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We study the stability of multipole-mode solitons in one-dimensional thermal 

nonlinear media. We show how the sample geometry impacts the stability of 

mutlipole-mode solitons and reveal that the tripole and quadrupole can be made stable 

in their whole domain of existence, provided that the sample width exceeds a critical 

value. In spite of such geometry-dependent soliton stability, we find that the maximal 

number of peaks in stable multipole-mode solitons in thermal media is the same as 

that in nonlinear materials with finite-range nonlocality. 
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Solitons in nonlinear media can take a variety of forms and shapes. In addition 

to the node-less amplitude distributions featured by fundamental solitons, solitons 

could also display complex spatial shapes. In one-dimensional system, these are 

dipole-modes which are composed of two out-of-phase fundamental solitons, or 
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multipole-mode solitons which are composed of several fundamental solitons with 

alternating phases. Due to the repulsive forces between the peaks of them, multipole 

soliton can not exist in uniform media with local nonlinear responses, except in the 

form of vector solitons under suitable conditions. However, such situation changes 

significantly in nonlocal nonlinear media, where, in sharp contrast to the case in local 

media, out-of-phase bright solitons can attract each other and may even, form scalar 

bound states [1].    

The nonlocality of the nonlinear response is a generic property of nonlinear 

materials. Nonlocality arises when the light-matter interaction involves mechanism 

such as diffusion of carriers, reorientation of molecules, heat transfer, etc [2, 3]. 

Recent interest in the study of nonlocal solitons has been stimulated by the 

experiments in nematic liquid crystals (NLCs) [4-7] as well as in thermal materials 

such as lead glasses [8, 9]. The nonlocal nonlinear responses of these two materials 

could be quite different. The nonlinear response of a NLC is characterized by a finite 

nonlocality degree, thus when the size of the sample is large enough relative to the 

spatial extent of the light, the boundary of a NLC does not affect the light dynamics or 

soliton properties. In contrast, in a thermal medium, the nonlinear response is always 

greatly determined by the details of heat diffusion at sample boundaries and thus the 

nonlocality degree is naturally “infinite” as the afar boundaries could significantly 

change the light dynamics and soliton properties [12-18], even when spatial extent of 

the light beam is significant small compared with that of the sample. Especially, 

numerical simulations [14] have demonstrated that the soliton stability may depend 
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crucially on the sample-geometry and a rectangular sample with a proper aspect ratio 

may stabilize the otherwise unstable dipole modes in a square sample. Note that such 

strongly sample-geometry-dependent soliton properties are specific to thermal 

materials and are usually absent in both local and finite-range nonlocal materials. 

The present work is motivated by the study of Z. Xu et al. in Ref. [11], where 

the authors have revealed that, in a nonlinear material with a finite-range nonlocality 

such as in a NLC, the maximal number of peaks in stable multipole-mode solitons is 

four and the modes containing more than four peaks are always unstable. As the 

authors in Ref. [11] deal with a material with a finite-range nonlocality, no boundary 

effects have been took into consideration. In contrast, in nonlocal thermal materials, 

boundary is always crucial, and therefore, one may naturally ask, how a thermal 

nonlinear material affects the stability of multipoles? Especially, one might ask 

whether a nonlinear response of an infinite-range nonlocality supports stable 

multipoles composed of more peaks than that supported by a finite-range nonlocality? 

It is worthy to mention that, the physical model describing light propagation in a NLC 

without the static bias electric field is mathematically equivalent to that in a thermal 

nonlinear medium, thus, boundary effects may also come into play in a NLC, as 

numerically analyzed and experimentally observed in [24,25]. Therefore our present 

study may also find potential applications in liquid crystals, although we following 

put our research in the context of thermal nonlocal materials.   

The purposes of this paper are twofold. First, we study whether the 

sample-geometry-dependent soliton stability in thermal materials, which was revealed 
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in two-dimensional settings where the controlling parameter being the sample aspect 

ratio, also persists in one-dimensional geometry when the controlling parameter 

simply being the sample width. Indeed, we find that the stability of multipole-mode 

solitons depends crucially on the physical dimension of the thermal material, and 

complete stability is achieved for tripole- and quadrupole-mode solitons when the 

width of the sample exceeds some crucial value. We are able to build this important 

finding on a rigorous linear stability analysis, which is absent in higher-dimensional 

settings [14] due to the requirement of huge computational resources. The second 

purpose of this paper is to reveal the maximum number of peaks in stable multipoles 

that hold in a thermal nonlinear medium. This purpose stems from the first one, as the 

stability characteristics of multipoles now crucially depends on sample width and thus 

the stability analysis for NLCs [11] does not hold in thermal nonlinear media. 

Surprisingly, we found that a nonlinear thermal medium possesses the same 

restriction on the maximum number of peaks in stable multipoles as in the case of a 

finite-range nonlocal medium. In another word, the maximal number of peaks in 

stable multipoles supported by thermal materials is also four and all modes composed 

of five peaks or more are unstable. 

We consider the propagation of a laser beam along the z  axis of a thermal 

medium occupying the region / 2 / 2L x L- £ £ + ( L  is the sample width), which 

can be described by the system of equations for the dimensionless field amplitude q  

and the nonlinear contribution to the refractive index n  that is proportional to the 

temperature variation, given by 



 5 

2

2

2
2

2

1
,

2

,

q q
i qn
z x
n

q
x

¶ ¶
= - -

¶ ¶
¶

= -
¶

  (1) 

Here the transverse and longitudinal coordinate ,x z  are scaled to the beam width 

and to the diffraction length, respectively.  We assume that the opposite boundaries 

of the thermal medium are thermostabilized, thus, /2, | 0x Lq n = = . 

  We search for soliton solutions of Eqs. (1) in the form ( )exp( )q w x ibz= , 

where w  is a real function and b  is the propagation constant. Such solitons can be 

characterized by their energy flow
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Figure 1 (a) presents an example for fundamental solitons. As shown in the figure, 

the induced refractive index ( )n x is nonzero across the whole sample, which is due to 

the infinite range of nonlocality. Note also that the ( )n x  produced by the dipole 

displays a maximum platform near 0x = [Fig. 1 (b)], rather a small dip encountered 

in a NLC [11].  Such index platform expands for lower-power dipoles [Fig. 1(c)].  

The dependence of energy flow U versus propagation constant b is shown in Fig.1 

(d). We find that fundamental and dipole solitons are stable in their whole domain of 

existence. 

Thermal nonlinear media in principle support bound states with arbitrary number 

of peaks. This can be explained from their associated index profiles, as ( )n x always 

features a parabolic-like shape across the whole light regions [Fig. 2(a), Fig. 2(d) and 

Fig. 3(a)]. The stability analysis for tripole and quadrupole-mode solitons is 

summarized in Fig.2. An important result is that the stability of solitons is strongly 

dependent on the sample width, and instability domain shrinks quickly with the 

increase of the sample width [Fig. 2(c) and (f)]. For example, when 20L = , tripole 

modes are stable in the region 0.7crb b> » . However, when L is increased to 

40L =  the stable region expands to 0.15crb b> » [Fig. 2 (b)]. Further, 

completely stable are achieved if 60L > . Such sample-width-dependent stability 

characteristics are also observed for quadrupole solitons [Fig. 2(e)]. However, it 

should be mentioned that the instability region, defined by [0, ]crb bÌ , for 

quadrupoles is wider than that for tripole. Also the instability growth rate 

id (imaginary part ofd ) for quadrupole is higher than that for tripoles. Note that, as 
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mentioned above, such geometry-dependent stability have been reported recently in 

two-dimensional thermal media for dipole solitons [14], where the dipole modes with 

correct orientation with respect to sample geometry are found to be stable provided 

that the sample is cut into a suitable geometrical aspect ratio. However, the finding in 

[14] is based on the propagation simulations while a linear stability analysis is absent 

as the latter requires huge computational resources. In contrast, here we work on a 

most fundamental system, thus allowing us to build the important result of 

geometry-dependent-stability on a rigorous linear stability analysis.  

Another important finding of our stability analysis is that, although the soliton 

stability in thermal materials has a profound dependence on the sample-width as 

discussed above, the maximum number of peaks in stable multipoles is still four, 

which is the same as in a nonlinear medium with a finite-range nonlocality. Thus, 

bound states incorporating five [Fig.3 (a)] or more than five peaks are always 

oscillatory unstable. Such global instability holds irrespective of variation of energy 

flow [Fig.3 (b)] or sample width, although the specific value of id  quantitatively 

depends on both. The same restriction on the maximal number of peaks in stable 

multipoles for a thermal medium and a NLC might counter one’s intuition, as in NLC 

the instability domain decreases with the increase of nonlocality degree [11], thus for 

a thermal medium with an infinite range of nonlocality and a strong dependence of 

stability on sample-geometry, one might expect that the maximal number of peaks in 

stable multipoles might be larger than four or at least different with that. However, 
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our results here reveal that thermal nonlinear media actually possess the same upper 

threshold for stability as that in NLCs. 

 All results reported above are confirmed by the outcome of the direct numerical 

integration of Eqs. (1) with the input condition ( , 0) ( )[1 ( )]q x z w x xr= = + , where  

( )w x  is the profile of the stationary wave and ( )xr  stands for the broadband input 

noise with the variance 2
noise 0.01s = . As expected, the multipole-mode that belong 

to the stable region predicted by linear stability analysis retain their shapes over 

indefinitely long propagation distance, as clearly seen in Fig. 4(a) for a dipole mode, 

and Fig. 4(d) for a quadrupole mode. Note that, Figure 4(c) shows propagation result 

for another quadrupole mode at a smaller sample width (all the other parameters are 

the same as those in Fig. 4(d)). In contrast with that in wider sample, this quadrupole 

experiences oscillatory instability and destroys itself. Finally, all fifth-order solitons 

experience the similar instability scenario [Fig.4 (b)]. 

In conclusion, we studied the stability characteristics of bound states composed of 

several field peaks in thermal nonlinear media with an infinite-range nonlocality. We 

found that the stability of tripole- and quadrupole-mode soliton depends crucially on 

the sample width, and they can be completely stable when the sample width exceeds a 

critical value. We based the result of sample-width-dependent soliton stability on a 

rigorous linear stability analysis with collaboration by direct propagation simulations. 

Thermal nonlinear media cannot support stable bound modes containing more than 

four peaks, thus they possess the same restriction on the maximal number of peaks in 
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sable multipoles as that in nonlinear media with finite-range of nonlocality, although 

their nonlocal nonlinear responses are essentially different.  

This work was supported by the National Natural Science Foundation of China 

(Grant No. 10704067). 
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Figure captions 

FIG. 1. (Color online) (a) Profile of a fundamental soliton at 0.5b  . Profiles of dipole 

solitons at (b) 0.5b   and (c) 5b  , respectively. The thick line stands for the light 

field ( w ) while the light line stands for refractive index ( n ). (d) the energy flow 

versus propagation constant diagram for fundamental(dashed line), dipole(light line) 

and tripole(thick line) solutions. The two points marked by circles corresponds to the 

soliton solutions in (b) and (c) respectively. In all plots 60L  . All quantities are 

plotted in arbitrary dimensionless units.         

FIG. 2. (Color online) (a) Profile of a tripole soliton at 1b  and 40L  . (b) 

Instability growth rate for tripole solitons versus propagation constant at 

20,  30 L  and 40 . (c) Critical value of propagation constant (above which solitons 

are stable) for tripole solitons versus sample width. (d) Profile of a quadrupole soliton 

at 1b  and 40L  . (e) Instability growth rate for quadrupole solitons versus 

propagation constant at 20,  40L  and 60 . (f) Critical value of propagation constant 

for quadrupole solitons versus sample width. All quantities are plotted in arbitrary 

dimensionless units.   

FIG. 3 (a) Profile of a fifth-order soliton at 1b  . (b) Instability growth rate for the 

fifth-order soliton. 60L  . All quantities are plotted in arbitrary dimensionless units.   

FIG. 4.  (Color online) Propagation of a perturbed dipole soliton (a) and a fifth-order 

mode (b) in a sample with 60L  .  Propagation of a perturbed quadrupole mode at 

(c) 20L   and (d) 40L  . For all the plots, 1b  . All quantities are plotted in 

arbitrary dimensionless units.   
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FIG. 1. (Color online) (a) Profile of a fundamental soliton at 0.5b  . Profiles of dipole 

solitons at (b) 5b   and (c) 0.5b  , respectively. The thick line stands for the 

light field ( w ) while the light line stands for refractive index ( n ). (d) Energy 

flow versus propagation constant diagram for fundamental (dashed line), dipole 

(light line) and tripole(thick line) solutions. The two points marked by circles 

corresponds to the soliton solutions in (b) and (c) respectively. In all plots 

60L  . All quantities are plotted in arbitrary dimensionless units.           
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FIG. 2. (Color online) (a) Profile of a tripole soliton at 1b  and 40L  . (b) 

Instability growth rate for tripole solitons versus propagation constant at 

20,  30 L  and 40 . (c) Critical value of propagation constant (above which solitons 

are stable) for tripole solitons versus sample width. (d) Profile of a quadrupole soliton 

at 1b  and 40L  . (e) Instability growth rate for quadrupole solitons versus 

propagation constant at 20,  40L  and 60 . (f) Critical value of propagation constant 

for quadrupole solitons versus sample width. All quantities are plotted in arbitrary 

dimensionless units.  



 15 

                  

FIG. 3 (a) Profile of a fifth-order soliton at 1b  . (b) Instability growth rate for the 

fifth-order soliton. 60L  . All quantities are plotted in arbitrary dimensionless units.  
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FIG. 4.  (Color online) Propagation of a perturbed dipole soliton (a) and a fifth-order 

mode (b) in a sample with 60L  .  Propagation of a perturbed quadrupole mode at 

(c) 20L   and (d) 40L  . For all the plots, 1b  . All quantities are plotted in 

arbitrary dimensionless units.   

 


