
Epigenetic Tracking: Implementation Details

Alessandro Fontana1

1IEEE
alessandro.fontana@ieee.org

January 18, 2010

Abstract

“Epigenetic Tracking” is the name of a model of cellular development that, coupled with an evolutionary tech-
nique, becomes an evo-devo (or “artificial embryology”, or “computational development”) method to generate 2d or
3d sets of artificial cells arbitrarily shaped. ’In silico’ experiments have proved the effectiveness of the method in
devo-evolving any kind of shape, of any complexity (in terms of number of cells, number of colours, etc.); being shape
complexity a metaphor for organismal complexity, such simulations established its potential to generate the complex-
ity typical of biological systems. Moreover, it has also been shown how the underlying model of cellular development
is able to produce the artificial version of key biological phenomena such as embryogenesis, the presence of “junk
DNA”, the phenomenon of ageing and the process of carcinogenesis. The objective of this document is not to provide
new material (most of the material presented here has already been published elsewhere): rather, it is to provide all
details that, for lack of space, could not be provided in the published papers and in particular to give all technical
details necessary to re-implement the method.

1 The model of development
1.1 Introduction
The previous work in the field of Artificial Embryology (see (Stanley and Miikkulainen, 2003) for a comprehensive
review) can be divided into two broad categories: the grammatical approach and the cell chemistry approach. In the
grammatical approach development is guided by sets of grammatical rewrite rules; context-free or context-sensitive
grammars, instruction trees or directed graphs can be used; L-systems were first introduced by Lindenmayer (Lin-
denmayer, 1968) to describe the complex fractal patterns observed in the structure of trees. The cell chemistry
approach draws inspiration from the early work of Turing (Turing, 1952), who introduced reaction and diffusion
equations to explain the striped patterns observed in nature (e.g. shells and animals’ fur); this approach attempts
to simulate cell biology at a deeper level, going inside cells and reconstructing the dynamics of chemical reactions
and the networks of chemical signals exchanged between cells. Notable examples of grammatical embryogenies
are (Lindenmayer, 1968), (Hornby and Pollack, 2002), (Cangelosi et al., 1994) and (Gruau et al., 1996); among cell
chemistry embryogenies, we recall (Kauffman, 1969) and, more recently, (Bongard and Pfeifer, 2001) and (Miller
and Banzhaf, 2003).

“Epigenetic Tracking” (E.T.), first described in (Fontana, 2008), is the name of a model of cellular development
that, coupled with an evolutionary technique, becomes an evo-devo (or “artificial embryology”, or “computational
development”) method to generate 2d or 3d sets of artificial cells arbitrarily shaped. The method evolves instructions
contained in the cells’ genome, which guide the development of an artificial organism from a set of zygotes. ’In silico’
experiments have proved the effectiveness of the method in devo-evolving any kind of shape, of any complexity (in
terms of number of cells, number of colours, etc.); being shape complexity a metaphor for organismal complexity,
such simulations established its potential to generate the complexity typical of biological systems. Furthermore,
it has also been shown (Fontana, 2009) how the underlying model of development is able to produce the artificial
version of key biological phenomena such as embryogenesis, the presence of “junk DNA”, the phenomenon of ageing
and the process of carcinogenesis. The objective of this document is to provide all technical details necessary to re-
implement the method. The document is organised as follows: section 1 describes in detail the model of development;
section 2 describes evo-devo method; sections 3 reports parameters and pseudocode of the algorithm (all figures are
at the end of the document).

1

ar
X

iv
:1

00
1.

28
10

v1
  [

nl
in

.A
O

] 
 1

8 
Ja

n 
20

10



1.2 Normal cells, driver cells, views
Artificial organisms are represented as sets of square- or cube-shaped artificial cells deployed on a grid (see figure
1). Development starts with one (or more) cell(s) -called zygote(s)- placed on the grid and unfolds in ASMAX steps,
counted by the variable ’age step’ (AS), which is shared by all cells and can be considered the “global clock” of
the organism. Cells belong to two categories: ’normal cells’ (which make up the bulk of the shape) and ’driver
cells’ (which are much fewer in number and are uniformly spread throughout the shape). Driver cells have an
associated Genome (organised as an array of ’change instructions’) and a variable called ’cellular epigenetic type’
(CET, organised as an array of ASMAX integers).

While the Genome is identical for all driver cells, the CET value is different in each driver cell: in this way, it can
be used by different driver cells as a “key” to activate different instructions in the Genome (see figure 2). The CET
value represents the source of cell differentiation during development, allowing driver cells to behave differently
despite sharing the same Genome. A shape can be “viewed” in two ways (see figure 3). In “external view” (right in
the figure) cells are shown with their colours; in “internal view” (left in the figure) colours represent cell properties:
blue is used for normal cells alive, orange for normal cells just (i.e. in the current age step) created, grey for cells
that have just died, yellow for driver cells (regardless of when they have been created). The model of development
can be applied to 2d and 3d organisms: from now on, for generality reasons, we will make reference to the 3d case,
except for the figures which, for simplicity reasons, will mostly refer to the 2d case.

1.3 Structure of CET values
The CET values are arrays of size ASMAX (the total number of age steps foreseen); ASMAX includes also the 0th
step (in which only the zygote(s) is (are) present on the grid and nothing else happens): therefore the values of the
steps are: 0,1,2,...ASMAX-1. The first position of the array contains a number that identifies the zygote; in case
more zygotes are present (a situation theoretically possible, although biologically not plausible), the first zygote’s
CET value will have a ’0’ in the first position, the second zygote’s CET value will have a ’1’, the third zygote’s CET
value will have a ’2’ and so forth; in zygotes all other array positions are filled with ’0’ (e.g. if ASMAX=4, the first
zygote’s CET value is [0,0,0,0], the second zygote’s CET value is [1,0,0,0], the third zygote’s CET value is [2,0,0,0],
etc.), while in other driver cells the other array positions contain numbers reflecting the driver’s generative history.

In the previous definition the parameter ASMAX (total number of age steps) has been considered known and
fixed at the beginning of development; actually this assumption is not strictly necessary: development could start
with a value ASMAX0 for ASMAX, that could be subsequently increased to another value ASMAX1 greater than
ASMAX0; in this case the positions from ASMAX0 to ASMAX1-1 of the CET arrays generated in the first ASMAX0
steps would be automatically filled with ’0’. Alternatively, the size of the CET values could become variable, incre-
mented by one unit at each age step (e.g. the zygote’s CET value would be [0], the driver cells’ CET values created
in step 1 would be [0,1],[0,2],[0,3],..., the driver cells’ CET values created in step 2 would be [0,2,1],[0,2,2],[0,2,3],
etc. In the remainder of this document we will assume for simplicity reasons the presence of a single zygote and a
fixed value for ASMAX.

1.4 Structure of instructions
The Genome is organised as an array of change instructions (see figure 4), having a left part and a right part. The
left part comprises the following fields:

• a field called ON (integer, possible values: 0,1). It tells whether the instruction is active (1) or inactive (0);

• a field called OP (’order of precedence’, integer, possible values: [0-maxval]). It is used to decide which instruc-
tion is activated in case of conflict;

• a field called XS (integer, possible values: [0-maxval] or -1). It contains the AS value at which the instruction
can be activated (if XS=-1, the instruction can be activated at any step);

• a field called XET (array of integers, of the same size as CET, each with possible values: [0-maxval]). It
contains the CET value that cna trigger the instruction’s activation.

The right part of the instruction contains the code for the operations which are carried out when the instruction
becomes active, which result in the creation and deletion of cells. The instruction’s right part comprises the following
fields:

2



• a field called ETP (’event type’, integer, possible values: 0,1). It defines the type of ’change event’ coded by the
instruction: proliferation (value=0) or apoptosis (value=1);

• a field called PC (’parallelepiped corners’, array of 6 integers, each with possible values: [0-maxval]). It defines
the ’change parallelepiped’ (the parallelepiped which inscribes the ’temporary change volume’) by specifying
the coordinates of its north-west-back corner (first 3 integers) and south-east-front corner (last 3 integers);

• a field called RM (’rotation matrix’, array of 9 integers, possible values: [0-maxval]). It defines the rotation
matrix to be applied to the temporary change volume to get the (final) change volume;

• a field called COL (’colour’, integer, possible values: [0-maxval]). It specifies the colour of the cells created (in
case of proliferation).

1.5 Change events and development
As we said, development unfolds in ASMAX age steps. At each step, for each driver cell and for each active instruc-
tion (ON 6= 0), the algorithm tests if the instruction’s XET matches the driver’s CET and if the instruction’s XS
matches AS (this latter test is carried out only if XS is not -1, in which case we speak of “timed” instructions): if
both matches are verified, it triggers the execution of the instruction’s right part. If a CET value matches multiple
XET values (CET values are guaranteed to be unique, XET values are not), the instruction with the highest OP
value is executed; in case of multiple (CET,XET) matches, instructions matching CET values belonging to drivers
with lower sums of coordinate values are executed first; a parameter of the algorithm (CGEVMAX) specifies the
maximum number of instructions which can “fire” in a single step. The driver cells that triggered the instruction’s
execution, called ’mother cell’, is always removed from the grid (otherwise the instruction would be activated over
and over again). The pseudocode for the basic development loop is contained in subroutine Devloop, reported in the
pseudocode section.

The (CET,XET) and (AS,XS) matches cause the execution of the instruction’s right part, which determines the
occurrence of a ’change event’, characterised by three things: type, shape and colour. Instructions are of two ’types’:
’proliferation instructions’ cause the matching driver cell to proliferate in a volume called ’change volume’, ’apoptosis
instructions’ cause cells in the change volume to be deleted from the grid; the parameter ’shape’ specifies the shape
of the change volume, in which the proliferation/apoptosis events occur; in case of proliferation, the parameter
’colour’ specifies the colour of the new cells. We note that the first event of development is necessarily a proliferation
event triggered on the zygote: the other possibility would be an apoptosis event triggered on the zygote, but this
would simply remove the zygote from the grid without creating any other cell and development would stop: a quite
uninteresting behaviour. Figures 6, 7 and 8 show examples of proliferation from the zygote, proliferation from a
generic driver cell and apoptosis respectively.

POSSIBLE GENERALISATIONS. i) Conflict-resolution rules. The conflict-resolution rules described above, used
to decide which instructions are to be activated in case of mutliple matches, appear (and are) rather arbitrary:
alternative rules (e.g. executing first instructions triggered on drivers with lower sums of coordinate values) do
not cause the system’s behaviour to be significantly different, as long as the rule is deterministic. ii) Other types
of change events. Other types of change events are possible, e.g. change events that combine proliferation and
apoptosis or change events that ’colour’ subsets of cells previously marked (all cells generated in a proliferation
event could be assigned a code that identifies them for subsequent actions). More in general, change events can be
defined as actions that change some cell properties for a given subset of cells.

iii) Match. The simple (CET,XET) match, implemented by a function which returns ’TRUE’ iff CET=XET, is only
a possibility among many. More generally, the right part’s activation can be bound to a generic function F(CET,XET)
taking the value ’TRUE’. Possible examples of F are: *) a function F0 which returns ’TRUE’ iff a number N >
ASMAX of array positions are equal (e.g. only the 3rd, the 5th and the 11th positions need to be equal for F0 to
return ’TRUE’); *) a function F1 which returns ’TRUE’ iff sub-arrays of length X within CET and XET are equal (e.g.
only the sub-arrays from the 4th to the 10th positions need to be equal for F1 to return ’TRUE’). These two examples
of F represent possibile generalisations of the simple ’match’ function employed in the current implementation; in
this way the activation of instructions would be less specific and could occur several times during development and
in several shape ’loci’, allowing code-reuse and possibly leading to more regularity in development.

1.6 Shaping primitives
The ’change volume’ is the volume (i.e. the subset of grid points) in which the events of proliferation and apoptosis
occur. In practice this means that, in a proliferation event, the change volume is filled with new cells (both normal

3



and driver) while, in case of an apoptosis event, all cells present in the change volume ’die’, i.e. they are removed
from the grid. The position of the change volume is always defined reletive to the mother cell’s position such that,
if the mother cell is moved, the change volume is moved with it; the mother cell’s position can be either internal
or external to the change volume (being the internal case the standard one). The shape of the change volume is
selected from a set of basic shapes called ’shaping primitives’, whose definition is achieved through a parametric
approach; in such approach the primitive is defined through a set of numbers, grouped in two fields (belonging to the
instruction’s right part). The ’PC’ (parallelepiped corners) field comprises 3+3=6 numbers that give the coordinates
of the north-west-back and south-east-front corners of the so-called ’change parallelepiped’, the ’RM’ field comprises
9 numbers defining the ’rotation matrix’. The definition of the change volume is carried out in three processing
steps (figures report examples for the 2d case, 3d extension is straightforward):

1. the ’change parallelepiped’ is determined with the PC field (knowing the two diagonally opposite corners, the
parallelepiped can be recostructed completely - figure 5-a1);

2. the ’temporary change volume’ is defined as the set of all points contained in the ellissoid inscribed in the
change parallelepiped (figure 5-a2);

3. the final change volume is defined by applying the rotation defined by the ’rotation matrix’ to the temporary
change volume (figure 5-a3).

POSSIBLE GENERALISATIONS. The definition of shaping primitives can be achieved in several ways: the most
straightforward one consists in providing the list of all available predefined shapes (see figure 5-b); in this case the
right part of the instruction specifies the primitive to be used simply with the number representing the position
of the primitive in the list. Compared to this simple list approach, the approach implemented has the advantage
of allowing the generation of a much greater number of primitives: with 6+9=15 parameters, each with, say, 10
possible values, as many as 1015 different primitives can be generated, allowing a much higher degree of flexibility.
The application of the ellissoid has been introduced to generate more “rounded” primitives, which have a more
natural aspect. Different kinds of parametric approaches, as well as mixed list-parametric approaches, are possible
and have been experimented with good results in other implementation attempts. Bases on this experience, we can
conclude that the definition of the primitive set is not particularly critical for the algorithm functioning, unless of
course it is not too ill-defined (e.g. a set containing only pyramid-shaped primitives to develop a round shape).

1.7 Deployment of driver cells, generation of CET values (proliferation)
During a proliferation event, as we said, normal and driver cells are deployed on the change volume; normal cells
fill the whole change volume, driver cells are much fewer and are “sprinkled” on the change volume. In the current
implementation, a simple scan of the change volume is performed and driver cells are placed at regular intervals
(e.g. one driver every NDRAT normal -NDRAT is a parameter of the algorithm) in each dimension: with this rule
the ratio between normal cells and driver cells is NDRAT 3. Here is the pseudocode of the procedure ((x0,y0,z0) and
(x1,y1,z1) are the parallelepiped corners, the procedure is applied before roto-translation):

For ax = x0 To = x1

For ay = y0 To = y1

For az = z0 To = z1

If [(ax,ay,az) lies inside ellissoid]

If (ax mod NDRAT = 0) and (ay mod NDRAT = 0) and (az mod NDRAT = 0)

[deploys driver cell]

End if

Next az

Next ay

Next ax

Once driver cells have been deployed, they must be assigned CET values. Figure 6 reports an example of pro-
liferation from the zygote. To each new driver cell a new, previously unseen and unique CET value is assigned,
obtained starting from the zygote’s CET value (the array [0,0,0,0] in the figure, labelled with ’A’) and adding 1 to
the value held in the second array position at each new assignment (the second array position corresponds to step
1, in which the proliferation occurs -array counting is 0-based); with reference to the figure, the new driver cells are
assigned the values [0,1,0,0],[0,2,0,0],[0,3,0,0], ... , labelled with ’B’,’C’,’D’, etc. (please note that labels are just used

4



in the figures for visualisation purposes, but all operations -essentially match-tests- are made on the underlying
arrays). As far as the order of assignment is concerned, CET values are assigned to driver cells in the same order
by which drivers are created.

In case of a proliferation triggered on a driver cell other than the zygote (figure 7), the main difference is that
in this case the mother’s CET value is not [0,0,0,0], but depends on the cell “lineage”: in the case of the figure, the
CET value is [0,7,4,0] (i.e. this was the 4th driver cell to be assigned in a proliferation triggered on a cell that was
the 7th driver cell to be assigned in a proliferation triggered on the zygote). The rest of the procedure is unchanged:
to each new driver cell a new CET value is assigned, starting from the mother cell’s CET value (the array [0,7,4,0]
in the figure, labelled with ’P’) and adding 1 to the value of the i-th position of the array at each new assignment,
where i is the current AS value (3 in the figure, corresponding to the 4th column); with reference to the figure, the
new driver cells are assigned the values [0,7,4,1],[0,7,4,2], [0,7,4,3], ..., labelled with ’Q’,’R’, ’S’, etc. Therefore, apart
from the mother’s CET value, the only difference compared to a proliferation from the zygote is that the progressive
numbers are written in the ith position of the array instead that on the 2nd position.

POSSIBLE GENERALISATIONS. i) Deployment of driver cells. The exact algorithm used to deploy driver cells
onto the change volume is not important, as long as two requirements are met: i) driver cells must be (more or
less) uniformly distributed on the change volume (i.e. the density of driver cells has to be the same throughout the
volume) otherwise some parts of the shape might end up having a lower density of driver cells, which would render
them harder to develop further; ii) it has to be deterministic (driver cells must be positioned always in the same
places). ii) Assignment of CET values. The CET values and the order CET values are assigned to driver cells are not
important as long as two requirements are met: i) The presence of duplicated CET values must be limited (being
the extent to which duplicates are present proportional to the limitation to freely explore all possible developmental
trajectories); ii) the process of assignment must be subject to deterministic rules.

1.8 The Remove-redeploy procedure
In case of proliferation, it may happen that the change volume is not empty. In this case the cells present in the
change volume must be either deleted or moved to other positions, to make room for the cells that are going to be
created. The approach adopted, though biologically implausible, has the advantage to keep the computational bur-
den at acceptable levels. Such approach is implemented by a procedure called ’Remove-redeploy’, which intervenes
in two distinct moments: before proliferation, removing the cells contained in the change volume and storing them
in a temporary buffer while proliferation takes place; after proliferation is completed, redeploying the cells stored
in the buffer onto free positions of the grid. Procedure details will be examined next.

The Remove-redeploy procedure requires the existence of an array (called ’distord’ array) of triplets representing
the coordinates of the points belonging to the positive quadrant of the space (the quadrant in which all coordinates
have positive values) sorted according to their distance from the origin; typical choices for the distance are the
euclidean distance and the Manhattan distance: in case the manhattan distance is employed the first positions of
such array are occupied by the following triplets: (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), etc. The rule
can be expressed concisely by saying that a triplet occupying a higher position in the array corresponds to a point
having a greater distance from the origin. The distord array (an example of which is reported in figure 9) is the same
for all proliferation events and can therefore be computed once for all at the program start. The coordinates and the
quadrant are defined with reference to a ’local coordinate system’, obtained by applying to the absolute coordinate
system a translation that brings the mother cell in the origin and the rotation specified by the instruction’s rotation
matrix.

The Remove-redeploy procedure is carried out in four passes. (1) In the first pass the change volume, the change
ellissoid and the local coordinate system are drawn on the grid. (2) In the second pass, for each of the 8 space
quadrants, the points of the quadrant are scanned in the order dictated by the distord array; if a cell is found which
also belongs to the change volume (i.e. the cell belongs to the intersection between the quadrant and the change
volume), the cell is removed from the grid and put in a temporary buffer: at the end of the scan therefore cells in the
buffer are sorted according to their distance from the origin (the same distance used to compile the distord array);
when the scan is completed, a pointer ptr is initialised to point to the first buffer position. (3) In the third pass the
proliferation is carried out: normal and driver cells are deployed onto the change volume (which is now empty). (4)
In the fourth pass, for each of the 8 space quadrants, the quadrant is scanned again, always in the order dictated by
the distord array and, whenever an empty place is found, the cell in the buffer pointed by ptr is redeployed onto the
grid and ptr is incremented by one; this process goes on until all cells in the buffer have been redeployed or until
the boundaries of the quadrant have been reached (if the cycle is ended by this second condition, some of the cells
removed will not be redeployed).

5



POSSIBLE GENERALISATIONS. As pointed point, the Remove-redeploy procedure is not plausible from a biologi-
cal and physical viewpoint; a more realistic and plausible behaviour would be one in which the newly created cells
push the existing cells outwards, which in turn would push other cells located in more external (with respect to the
mother cells) positions and so forth, until the moved cells find empty positions to settle without having to displace
other cells. This approach has the drawback of displacing, at each proliferation event, a significant proportion of
cells and is thus very demanding from a computational viewpoint; on the other hand, from the viewpoint of the
impact that the implemented procedure has on the method’s effectiveness, no significant difference exists between
the two approaches.

More generally speaking, we can say that the procedures just described are two different interpretations (at
least partly) of the role of “physics”, i.e. the set of rules by which cells are moved around and find their final position
in the shape; we can add that, based on our experience, the choice of the particular physics implemented has little
impact on the effectiveness of the method, as long as the deterministic requirement is maintained, i.e. as long as
physics behaves in a predictable and consistent way, as we all expect. This thanks to the distribution of driver cells
throughout the shape, that enables the model of development to bend any kind of physics to its goals, keeping the
shape plastic during development; in fact, should (a different) physics move a driver cell away from the shape part
that has to be developed, evolution would cast a change instruction on another driver, closer to the target shape
part (these considerations do not refer to particularly ill-designed kinds of physics, e.g. one by which all cells are
scattered in different directions, as far as possible from each other).

1.9 Deployment of driver cells, generation of CET values (doping)
As we have seen, proliferation events ensure that the newly created cellular mass is endowed with a uniform
concentration of driver cells. On the other hand, apoptosis events (which delete cells) and repeated applications of
the Remove-redeploy procedure (which move cells around the shape) could theoretically lead to a situation in which
the density of driver cells is not uniform throughout the shape (some shape parts having a higher concentration of
driver cells than other parts). Since driver cells are the “foci” that trigger the activation of change instructions, a
shape region having a lower concentration of drivers would leave the evo-devo process with fewer options to choose
from, with the end result of making the evolution of development harder for such region. This would in turn render
some developmental trajectories less “easy” (and hence less likely to be taken) than other, thus creating constraints
that would limit the method’s effectiveness. To avoid this unwanted effect, a procedure called ’Doping’ has been
implemented.

The Doping procedure “spreads” new driver cells on the shape at the end of each age step, after the application
of all change events. It works in the following way. Each normal cell C of the shape “senses” its neighbourhood (a
sphere whose radius whose is a parameter - DOPNSZ - of the algorithm); if within such neighbourhood a driver cell
is found, nothing happens; if within the neighbourhood no driver cell is found, cell C is turned into a driver cell.
This procedure guarantees that the maximum distance of any normal cell from the nearest driver cell is DOPNSZ,
thus ensuring that a uniform distribution of drivers is maintained throughout the shape, despite all physical events
that could disrupt the even distribution of drivers provided for during proliferation events. If, on the other hand,
no (major) disruption has taken place from the last run of the Doping procedure, no new drivers need to be created.
In case a cell needs to be turned into a driver, as far as the generation of CET values is concerned in this case the
nearest driver is taken as mother and the CET value is created by writing a digit in the array position corresponding
the the current AS value (as in the case of proliferation events), taking further measures to ensure that also in this
case the CET value in unique.

POSSIBLE GENERALISATIONS. A possible lower level mechanism to both uniformly deploy driver cells and assign
CET values to them could be outlined as follows. Each existing driver cells “emits” a signal containing a code derived
from its own CET value (and thus unique), whose strength decreases with the distance from the source (the driver
itself) with a quadratic law (analogous to that governing the newtonian gravitational force); each normal cell of the
shape “senses” all signals emitted by the surrounding drivers: if the strongest signal is below a certain threshold,
the cell “decides” to turn itself into a driver cell. The CET value is determined based upon all signals sensed and
their relevant strength (it could be composed aligning the juxtapositions of CET values and relevant strengths of
all drivers whose received signal is above a given threshold); this does not guarantee 100% that the CET values
assigned are unique, but the chance the two equal CET values are created would nevertheless be rather small.

6



1.10 Example of development
Figure 11 shows an example of 2d development in four age steps (AS=0,1,2,3). In step 0 only the zygote is present on
the grid, with CET=[0,0,0,0], whose label is ’A’. In step 1 (AS=1), this CET value triggers the activation of instruction
no. 33, which has XET=[0,0,0,0] and XS=1. The instruction’s right part codes for a proliferation event (ITP=0); the
north-west and south-east corners’ coordinates (relative to the mother’s position) are (-3,-2,0) and (2,3,0) respectively
(please note that, being a 2d development, all values relevant to the third coordinate are null); the rotation matrix
parameters are all zero, which means that no rotation takes place; the colour code is 7, corresponding to colour pink.
As a result of this proliferation event, eight new driver cells are created and evenly placed on the change volume;
their CET values are:

Label CET value

’B’ [0,1,0,0]

’C’ [0,2,0,0]

’D’ [0,3,0,0]

’E’ [0,4,0,0]

’F’ [0,5,0,0]

’G’ [0,6,0,0]

’H’ [0,7,0,0]

’I’ [0,8,0,0]

In step 2 (AS=2), two events occur. The first is caused by CET value ’D’-[0,3,0,0] triggering activation of instruc-
tion no. 9, which has XET=[0,3,0,0] and XS=2. The instruction’s right part codes for an apoptosis event (ITP=1);
the north-west and south-east corners’ coordinates (relative to the mother’s position) are (-1,-1,0) and (1,1,0) respec-
tively; the rotation matrix parameters are all zero, which means that no rotation takes place; the colour code is
4 but, since in this event no new cells are created, it has no effect. The second event is caused by CET value ’E’-
[0,4,0,0] triggering activation of instruction no. 5, which has XET=[0,4,0,0] and XS=-1. The instruction’s right part
codes for a proliferation event (ITP=0); the north-west and south-east corners’ coordinates (relative to the mother’s
position) are (-1,-1,0) and (2,2,0) respectively; the rotation matrix parameters (310330000) code for an anticlockwise
rotation of 45 degrees: 1 corresponds to -0.7 (=-sin(45)), 3 corresponds to +0.7 (=sin(45)=cos(45)); since this is a 2d
development, all other values are equal to 0; the change volume has the aspect of a “thick diagonal” going from
south-west to north-east; the colour code is 5, corresponding to colour green. Since the change volume was not
empty, the Remove-redeploy procedure has intervened, moving some cells to positions around the south-west corner
of the shape. As a result of this proliferation event, two new driver cells are created and placed on the change
volume; their CET values are:

Label CET value

’J’ [0,4,1,0]

’K’ [0,4,2,0]

In AS=3, other two events occur. The first is caused by CET value ’F’-[0,5,0,0] triggering activation of instruction
no. 23, which has XET=[0,5,0,0] and XS=3. The instruction’s right part codes for a proliferation event (ITP=0); the
north-west and south-east corners’ coordinates (relative to the mother’s position) are (-1,-4,0) and (0,0,0) respec-
tively; the rotation matrix parameters are all zero, which means that no rotation takes place; the colour code is 6,
corresponding to colour violet. The second event is caused by CET value ’I’-[0,8,0,0] triggering activation of instruc-
tion no. 37, which has XET=[0,8,0,0] and XS=3. The instruction’s right part codes again for a proliferation event
(ITP=0); the north-west and south-east corners’ coordinates (relative to the mother’s position) are (0,0,0) and (2,1,0)
respectively; the rotation matrix parameters (330130000) code for a clockwise rotation of 45 degrees: 1 corresponds
to -0.7 (=-sin(45)), 3 corresponds to +0.7 (=sin(45)=cos(45)); since this is a 2d development, all other values are equal
to 0; the colour code is ’5’, corresponding to colour aqua. In both events the change volume was empty, hence no
intervention of ’Remove-redeploy’ was needed. As a result of this proliferation event, three new driver cells are
created and evenly placed on the change volume; their CET values are:

Label CET value

’L’ [0,5,0,1]

’M’ [0,5,0,2]

’N’ [0,8,0,1]

7



1.11 Key Features
In this section we would like to highlight the key features of the model of development described. The first key
feature of the model is the presence of two categories of cells: normal cells and driver cells, being the latter much
fewer in number (by orders of magnitude). Only driver cells have a CET value and can be instructed to develop
(proliferate or die) by the Genome: they represent the scaffolding, the backbone of the developing shape and make
it possible to steer the development of the whole shape by acting on a small subset of cells. If all cells (both driver
and normal) had an associated CET value and would have to be guided individually by the Genome, the number
of instructions needed would become unmanageable for the genetic algorithm; the fact that only driver cells are
directly guided by Genome instructions makes it possible to have a number of “bases” in the Genome which is
smaller than the total number of cells by several orders of magnitude, as it happens in nature (the human body, for
instance, is made up of ≈ 1014 cells, but the human genome contains “only” ≈ 3 · 109 bases).

The second feature of the model is the presence in driver cells of a variable (the CET) stored inside the cell (and
moved along with the cell), that takes different values in different driver cells and represents the source of dif-
ferentiation during development, leading different driver cells at different times to read out and execute different
instructions in the Genome. It is by means of the cell epigenetic type that driver cells know “who” they are and what
their behaviour has to be like; normal cells, on the other hand, do not receive guidance regarding their behaviour
directly from Genome instructions but only indirectly, through driver cells. This feature represents a key difference
with respect to other cellular models that rely on positional information and chemical micro-environment as basic
providers of the information necessary for differentiation. In other words, in such models the differentiating infor-
mation comes from the outside environment; in E.T. it comes from the outside only for normal cells, while for driver
cells it comes from within the cell itself.

The third feature is the definition of the change events of proliferation and apoptosis in such a way that many
cells (instead of one) are created/deleted at once; this increases the power of the single change event, allows a
reduction of the number of change instructions needed to generate a given shape and has the end effect of speeding
up considerably the morphogenetic process. Together with the previous one, this feature serves the purpose of
reducing the number of the cells the Genome has to steer, at the same time endowing such cells with a capacity
to influence more profoundly the course of development. From a biological perspective, proliferation events can be
interpreted as “generalised mitoses”, whose final effect is nevertheless amenable to be achieved through a series
of coordinated duplications (i.e. “standard” mitoses): for this reason proliferation events do not appear to be in
contrast with real biological processes. In the implementation described in this paper change events are only those
of proliferation and apoptosis, whose effect consists in the creation and deletion of cells; more in general, change
events could be defined as events originating from driver cells that “influence” sets of target cells in a broader sense,
for instance changing some of their properties (e.g. the colour).

The fourth feature is represented by the mechanism of placement of new driver cells on the change volume in
the course of a proliferation event, which guarantees that they are uniformly distributed in the volume, and the
mechanism of assignment of the CET values on the new driver cells, which ensures that each driver cell is given a
previously unseen and unique value, just as a mother gives each of her newborn babies a distinct name. This value
represents the link by which these driver cells in subsequent steps can be picked up by the Genome and given other
instructions to execute; if driver cells were not guaranteed to have a distinct name, the Genome would not be able
to pick them individually: as a result, developmental trajectories would be biased towards certain regions of the
search space, making development of arbitrary shapes harder. Moreover, thanks to the fact that the mechanism
of assignment is automatic and is always the same in all proliferation events, change instructions do not have to
encode also the list of CET values that will be generated (which would increase their size and make them harder
to evolve). Other mechanisms (the doping procedure) are also foreseen to maintain a uniform distribution of driver
cells in the face of physical events that could lead to unbalanced situations.

2 The evo-devo Method
2.1 Identification of Genome to generate a given shape
The model of development described in the previous sections, coupled with an evolutionary technique, becomes an
evo-devo method applied to the task of generating predefined 2d or 3d shapes. The method evolves a population
of Genomes that guide the development of the shape starting from a small number of zygotes (usually one), for a
number of generations; at each generation development is let unfold for each Genome and, at the end of it, adherence
of the shape to the target shape is employed as fitness measure. Typical settings for the genetic algorithm are:

8



population of 500 individuals (represented as strings of quaternary digits), undergoing elitism selection for up to
20000 generations, 50% single point crossover probability and 0.1% mutation rate per digit. The fitness function
formula is the same adopted by H. de Garis (De Garis, 1999):

F = (ins− outs)/des (1)

where ins is the number of cells of the evolved shape falling inside the target shape, outs is the number of cells
of the evolved shape falling outside the target shape, des is total number of cells of the target shape; for coloured
target shapes, also the adherence to colours is taken into account (i.e. in order to add 1 to the ins count, a given cell
must fall inside the shape and its colour must be equal to that of the target cell in the same position). Figures 15-20
show some of the experiments performed.

2.2 Tree of CET Values
Since each CET value is created starting from a single CET value (each driver cell has only one “mother”), the
set of all CET value generated during a development has a tree-structure and therefore it is called “Tree of CET
Values” (TCV); figures 12 shows the TCV relevant to the development of figure 11. A given CET value represents
the generative history of its associated driver cell, meaning that the sequence of events that have brought to the
creation of a given driver cell can be deducted from the CET value: CET value [0,4,2,0], for example, is associated to
the 2nd driver cell assigned in a proliferation triggered on a driver cell that was the 4th driver cell to be assigned in
a proliferation triggered on the zygote. As a consequence, the tree of CET values at the end of development contains
the generative history of all CET values created during development; of course not all CET values of the tree are
necessarily present on the shape at the end of development, as some may have been deleted by apoptosis events and
removed from the grid.

An individual’s TCV generated during development can be divided into i) CET values / driver cells that activate
an instruction during development and ii) CET values / driver cells that do not activate any instruction during
development; in the same way the individual’s Genome is composed of i) XET values / instructions that become
active during development and by ii) XET values / instructions that do not become active during development. By
analogy with real genomes, elements in the two categories labelled with ii) can be defined as “junk” CET values /
driver cells and “junk” XET values / instructions respectively (in molecular biology, “junk DNA” is a collective label
for the portions of a genome which are never transcribed). The only measure to reduce the amount of junk in the TCV
consists in decreasing the value of the parameter NDRAT (which specifies the ratio between the number of normal
and driver cells generated in proliferation events): but this has the major drawback of making the distribution of
driver cells sparser in the shape, weakening as a consequence the effectiveness of the evo-devo process; hence such
measure cannot be undertaken and a certain amount of junk in the TCV must be reckoned with. The specular
presence of junk in the Genome is caused by the procedure Germline Penetration (described later), which acts as a
shuttle, transferring junk from the TCV into the Genome; in conclusion, junk in both the TCV and the Genome is a
peculiar and inevitable characteristic of this method.

2.3 Germline Penetration and Progressive Freezing
In order to develop a given shape, as we have seen, the GA has to come up with instructions whose XET value
matches a CET value belonging to one of the drivers present in the shape volume. With realistic values for XET ar-
ray size (greater than 2-3), the size of the space the GA has to search becomes large enough to bring the evolutionary
process to a halt (if the array size is 10 and each scalar can assume 10 possible values, the search space size is 1010).
A possible countermeasure would be to “suggests” to the GA XET values that are guaranteed or are likely to match
existing CET values, instead of leaving to the GA the task of guessing them; more specifically, since we know that
set of all CET values generated during development are contained in the tree of CET values, the idea is to suggest
to the GA to use CET values belonging to the TCV as XET values for the instructions. This idea is implemented in
a procedure called ’Germline Penetration’ (figure 13), which is called at the end of each individual’s development,
copying at random (some) CET values from the individual’s TCV (i.e. from those occurred during development) onto
XET values of instructions in the Genome: such XET values will be embedded in the Genome instructions of next
generation’s individuals.

The name “Germline Penetration” draws inspiration from the imaginary path followed by the CET values present
in the shape at the end of development which, from an information-flow viewpoint, leave the driver cells in which
they ares tored and wander through the shape until they reach the equivalent of germline cells, which contain
the genetic material that will be handed over to the subsequent generation: of course this has to be treated as

9



a useful metaphor, as no germline cells exist in our model of development. With ’Germline Penetration’ in place,
the effectiveness of the evolutionary process is restored for any size of the CET array; actually, since without it
the method is basically not working, this procedure should not be considered as an option, but as an integral part
of the method. To avoid disrupting development, the instructions with the copied XET values are set as inactive
(parameter ’ON’ is set to 0): they rely on a suitable subsequent mutation affecting such parameter to become active.

Another measure to improve the effectiveness of the method is a setting called ’Progressive Freezing’, which
allows the evolution of an individual’s Genome in blocks; the setting’s formal parameters are reported in table 2.3.1
(block numbers vary from 0 to N, being k the generic block number), while an example of typical parameter values
are reported in table 2.3.2. More precisely, Progressive Freezing foresees that in the course of generations from
GN(k-1) to GN(k), only instructions comprised in the [XF(k),XE(k)] block are evolved, while instructions belonging
to all preceding blocks are considered “frozen” (they cannot be changed anymore) and instructions belonging to all
successive blocks are “locked” (they cannot be used in the current generation block). Another feature of Progressive
Freezing binds the XS fields contained in the left parts of instructions belonging to the [XF(k),XE(k)] block, to take
only the value specified by XS(k). The overall effect of this setting is that age steps are evolved one by one, by a
defined block of instructions and in a defined span of generations; this corresponds to implementing the “Hackel’s
Hypothesis”, by which subsequent species build upon the final developmental stage of previous ones, in its purest
form.

In the example of table 2.3.2, in the third stage instructions comprised in the [40-60] block are optimised, during
generations in the [400-600] block and instructions’ XET values are all bound to take value ’2’ (i.e. in this stage
the whole age step 2 is evolved). Figure 14 reports the same example of development of figure 11, but evolved with
the aid of Progressive Freezing. The Genome, composed of 45 instructions, is divided in blocks of 15 instructions
([0-14], [15-30] and [31-44]). Each block contains instructions which are bound to be executed only in one age step:
instructions belonging to block [0-14] are all bound to be executed in age step 1, instructions belonging to block
[15-30] are all bound to be executed in age step 2 and so forth (practically this means that block [0-14] instructions
all have XS=1, block [15-30] instructions all have XS=2, etc.). Visually, the application of Progressive Freezing has
the effect of eliminating all crossing lines from the diagram.

Table 2.3.1: formal parameters

(0, ... ,GN(k-1), GN(k) ,GN(k+1), ... ,GN(N))

(0, ... ,XF(k-1), XF(k) ,XF(k+1), ... ,XF(N))

(0, ... ,XE(k-1), XE(k) ,XE(k+1), ... ,XE(N))

(0, ... ,XS(k-1), XS(k) ,XS(k+1), ... ,XS(N))

Table 2.3.2: Typical parameters values

(0, 200 , 400 , 600 , 800 , 1000 , 1200)

(0, 0 , 20 , 40 , 60 , 80 , 100)

(0, 20 , 40 , 60 , 80 , 100 , 120)

(0, 0 , 1 , 2 , 3 , 4 , 5 )

3 Definitions and Abbreviations
CET cellular epigenetic type
AS age step
ON instruction activation switch
OP order of precedence
XET instruction epigenetic type
XS instruction age step
PC parallelepiped corners
RM rotation matrix
ETP event type
COL colour
TCV tree of CET values

10



4 The Algorithm
4.1 List of Important Parameters of the Algorithm
Parameter Typical value

NDIMS 3

COLOURS 16

GRIDX 80

GRIDY 80

GRIDZ 80

ZYGOTES {20,20,40,20,60,40,60,20,40}

ASMAX 18

CGARSZ 360

CETARSZ 5000

CGEVMAX 10

NDRAT 5

DOPNSZ 4

CPVMAX 30*30*30

GAGENS 20000

NDIMS is the number of grid dimensions (possible values are 2 and 3). COLOURS is the number of colours of
the target. GRIDX, GRIDY and GRIDZ are the grid sides’ sizes. ZYGOTES (array) contains the (x,y,z) coordinates of
N (3 in this case) zygotes. ASMAX is the total number of age steps foreseen. CGARSZ is the number of instructions
in the Genome. CETARSZ is the max size of the array of CET values (max number of CET values). CGEVMAX is
the max number of events that can occur in a single age step. NDRAT defines the linear ’driver to normal ratio’ used
in proliferation events. DOP2NS defines the linear ’driver to normal ratio’ used for doping. CPVMAX represents
the maximum size (number of cells) contained in the change parallelepiped. POPSZ the number of individuals in
the genetic population GAGENS is the number of generations.

4.2 Pseudocode: development (Genome given)
’ Global variables:

Structure Lpart

Dim on as int ’ ON value

Dim op as int ’ OP value

Dim xs as int ’ XS value

Dim xet(ASMAX) as int ’ XET value

End Structure

Structure Rpart

Dim etp as int ’ event type

Dim pc(6) as int ’ change parallelepiped corners

Dim rm(9) as int ’ rotation matrix

Dim col as int ’ instruction’s colour

End Structure

Structure Cgi

Dim lpart as Lpart

Dim lpart as Rpart

End Structure

Dim cgar(CETARSZ) as Cgi ’ the array of change instructions

Dim cetar(CETARSZ)(ASMAX) as int ’is the array of CET values

Dim cr as int ’is the current number of CET values generated

Sub Devloop()

11



[puts zygote(s) on the grid]

For as = 1 To = ASMAX-1

Cgarprep()

Shaper()

Doper()

Next as

End Sub

Sub Cgarprep()

[eliminates instructions if parameter .on is 0]

[eliminates instructions if parameter .xs is different from as]

[(but keeps instructions if parameter .xs is -1)]

[Sorts instructions in cgar according to parameter .op (ascending order)]

’ now cgar[] is sorted and contains only instructions that can potentially fire in this as

End Sub

Sub Shaper()

cgevnr = 0 ’ change event nr

Do While ci < cgarsz and cgevnr < CGEVXX

’ leaves the cycle if it has browsed all instructions

’ or if max number of events has been reached

’ scans the array of driver cells drvar()

For di = 0 To CETARSZ

If Match(cgar(ci).lpart.xet,cetar(di).cet)=YES and cgar(ci).lpart.xs=as

’ Match is verified, pre-compiles some geometrical parameters

’ which will be used later

’ (mx,my,mz) are the coordinates of the mother cell

’ (x0,y0,z0) are the coordinates of the north-west-back corner of the c.p.

’ (x1,y1,z1) are the coordinates of the south-east-front corner of the c.p.

’ compiles change parallellepiped semi-sides, which coincide with change

’ ellissoid semi-axes (esx,esy,esz)

esx=(x1-x0)/2 : esy=(y1-y0)/2 : esz=(z1-z0)/2

dx = {x displacement of mother cell from centre of ellissoid}

dy = {y displacement of mother cell from centre of ellissoid}

dz = {z displacement of mother cell from centre of ellissoid}

[deletes mother cell]

If cgare(ci).rpart.etp = 0

Removeredep(0) ’ remove (necessary only in case of proliferation)

End if

Brush()

cgevnr = cgevnr + 1

If cgare(ci).rpart.etp = 0

Removeredep(1) ’ deploy (necessary only in case of proliferation)

End if

End if

Next di

End Sub

Sub Brush()

’ compiles temporary grid buffer (buf)

12



’ the centre of the ellissoid is (kx,ky,kz)

kx = esx : ky = esy : kz = esz

val = 0

For ax = 0 To = 2*esx-1

For ay = 0 To = 2*esy-1

For az = 0 To = 2*esz-1

’ ellissoid

If ((pow((ax-kx)/esx,2)+pow((ay-ky)/esy,2)+pow((az-kz)/esz,2))<=1)

If (cgar(ci).rpart.etp = 0) ’ proliferation

[marks cell in buf(ax,ay,az) as ’normal’]

End if

If (cgar(ci).rpart.etp = 1) ’ apoptosis

[marks cell in buf(ax,ay,az) as ’no cell’] ’ cell is deleted

End if

If (cgar(ci).rpart.etp = 0) and

(ax / NDRAT = 0) and (ay / NDRAT = 0) and (az / NDRAT = 0)

[marks cell in buf(ax,ay,az) as ’driver’]

’ assigns CET value to driver cell in buf(ax,ay,az)

For ii = 0 To = ASMAX-1 newcet(ii) = mother.cet(ii)

newcet(as) = val

val = val + 1

’ assings cet to driver and updates array of drivers drvar

For ii = 0 To = ASMAX-1 buf(ax,ay,az).cet(ii) = newcet(ii)

For ii = 0 To = ASMAX-1 cetar(cr).cet = newcet

cr = cr + 1

End if

End if

Next ax

Next ay

Next az

’copies buffer to grid, applying translation and rotation

For ax = 0 To = 2*esx-1

For ay = 0 To = 2*esy-1

For az = 0 To = 2*esz-1

If [buf(bx,by,bz) contains a cell]

bx = mx + dx + (rm(0)*(ax-kx) + rm(1)*(ay-ky) + rm(2)*(az-kz)

by = my + dy + (rm(3)*(ax-kx) + rm(4)*(ay-ky) + rm(5)*(az-kz)

bz = mz + dz + (rm(6)*(ax-kx) + rm(7)*(ay-ky) + rm(8)*(az-kz)

If [(bx,by,bz) is inside grid]

grid(bx,by,bz) = buf(ax,ay,az)

End if

End if

Next ax

Next ay

Next az

End Sub

Sub Doper()

For ax = 0 To = GRIDX-1

For ay = 0 To = GRIDY-1

For az = 0 To = GRIDZ-1

If [cell in (ax,ay,az) is non-driver]

drvfound = NO ’flag indicating whether a driver has been found

For bx = ax-DOPNBSZ To = ax+DOPNBSZ

13



For by = ay-DOPNBSZ To = ay+DOPNBSZ

For bz = az-DOPNBSZ To = az+DOPNBSZ

if [cell in (bx,by,bz) is driver] drvfound = YES

Next bz

Next by

Next bx

If drvfound = NO

[determines CET value of closest driver (cetnear)]

[creates new CET value from cetnear]

[flags (ax,ay,az) as driver and gives it CET value cetnear]

End if

End if

Next az

Next ay

Next ax

End Sub

Sub Removeredep(ss as int)

’ if ss = 0 does ’remove’ part, if ss = 0 does ’deploy’ part

’ distord has been pre-calculated: it contains triplets representing coordinates

’ of points sorted according to their distance from origin

’ buffer(qr) is the buffer used to store cells removed from quadrant qr

’ ptr (qr) is a pointer of buffer(qr), incremented during ’remove’ phase

’ ptr2(qr) is a pointer of buffer(qr), incremented during ’deploy’ phase

For qr = 0 To = 7

’ each assignment corresponds to a different quadrant

If qr = 0 ux = -1 : uy = +1 : uz = -1 ’ north-west-back

If qr = 1 ux = +1 : uy = +1 : uz = -1 ’ north-east-back

If qr = 2 ux = -1 : uy = -1 : uz = -1 ’ south-west-back

If qr = 3 ux = +1 : uy = -1 : uz = -1 ’ south-east-back

If qr = 4 ux = -1 : uy = +1 : uz = +1 ’ north-west-front

If qr = 5 ux = +1 : uy = +1 : uz = +1 ’ north-east-front

If qr = 6 ux = -1 : uy = -1 : uz = +1 ’ south-west-front

If qr = 7 ux = +1 : uy = -1 : uz = +1 ’ south-east-front

’ computes distmax as the max distance from origin of any point belonging to the

’ change parallelepiped (i.e.) if a point has a distance from origin grater than

’ distmax, it does not belong to the change parallelepiped.

distmax = max(Dist([point in change parallelepiped]))

’ Remove

If ss = 0

do

ax = distord(ptr(qr)).xx : sx = mx + ax*ux

ay = distord(ptr(qr)).yy : sy = my + ay*uy

az = distord(ptr(qr)).zz : sz = mz + az*uz

If [(sx,sy,sz) is inside the grid] and [grid(sx,sy,sz) is not empty]

[Move cell from grid(sx,sy,sz) to buffer(qr)]

’ computes distance of point (ax,ay,az) from origin. If such distance

’ is grater than distmax, it means the point is does not belong to the

’ c. p. and cycle can be quit

dist = Dist(abs(ax),abs(ay),abs(az))

ptr(qr) = ptr(qr) + 1

End if

Loop while (dist <= distmax)

End if

14



’ Deploy

If ss = 1

ptr2(qr) = 0

For ii = 0 To = ptr(qr) ’ scans buffer of removed cells

done = NO

do ’ finds 1st free position

ax = distord(ptr2(qr)).xx : sx = vx + ax*ux

ay = distord(ptr2(qr)).yy : sy = vy + ay*uy

az = distord(ptr2(qr)).zz : sz = vz + az*uz

If [(sx,sy,sz) is inside the grid] and [grid(sx,sy,sz) is non empty]

[Move cell from buffer to grid(sx,sy,sz)] : done = YES

End if

dist = Dist(abs(ax),abs(ay),abs(az))

ptr2(qr) = ptr2(qr) + 1

while dist <= distmax and done = NO

End if

Next qr

End Sub

4.3 Pseudocode: Genome identification (target given)
Sub Baseloop()

For gn = 0 To = GAGENS

For [all individuals in the genetic population]

’ development cycle

[clears grid, puts zygote(s) on the grid]

[decodes Genome into the cgar]

For as = 0 To = ASMAX-1

Cgarprep()

Shaper()

Doper()

Next as

[Computes fitness]

Germpenet()

[Genetic algorithm]

Next gn

End Sub

Sub Germpenet()

For gi = 0 To = POPSZ ’cycle on all individuals in the population

For ci = 0 To = CGARSZ ’cycle on instructions in an individual’s Genome

[checks whether the instruction’s XET matches any CET in cetar(gi)]

If [no match is found]

[picks randomly a CET existing in cetar(gi)]

rn = Rnd(10)

If rn > 5 [copies CET onto the instruction’s XET]

End If

Next ci

Next gi

End Sub

15



References
Bongard, G. and Pfeifer, R. (2001). Repeated structure and dissociation of genotypic and phenotypic. complexity in

artificial ontogeny. In Proceedings of The Genetic and Evolutionary Computation Conference, GECCO-2001, pages
829–836. Morgan Kaufmann.

Cangelosi, A., Nolfi, S., and Parisi, D. (1994). A gene network model for developing cell lineages. Artificial Life,
5:497–515.

De Garis, H. (1999). Artificial Embryology and Cellular Differentiation. Academic Press.

Fontana, A. (2008). Epigenetic tracking, a method to generate arbitrary shapes by using evo-devo techniques. In
Epirob08.

Fontana, A. (2009). Epigenetic tracking: biological implications. In ECAL 2009.

Gruau, F., Whitley, D., and Pyeatt, L. (1996). A comparison between cellular encoding and direct encoding for
genetic neural networks. In Genetic Programming 1996.

Hornby, G. S. and Pollack, J. B. (2002). Creating high-level components with a generative representation for body-
brain evolution. Artificial Life, 8(3).

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theo-
retical Biology, 22:437–467.

Lindenmayer, A. (1968). Mathematical models for cellular interaction in development. Journal of Theoretical
Biology, 18:280–289.

Miller, J. F. and Banzhaf, W. (2003). Evolving the program for a cell: from french flags to boolean circuits. In Press,
A., (Ed.), On Growth, Form and Computers.

Stanley, K. and Miikkulainen, R. (2003). A taxonomy for artificial embryogeny. Artificial Life, v.9 n.2:93–130.

Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society, 237:37–72.

16



Figure 1: Examples of phenotypes in 2d and 3d.

Figure 2: Driver cells, CET values and Genome.

Figure 3: Internal and external view.

17



Figure 4: Example of Genome with 16 instructions (ETP = event type; PC = parallelepiped coordinates; RM =
rotation matrix).

Figure 5: Definition of 2d shaping primitives (parametric and list approach).

18



Figure 6: Proliferation triggered on the zygote (driver cells are placed manually to be roughly uniformly distributed,
without reference to any particular algorithm).

Figure 7: Proliferation triggered on a driver cell other than the zygote (driver cells are placed manually to be roughly
uniformly distributed, without reference to any particular algorithm).

Figure 8: Apoptosis triggered on a driver cell (other than the zygote).

19



Figure 9: On the left: a 2-dimensional grid in which number represent the distance (in this case the Manhattan
distance) from the origin. On the right: the distord array, containing the coordinates of grid points sorted according
to their distance from the origin.

Figure 10: A schematic representation of the Remove-redeploy procedure. 1) change parallelepiped, change ellissoid
and local coordinate system (with quadrants) are drawn; 2) cells belonging to the change volume are removed from
the grid and put into buffers (one buffer for each quadrant); 3) proliferation is executed; 4) cells are redeployed onto
the grid from buffers.

20



Figure 11: Example of development in four steps, driven by five instructions: Notes: i) negative numbers are in red;
ii) being this an exmaple of 2d development, all numbers relevant to the third dimension (e.g. in the rotation matrix)
are equal to 0; iii) in proliferation events driver cells are placed manually to be roughly uniformly distributed,
without reference to any particular algorithm.

21



Figure 12: The Tree of CET values relevant to the development shown in figure xx. Yellow squares represent
CET values that match no XET values and XET values that match no CET values (junk elements); green squares
represent CET values and XET values that match.

Figure 13: Germline Penetration at the end of an individual’s development copies randomly CET values from the
TCV into the Genome.

22



Figure 14: The same development of figure, with instructions evolved with the aid of Progressive Freezing (in three
blocks of 15 instructions each).

23



Figure 15: Experiments 2d black-and-white: the dolphin, the couple, the hand, the horse, ’EPIROB’, the foot.

Figure 16: Experiments 2d colour: the face.

24



Figure 17: Experiments 3d black-and-white: the triceratops, the child, the Rufa bunny, Anubis.

Figure 18: Experiments 3d colour: the brain.

25



Figure 19: Experiments 3d colour: the heart.

Figure 20: Experiments 3d colour: the kidney.

26


	1 The model of development
	1.1 Introduction
	1.2 Normal cells, driver cells, views
	1.3 Structure of CET values
	1.4 Structure of instructions
	1.5 Change events and development
	1.6 Shaping primitives
	1.7 Deployment of driver cells, generation of CET values (proliferation)
	1.8 The Remove-redeploy procedure
	1.9 Deployment of driver cells, generation of CET values (doping)
	1.10 Example of development
	1.11 Key Features

	2 The evo-devo Method
	2.1 Identification of Genome to generate a given shape
	2.2 Tree of CET Values
	2.3 Germline Penetration and Progressive Freezing

	3 Definitions and Abbreviations
	4 The Algorithm
	4.1 List of Important Parameters of the Algorithm
	4.2 Pseudocode: development (Genome given)
	4.3 Pseudocode: Genome identification (target given)


