volume isVN−1(
√

R2 − p2i ). It can be easily
proved that

VN (R) =

∫ R

−R
VN−1(

√

R2 − p2i )dpi. (26)

Hence, the volume of theN -sphere for which
the ith coordinate is betweenpi and pi + dpi is

VN−1(
√

R2 − p2i )dpi. We normalize it to satisfy
Eq. (24), and obtain

f(pi) =
VN−1(

√

R2 − p2i )

VN (R)
, (27)

whose final form, after some calculation is

f(pi) = CNR−1
(

1−
p2i
R2

)
N−1

2 , (28)

with

CN =
1
√
π

Γ(N+2

2
)

Γ(N+1

2
)
. (29)

ForN ≫ 1, Stirling’s approximation can be applied
to Eq. (29), leading to

lim
N≫1

CN ≃
1
√
π

√

N

2
. (30)

If we call ǫ the mean energy per particle,E = R2 =
Nǫ, then in the limit of largeN we have

lim
N≫1

(

1−
p2i
R2

)
N−1

2

≃ e−p2
i
/2ǫ. (31)

The factore−p2
i
/2ǫ is found whenN ≫ 1 but, even for

smallN , it can be a good approximation for particles
with low energies. After substituting Eqs. (30)–(31)
into Eq. (28), we obtain the Maxwellian distribution



in the asymptotic regimeN → ∞ (which also implies
E → ∞):

f(p)dp =

√

1

2πǫ
e−p2/2ǫdp, (32)

where the indexi has been removed because the dis-
tribution is the same for each particle, and thus the ve-
locity distribution can be obtained by averaging over
all the particles.

This newly shows that the geometrical image of
the volume-based statistical ensemble allows us to re-
cover the same result than that obtained from the mi-
crocanonical ensemble [5] that it is presented in the
next section.

3.2 Multi-particle closed systems

We start by assuming a one-dimensional ideal gas of
N non-identical classical particles with massesmi,
with i = 1, . . . , N , and total energyE. If particle i
has a momentummivi, newly we define a kinetic en-
ergyKi given by Eq. (21), wherepi is the square root
of Ki. If the total energy is defined asE ≡ R2, we
have

p21 + p22 + · · · + p2N−1 + p2N = R2. (33)

We see that the isolated system evolves on the sur-
face of anN -sphere. The formula for the surface area
SN (R) of anN -sphere of radiusR is

SN (R) =
2π

N

2

Γ(N
2
)
RN−1, (34)

whereΓ(·) is the gamma function. If the ergodic
hypothesis is assumed, that is, each point on theN -
sphere is equiprobable, then the probabilityf(pi)dpi
of finding the particlei with coordinatepi (energy
p2i ) is proportional to the surface area formed by all
the points on theN -sphere having theith-coordinate
equal topi. Our objective is to show thatf(pi) is the
Maxwellian distribution, with the normalization con-
dition (24).

If the ith particle has coordinatepi, the(N − 1)
remaining particles share the energyR2 − p2i on the
(N − 1)-sphere

p21+ p22 · · ·+ p2i−1+ p2i+1 · · ·+ p2N = R2− p2i , (35)

whose surface area isSN−1(
√

R2 − p2i ). If we define
the coordinateθ as satisfying

R2 cos2 θ = R2 − p2i , (36)

then

Rdθ =
dpi

(1− p2
i

R2 )1/2
. (37)

It can be easily proved that

SN (R) =

∫ π/2

−π/2
SN−1(R cos θ)Rdθ. (38)

Hence, the surface area of theN -sphere for which
the ith coordinate is betweenpi and pi + dpi is
SN−1(R cos θ)Rdθ. We rewrite the surface area as
a function ofpi, normalize it to satisfy Eq. (24), and
obtain

f(pi) =
1

SN (R)

SN−1(
√

R2 − p2i )

(1− p2
i

R2 )1/2
, (39)

whose final form, after some calculation is

f(pi) = CNR−1
(

1−
p2i
R2

)
N−3

2 , (40)

with

CN =
1
√
π

Γ(N
2
)

Γ(N−1

2
)
. (41)

ForN ≫ 1, Stirling’s approximation can be applied
to Eq. (41), leading to

lim
N≫1

CN ≃
1
√
π

√

N

2
. (42)

If we call ǫ the mean energy per particle,E = R2 =
Nǫ, then in the limit of largeN we have

lim
N≫1

(

1−
p2i
R2

)
N−3

2

≃ e−p2
i
/2ǫ. (43)

As in the former section, the Boltzmann factore−p2
i
/2ǫ

is found whenN ≫ 1 but, even for smallN , it can be
a good approximation for particles with low energies.
After substituting Eqs. (42)–(43) into Eq. (40), we ob-
tain the Maxwellian distribution (32) in the asymp-
totic regimeN → ∞ (which also impliesE → ∞).

Depending on the physical situation the mean en-
ergy per particleǫ takes different expressions. For an
isolated one-dimensional gas we can calculate the de-
pendence ofǫ on the temperature, which in the micro-
canonical ensemble is defined by differentiating the
entropy with respect to the energy. The entropy can
be written asS = −kN

∫

∞

−∞
f(p) ln f(p) dp, where

f(p) is given by Eq. (32) andk is the Boltzmann con-
stant. If we recall thatǫ = E/N , we obtain

S(E) =
1

2
kN ln

(

E

N

)

+
1

2
kN(ln(2π)− 1). (44)



The calculation of the temperatureT gives

T−1 =

(

∂S

∂E

)

N
=

kN

2E
=

k

2ǫ
. (45)

Thusǫ = kT/2, consistent with the equipartition the-
orem. Ifp2 is replaced by1

2
mv2, the Maxwellian dis-

tribution is a function of particle velocity, as it is usu-
ally given in the literature:

g(v)dv =

√

m

2πkT
e−mv2/2kTdv. (46)

4 Conclusion
We have shown that the Boltzmann factor describes
the general statistical behavior of each small part of a
multi-component system whose components or parts
are given by a set of random variables that satisfy an
additive constraint, in the form of a conservation law
(closed systems) or in the form of an upper limit (open
systems). The derivation of this factor for open sys-
tems in a general context has been presented in [6].

Let us remark that these calculations do not need
the knowledge of the exact or microscopic random-
ization mechanisms of the multi-agent system in or-
der to reach the equiprobability. In some cases, it can
be reached by random forces [3], in other cases by
chaotic [7] or deterministic [8] causes. Evidently, the
proof that these mechanisms generate equiprobability
is not a trivial task and it remains as a typical chal-
lenge in this kind of problems.

In summary, this work has presented a straightfor-
ward geometrical argument that recalls us the equiv-
alence between canonical and microcanonical ensem-
bles in the thermodynamic limit in the particular con-
text of physical sciences. For the general context of
homogeneous multi-agent systems, we conclude by
highlighting the statistical equivalence of the volume-
based and surface-based calculations in this type of
systems.
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