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This paper presents a study of the large-sample behavior of the
posterior distribution of a structural parameter which is partially
identified by moment inequalities. The posterior density is derived
based on the limited information likelihood. The posterior distribu-
tion converges to zero exponentially fast on any δ-contraction outside
the identified region. Inside, it is bounded below by a positive con-
stant if the identified region is assumed to have a nonempty interior.
Our simulation evidence indicates that the Bayesian approach has ad-
vantages over frequentist methods, in the sense that, with a proper
choice of the prior, the posterior provides more information about
the true parameter inside the identified region. We also address the
problem of moment and model selection. Our optimality criterion is
the maximum posterior procedure and we show that, asymptotically,
it selects the true moment/model combination with the most moment
inequalities and the simplest model.

1. Introduction.

1.1. Formulation of the problems. Let (Ω̄,A, P ) denote a probability
space. Suppose that we are interested in some structural parameter θ0 ∈R

d

that satisfies a set of moment inequality conditions:

Emj(X,θ0)≥ 0, j = 1, . . . , p,(1.1)

where mj(·, θ), i = 1, . . . , p, are known real-valued moment functions. X is
an observable random vector defined on (Ω̄,A, P ) and we assume that we
observe i.i.d. or stationary realizations Xn = {X1, . . . ,Xn} of X . A model
that is characterized by moment inequalities (1.1) is usually called a moment
inequality model.

A key feature of moment inequality models is that θ0 is not necessarily
point identified: there exists more than one solution to the inequalities in
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(1.1) if Emj(X,θ0) is viewed as a function of θ0. In other words, if we let Θ
be the parameter space that contains θ0 and define

Ω = {θ ∈Θ,Emj(X,θ)≥ 0, j = 1, . . . , p},(1.2)

then Ω can be a nonsingleton set. In this case, we say that θ0 is partially
identified on Ω and Ω is called the identified region.

Many partially identified models are characterized by such moment in-
equalities, where the parameter of interest is only partially identified and
therefore cannot possibly be consistently estimated. In this framework, since
the identified region captures all of the information about the parameter, it
becomes one of the most interesting subjects of study in moment inequality
models [see, e.g., Chernozhukov, Hong and Tamer (2007), CHT, hereafter].

In addition to the problem of studying the identified region, there is also
a moment/model selection problem in moment inequality models. Suppose
that we have p candidate moment inequalities

Emj(X,θ)≥ 0, j = 1, . . . , p,

with a k-dimensional parameter vector θ = (θ1, . . . , θk)
T that belongs to the

parameter space Θ1 × · · · ×Θk. The moment selection problem refers to se-
lecting the best subset of the moment inequalities among all of the possible
candidates, while the model selection procedure addresses the problem of
selecting the best model that is characterized by setting some components
of the parameter to be zero. Such a candidate model can be a parameter
subspace like {0} ×Θ2 × · · · ×Θk. Therefore, the moment/model selection
procedure produces a combination of moment inequalities and a parameter
subspace. For instance, in Example 1.3 regarding the instrumental variable
regression with interval censoring model, the moment selection problem can
correspond to selecting the instrumental variables (components of Z), while
the model selection problem is related to selecting the useful explanatory
variables (components of X) that have nonzero regression coefficients. Ulti-
mately, the selected combination should achieve some sense of optimality.

1.2. Some motivating examples. There are several interesting examples
for the moment inequality models described above, where the parameter of
interest is identified on a nonsingleton set.

Example 1.1 [Interval censored data; see, e.g., Example 1 of CHT (2007)].
Let Y be a real-valued random variable which lies in [Y1, Y2] almost surely;
Y1 and Y2 are observed random variables, but Y is not observed. (Sometimes
one may assume that Y2 = Y1 + 1, as in the case where Y1 is the recorded
integer part of Y .) The parameter of interest is θ0 = E(Y ). We then have
the following moment inequalities:

E(Y2 − θ0)≥ 0, E(θ0 − Y1)≥ 0.

Then θ0 is partially identified on Ω = [EY1,EY2].
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Example 1.2 [Missing data; see, e.g., Example 1 of Canay (2008)]. As-
sume that (Y,Z) ∈ [0,1]× {0,1} and that Y is observed only when Z = 1.
Suppose that we are interested in the parameter θ0 =EY , which corresponds
to E[ZY +(1−Z)Y −θ0] = 0, where ZY is known, but not (1−Z)Y . Noting
that 0≤ (1−Z)Y ≤ 1−Z, we have moment inequalities

E(θ0 −ZY )≥ 0, E(ZY − θ0 +1−Z)≥ 0.

Then θ0 is partially identified on Ω = [E(ZY ),E(ZY ) + 1−EZ].

Example 1.3 [Interval regression model; see, e.g., Example 2 of CHT
(2007)]. Consider Y,Y1, Y2, as in the setup of Example 1.1, assuming that
the conditional mean of the unobserved Y isXT θ0, where θ0 is the parameter
of interest and X is a regressor vector. Due to Y1 ≤ Y ≤ Y2, we then have
moment inequalities

EZ(Y2 −XT θ0)≥ 0, EZ(XT θ0 − Y1)≥ 0,

where Z is a vector of positive functions of X or positive instrumental vari-
ables.

1.3. Literature review and contributions of this paper. Many frequentist
inference procedures for the identified region as well as the true parameter
have been developed in this growing area of interest. For example, Cher-
nozhukov, Hong and Tamer (2007) construct an econometric criterion func-
tion so that its set of minimizers form the identified region. They consider
consistent estimation of the identified region and have shown that their set
estimator is consistent in Hausdorff distance. Additionally, they derive the
convergence rate of their estimator and construct the confidence set for the
identified region. Moreover, Andrews and Soares (2007) develop confidence
sets of the identified region and a test of the moment inequalities/equalities
based on generalized moment selection. Among others, Rosen (2008) pro-
vides a formulation of criterion functions that differ from CHT and derives
analytical critical values of the confidence region. Beresteanu and Molinari
(2008) recently proposed inference procedures when the identified region can
be written as a transformation of the Aumann expectation based on random
set theory. Some additional papers in the literature that consider inference
with partially identified models include Pakes et al. (2006), Andrews and
Jia (2008), Romano and Shaikh (2008), Bugni (2007), Horowitz and Manski
(2000), Manski and Tamer (2002), Canay (2008) and Liu and Shao (2003).

This paper studies a Bayesian approach to the moment inequality models.
The Bayesian procedure provides distributional information for the partially
identified parameter, both inside and outside the identified region, through
its posterior distribution. The advantages of using posterior distributions
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to characterize the parameters are many. First, as pointed out by Poirier
(1998), a Bayesian analysis of partial identification models is always possi-
ble if a proper prior for the parameters is specified. If we have some a priori
information on θ0, then, by using a properly chosen prior distribution, the
resulting posterior density may not be flat within the identified region; this
provides evidence that the parameter is more likely to lie in some particular
area. Second, even with a flat prior distribution, when θ0 is multidimen-
sional, the posterior density of some components of θ0 may no longer be
flat, due to the shape of the identified region. Hence, if we are interested
in these components of θ0, then the posterior density can still provide ex-
tra information on their locations within the identified region. As a third
advantage, it can be shown asymptotically that the posterior density has
support only on the identified region. Containing more information, a pos-
terior density can always be used to estimate the identified region, but not
vice versa. Finally, the MCMC method is a very powerful method to draw
samples from the posterior, which can be used for approximations of the
calculation of the posterior statistics. In addition, those posterior samples
can also be used in frequentist methods to estimate the identified region, by,
for example, minimizing an econometric criterion function in CHT.

In fact, Bayesian methods have been extensively applied to nonidenti-
fied situations. Gelfand and Sahu (1999) have studied issues surrounding
nonidentifiability and improper priors in the context of generalized linear
models. Neath and Samaniego (1997) consider Bayesian updating for a non-
identified two-parameter binomial model. Gustafson (2005) studies Bayesian
inference in nonidentified scenarios involving misclassification and measure-
ment errors, which was discussed by a number of prominent researchers.
Recently, Moon and Schorfheide [(2009), hereafter, MS] have considered the
Bayesian approach to partially identified models when the model can involve
three types of parameters: the structural parameters of interest, a reduced-
form parameter vector that is point-identified by data and also a vector of
auxiliary parameters which links the structural and reduced-form parame-
ters via some known function. They also derive the Bayesian credible sets
and compare them with frequentist confidence intervals for a number of par-
ticular models. All of these papers use traditional posteriors based on the
likelihood function instead of the moment inequalities.

Our Bayesian approach proceeds within a more general framework. In con-
trast to the previous work, we do not need to have a full probability model
for the observed data. Starting from moment inequalities Em(X,θ0) ≥ 0,
where m(X, ·) is a known function of θ0, we introduce a bias parameter
λ0 ≥ 0 so that Em(X,θ0) = λ0 and place prior distributions on (θ0, λ0). The
posterior density of θ0 can then be derived based on a limited information
likelihood function, which is generated by the conditional asymptotic distri-
bution of 1

n

∑n
i=1m(Xi, θ0)−λ0 given (θ0, λ0), integrating out λ0. We study
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in detail the frequentist behavior of the posterior density function of θ0. We
derive the bounds of convergence rates of the posterior density, both inside
and outside of the identified region. We show that there is a large “gap”
between them. Once the posterior density and its frequentist properties are
obtained, it is easy to derive consistent estimators for the identified region.
However, we point out that a posterior density provides more information
than a region estimation since it can also incorporate prior information and
describe how likely the true parameter is to be distributed both inside and
outside the identified region.

In addition to studying the identified region, we also consider the problem
of selecting moments and models in the context of (1.1), where only a subset
of the moment inequalities are to be used and the true parameter vector θ0 is
assumed to follow a submodel allowing only some selected components to be
nonzero (which can be, e.g., the regression coefficients of some selected ex-
planatory variables). Andrews and Soars (2007) employ a modified moment
selection procedure to determine which moment inequalities are not binding,
by minimizing an information-type criterion. The moment/model selection
problem we consider here is different from theirs. In this paper, we have two
goals in the selection procedure: first, selecting a true moment/model and
second, among the true candidates, selecting the “optimal” one, in a sense
which will be described in Section 4. Since the true parameter is not point-
identified, it is impossible to test the moment inequalities evaluated at the
true parameter. Hence, the moment inequalities in this paper are true in the
sense that, fixing the dimension of the parameter vector and the parameter
space, the identified region defined by these moment inequalities on the fixed
parameter space is not empty. In addition, we observe that whether a set
of moment inequalities is satisfied or not also depends on the parameters
that are included in the model and hence is related to the parameter space.
In some situations, a set of moment inequalities defines a valid (nonempty)
identified region on one parameter space, but cannot if one or more of the
parameters are excluded from the model. This is a result of the reduction of
the dimension of the parameter space. By treating the set of moments and
the set of nonzero parameters as a combination, the problems of moment
selection and model selection are combined. In Section 4, we propose the
maximum posterior criterion (MPC) to select the combination that has the
largest posterior probability.

We are interested in examining the asymptotic properties of the model/
moment combinations proposed by the maximum posterior. We hope that
the maximum posterior criterion will produce a desirable combination in
the following three senses. First, asymptotically, it should be true. Second,
it is desirable that it should contain as many moment inequalities as pos-
sible since, intuitively, the more moment inequalities we have, the smaller
the identified region is and hence we have more information about the true
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parameter. Finally, the model should be as simple as possible, that is, the
parameter subspace should have the smallest dimension. We show in Section
4 that, indeed, with suitable specifications on the prior, the maximum pos-
terior criterion can produce such a desirable combination with probability
tending to one as the sample size increases to infinity. Such a result will be
referred to as the consistency of the MPC for model/moment selection.

The remainder of this paper is organized as follows. Section 2 describes
a general moment inequality model and the construction of the limited in-
formation likelihood. We also provide a general consistency theorem on set
estimation based on the posterior c.d.f. function. Section 3 provides a de-
tailed large-sample analysis of the behavior of the posterior distribution. In
particular, we will derive the convergence rates both within the interior of
Ω and on any δ-contraction outside Ω. Section 4 studies the problem of mo-
ment/model selection. Section 5 displays some simulation results. Finally,
Section 6 concludes with a discussion. Proofs are given in Appendices A–C.

2. Moment inequality models.

2.1. Limited information likelihood. Suppose that for θ ∈ R
d, we have

moment inequality conditions

Emj(Xi, θ)≥ 0, j = 1, . . . , p.

Let

m(X,θ) = (m1(X,θ),m2(X,θ), . . . ,mp(X,θ))
T .

The moment inequalities can then be rewritten as

Em(X,θ) = λ for some λ ∈ [0,∞)p.(2.1)

Here, θ is the structural parameter of interest, for example, θ = EY , the
mean of the unobserved random variable Y in Examples 1.1 and 1.2, and λ
is the bias parameter of Em(X,θ), for example, λ= (EY2 − θ, θ−EY1)

T in
Example 1.1. Let θ0 be the true parameter value of θ and λ0 be the true bias
parameter when θ = θ0. Suppose that the prior of θ0 is supported on a large
enough compact set that contains the identified region. We are interested in
constructing the marginal posterior for θ0.

In addition, let m̄(θ) = 1
n

∑n
i=1m(Xi, θ) and G(θ,λ) = m̄(θ) − λ. Then,

after the bias parameter λ is introduced, G can be considered as the “de-
biased” sample moment. In other words, G is an estimating function with
EG(θ,λ) = 0. It is overparametrized, meaning that the dimension of (θ,λ) is
greater than the dimension of G, and, hence, we cannot consistently estimate
θ0 by solving G(θ,λ) = 0 directly.

Under some regularity conditions, by the central limit theorem,
√
nG(θ,λ)|θ=θ0,λ=λ0

d→Np(0, V0),(2.2)
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where V0 = Var(m(X,θ0)). We can therefore formally construct a “likeli-
hood” function:

p(Xn|θ,λ) = 1
√

det(2π/nV0)
e−n/2G(θ,λ)T V −1

0 G(θ,λ).(2.3)

Note that for θ 6= θ0, (2.2) is not true in general. In fact, we cannot find a
λ ∈ [0,∞)p such that Em(X,θ) = λ for θ /∈Ω. Hence, (2.3) is not the large-
sample conditional p.d.f. of G for general (θ,λ). The asymptotic result (2.2)
alone would not allow us to derive a likelihood function over the entire Θ×
[0,∞)p. To solve this problem, Kim (2002) introduced the concept of limited
information likelihood. For each parameter θ ∈ Θ, although (2.3) may not
be the true probability density of Xn, it is shown to be proportional to the
density that is closest to the true density in the Kullback–Leibler distance,
among a family of densities satisfying the moment condition EG(θ,λ) = 0.
The “likelihood” in (2.3) is therefore the limited information likelihood of
θ and λ, which is the best approximation to the true density that satisfies
the moment restrictions. The concept of the Kullback–Leibler information
distance and applications of it can be found in a number of works, such as
Cover and Thomas (1991) and Zellner (1994).

Let p(λ) be the marginal prior of λ. Assume that λ and θ are independent,
that is, the conditional prior of λ given θ is equal to the marginal prior of
λ. Since we are only interested in θ, we thus integrate out λ to obtain the
limited information likelihood function for θ:

L(θ) = p(Xn|θ)

=

∫

[0,∞)p
p(Xn|θ,λ)p(λ|θ)dλ(2.4)

=

∫

[0,∞)p
p(Xn|θ,λ)p(λ)dλ.

The fact that λ is a location parameter of (2.3) makes the problems solvable.
This will be described in detail in Section 3.1.

In practice, the asymptotic variance V0 in (2.3) is not known, but it can
be shown to have very little influence on the inference about θ in the cur-
rent situation of partially identified moment inequality models. In future
expositions, we will replace V0 by a prespecified nonsingular matrix V and
show that L(θ) has good (and very similar) frequentist properties for infer-
ence on θ, whatever V is chosen. (A more delicate treatment would be to
approximate V0 by a sample analog and replace the true parameter θ0 in V0
by the unknown argument θ. This will be left for future work. We expect
that similar techniques will lead to similar results in this treatment, but the
technical details can be much more complicated.)
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2.2. A general result on the posterior set estimation. We first define some
notation that will be used subsequently. Throughout this paper, let Ac and
int(A) denote the complement and interior of a set A, respectively. In ad-
dition, following CHT’s notation, ∀δ > 0, let (Ωc)−δ be the δ-contraction of
Ωc:

(Ωc)−δ = {θ ∈Θ:d(θ,Ω)≥ δ}.
Let B(ω, r) denote an open ball around ω :B(ω, r) = {θ :d(ω, θ)< δ}, where
d(ω, θ) denotes the Euclidean distance between ω, θ. Let dH(A,B) denote
the Hausdorff distance between sets A and B:

dH(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}

,

where d(a,B) = infb∈B d(a, b). We say that a set estimator An consistently
estimates Ω if

dH(An,Ω)→ 0 in probability.

Moreover, for two sequences {an}∞n=1 and {bn}∞n=1, we write an ≻ bn if
an
bn

→ ∞. Finally, we write “w.p.a.1” as shorthand for “with probability
approaching one in the probability distribution of Xn as n→∞.”

Let p(θ) be the prior of θ. By Bayes’ rule, the posterior of θ then satisfies

p(θ|Xn)∝ p(θ)L(θ).(2.5)

It is desirable for the posterior to possess some “good” frequentist prop-
erties. Roughly speaking, we want to see that the posterior density of θ
concentrates near Ω and drops dramatically to zero outside Ω, with a high
probability as n increases. The significant difference of such asymptotic be-
havior between the inside and outside of the identified region implies that
the resulting posterior has the capability to produce consistent set estima-
tion for Ω. Such a relation between a “good” posterior and its capability
to estimate Ω is demonstrated below for a scalar function of Ω. (A more
general estimation of Ω itself will also be discussed in Section 3.)

The posterior probability that θ belongs to a set A is

P (θ ∈A|Xn) =

∫

A
p(θ|Xn)dθ.

Definition 2.1 (Dense). A subset A ⊂ Ω is said to be dense in Ω if
∀ω ∈Ω \A and any neighborhood Uw of ω, we have Uw ∩A 6= φ.

An equivalent definition of dense subsets in real analysis is that the closure
of A is Ω, that is, cl(A) = Ω. We will consider the large-sample behavior of
the posterior distribution on a dense subset of Ω.
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Suppose that, instead of θ, we are interested in the functions of θ, g(θ),
where g :Θ→R is some known continuous mapping. For instance, if we are
interested in the ith component of θ, then g(θ) = θi. Let g(Ω) = {g(θ) : θ ∈
Ω}, the image of g. We are interested in estimating g(Ω) directly. We impose
the following assumptions.

Assumption 2.1. Θ is compact.

Assumption 2.2. Ω is compact and connected.

In moment inequality models, the compactness of Ω follows from assuming
Emj(X, ·) :Θ→R to be continuous for each j. We assume Ω to be connected
so that the intermediate value theorem on a topological space holds.

Assumption 2.3. g :Θ→R is continuous on Θ.

The estimation of g(Ω) to be constructed is based on the inverted posterior
c.d.f. of g(θ). Let Fg(x) = P (g(θ)≤ x|Xn), the posterior c.d.f. of g(θ). Let

F−1
g (y) = inf{x :Fg(x)≥ y}.

Then x≥ F−1
g (y) if and only if Fg(x)≥ y. The following theorem provides a

general consistency result of a set estimator of g(Ω) based on the posterior
c.d.f. Note that since it can be shown that g(Ω) = [infθ∈Ω g(θ), supθ∈Ω g(θ)],
one might think that a more natural set estimator can be constructed by
finding estimators for the end points of the interval g(Ω). This idea works,
for example, in Example 1.1, where [EY1,EY2] can be estimated by [Ȳ1, Ȳ2],
as both Y1 and Y2 are observable. However, in a more general setting, esti-
mating the end points infθ∈Ω g(θ) and supθ∈Ω g(θ) would require estimating
Ω first. The estimator proposed in the following theorem provides a way of
estimating the interval directly.

Theorem 2.1. Under Assumptions 2.1–2.3, assume that there exists
{πn}∞n=1, πn → 0, such that:

1. ∀δ > 0, P (θ ∈ (Ωc)−δ|Xn) = op(πn);
2. there exists a dense subset A⊂ Ω such that ∀ω ∈ A, ∃Rw > 0 such that

when ρ < Rw, P (θ ∈B(ω,ρ)|Xn)≻ πn w.p.a.1.

If we let ĝ = [F−1
g (πn), F

−1
g (1− πn)], then

dH(ĝ, g(Ω))→ 0 in probability.

Remark 2.1.
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1. The consistent set estimator depends on the choice of πn. However, we
do not pursue an operational way of constructing the estimator based
on the posterior distribution in this paper because there are many fre-
quentist methods to achieve this purpose, for instance, CHT, Beresteanu
and Molinari (2008), etc. This paper is more focused on the posterior
distribution itself. The purpose of this theorem is to demonstrate that
the posterior can be used to consistently estimate the identified region, if
needed. The posterior distribution can actually provide more information
than the identified region when taking into account the prior.

2. We can also provide an exact credible region (based on, say, setting πn =
0.025, for instance) for the true parameter, conditional on the observed
data. This is parallel to the provision of the confidence intervals with
required coverage probabilities in the frequentist approaches of Imbens
and Manski (2004), Rosen (2008), etc.

3. It is possible to get an optimal rate of πn for optimal convergence rate in
Hausdorff distance. We leave this for future work.

In the next section, we will see that, under some regularity conditions, the
posterior distribution of θ satisfies conditions 1 and 2 of this theorem, which
describe the frequentist properties of the posterior. In addition, we will also
propose a consistent estimator for Ω, directly based on the log-posterior
density.

3. Posterior properties of moment inequality models. In this section,
we assume that the identified region contains a nonempty interior int(Ω).
Assuming it is dense in Ω, it is then of interest to study the asymptotic
properties of the posterior distribution inside int(Ω).

3.1. The posterior density. Following the discussions in Section 2.1, we
will study a limited information likelihood for θ defined by

L(θ) =

∫

[0,∞)p

1
√

det(2πV /n)
e−n/2(m̄(θ)−λ)T V −1(m̄(θ)−λ)p(λ)dλ,(3.1)

where V is some preselected positive definite matrix that does not depend
on θ. We will use a multivariate exponential distribution as the prior on λ
throughout this paper:

p(λ) =

(

p
∏

i=1

ψi

)

e−ψ
T λ, ψ = (ψ1, . . . , ψp)

T ∈ [0,∞)p, λ ∈ [0,∞)p,

where ψ is prespecified. We use the exponential prior for ease of integration
over λ. More general choices of p(λ) may not allow the integration to be car-
ried out analytically, but the large-sample behavior of the posterior should
remain unchanged.
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Let Zθ be a p-dimensional multivariate normal random vector with mean
(m̄(θ)− V ψ

n ) and variance-covariance matrix V
n . A straightforward calcula-

tion of (3.1) then leads to

L(θ) = P (Zθ ≥ 0)e−ψ
T m̄(θ)+1/(2n)ψT V ψ

(

p
∏

i=1

ψi

)

(3.2)

and we have p(θ|Xn)∝ p(θ)L(θ).
For large values of n, by the uniform weak law of large numbers, m̄(θ) is

bounded on Θ w.p.a.1. Thus, for fixed ψ and V , e−ψ
T m̄(θ)+1/(2n)ψT V ψ(

∏p
i=1ψi)

is bounded away from zero and infinity. Therefore, the only term that char-
acterizes the large-sample properties of the posterior should be P (Zθ ≥
0). Moreover, the variance-covariance matrix of Z has order Op(n

−1), so
we would expect that limn→0P (Zθ ≥ 0) = 1 in probability if and only if

m̄(θ)− V ψ
n ≥ 0 w.p.a.1. This depends on whether or not θ belongs to Ω. For

large n, the posterior density is positive inside Ω and drops to zero exponen-
tially fast as θ goes away from Ω. We will formally examine these asymptotic
properties in the next section and will also derive the convergence rate of
the posterior probabilities.

3.2. Large-sample analysis. We now provide a large-sample analysis of
the posterior distribution of the parameter θ.

Assumption 3.1. int(Ω) is nonempty and is dense in Ω.

The assumption that int(Ω) is dense in Ω can be restated as follows: for
any ω on the boundary of Ω and any neighborhood Uw of ω, Uw contains
points in int(Ω). Most of the identified regions characterized by moment
inequalities possess such a property. We will comment on the case when
int(Ω) is empty in the discussion section.

Assumption 3.2. Emj(X, ·) :Θ→R is continuous for each j = 1, . . . , p.

This assumption guarantees that Em(X,θ) is bounded in any compact
set and that the uniform law of large number holds. The next assumption
puts a regularity condition on the prior of θ.

Assumption 3.3. p(θ) is continuous and bounded away from zero and
infinity on Ω.

Let vjj be the jth diagonal element of V . We can write

Ωc =
{

θ :min
j
Emj(X,θ)< 0

}

=

{

θ :min
j

Emj(X,θ)√
vjj

< 0

}

.



12 Y. LIAO AND W. JIANG

For any δ > 0, let

Aδ =

{

θ :min
j

Emj(X,θ)√
vjj

<−δ
}

.

Apparently, Aδ ⊂Ωc.

Lemma 3.1. Under Assumptions 2.1, 2.2 and 3.2, if there exists
some an → 0 such that ∀δ > 0, P (θ ∈Aδ|Xn) = op(an), then ∀ε > 0, P (θ ∈
(Ωc)−ε|Xn) = op(an).

Theorem 3.1. Under Assumptions 2.1, 2.2 and 3.1–3.3:

1. ∀δ > 0, for some α> 0,

P (θ ∈ (Ωc)−δ|Xn) = op(e
−αn);

2. ∀ nonempty open sets Ξ⊂Ω, in probability,

lim inf
n→∞

P (θ ∈ Ξ|Xn)> 0.

Hence, we are able to distinguish the asymptotic behavior of the pos-
terior: for large values of n, the posterior density is only supported on a
neighborhood of the identified region and the posterior distribution drops
to zero exponentially fast on any subset that is separated from Ω. Based
on these findings, we can construct consistent estimators for both Ω and its
continuous mappings. For the latter task, we can now apply Theorem 2.1.
Suppose that g(·) is a continuous real-valued function on Θ and let F−1

g (y)
be the y-quantile of the posterior c.d.f. of g(θ).

Theorem 3.2. Under Assumptions 2.1–2.3 and 3.1–3.3, for any se-
quence πn = op(1) such that ∀a > 0, e−an/πn → 0, we have

dH([F
−1
g (πn), F

−1
g (1− πn)], g(Ω))→ 0 in probability.

We can also consistently estimate Ω directly using the posterior density
function. The consistency is based on the fact that the posterior density
attains its peak inside Ω and is asymptotically supported on the entire iden-
tified region. In addition, it drops to zero outside Ω at an exponential rate.
Therefore, by properly choosing a cut-off value εn, the region where the log-
posterior p.d.f. exceeds its peak minus εn should eventually converge to Ω.

Theorem 3.3. Under Assumptions 2.1–2.3 and 3.1–3.3, let 1≺ εn ≺ n.
If we define

An =
{

θ :max
ω∈Θ

lnp(ω|Xn)− lnp(θ|Xn)≤ εn

}

,
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then

dH(An,Ω)→ 0 in probability.

Remark 3.1. The estimation established in Theorem 3.3 is easy to im-
plement for the following reasons.

1. Note that

max
ω∈Θ

lnp(ω|Xn)− lnp(θ|Xn)

= max
ω∈Θ

(

lnp(ω)L(ω)− ln

∫

Θ
p(θ)L(θ)dθ

)

−
(

lnp(θ)L(θ)− ln

∫

Θ
p(θ)L(θ)dθ

)

=max
ω∈Θ

lnp(ω)L(ω)− lnp(θ)L(θ).

Therefore, there is no need to normalize p(θ)L(θ), avoiding numerical
integration of p(θ)L(θ).

2. Maximizing lnp(θ)L(θ) is computationally workable since the maxima is
attained only inside Ω, where p(θ)L(θ) is quite smooth. Hence, Newton–
Raphson’s algorithm can carry out the maximization.

3. If we set an =maxω∈Θ lnp(ω|Xn)− εn, then An = {θ : lnp(θ)≥ an}. The
boundary {θ : lnp(θ)− an = 0} is a closed curve with dimension d− 1.

4. Moment and model selection. In this section, we discuss the problem
of moment and model selection. Suppose that we have p candidate moment
inequalities

Emj(X,θ)≥ 0, j = 1, . . . , p,

with a k-dimensional parameter vector θ = (θ1, . . . , θk)
T ∈Θ1×· · ·×Θk. The

moment selection problem refers to selecting the best subset of the moment
inequalities among all of the possible candidates (where there is some notion
of optimality), while the model selection procedure addresses the problem
of selecting the best model among all subsets of the parameter space where
some components of the parameter are set to zero. The possible moment
inequalities and corresponding subsets of the parameter space are known.
What is not known is which ones are the best.

Instead of selecting the moment inequalities and the parameter subspace
as two separate procedures, we select them simultaneously, as a combina-
tion. However, there are still two problems to consider: selecting the true
combination and, among the true combinations, selecting the optimal one,
in the sense that it should contain as many moment inequalities and as few
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structural parameters as possible. The selection procedure is based on the
maximum posterior criterion (MPC): we assign prior probabilities to each
candidate moment/model and then derive the posterior probabilities based
on the limited information likelihood described in Section 2, by integrating
out the structural and nuisance parameters (θ,λ). Finally, the optimal com-
bination is the one with the largest maximum posterior probability. We will
examine the asymptotic property of the optimal combination by establish-
ing the consistency of MPC. By consistency, we mean w.p.a.1, MPC will
select the true combination with the most moment inequalities and fewest
structural parameters (the simplest parameter subspace).

4.1. Selecting the true combination. Because of the feature of partial
identification, it is impossible to test whether each candidate moment in-
equality is true at the true parameter. Given a set of moment inequalities
and a parameter space, we can tell whether the moment inequalities define
a nonempty identified region on the parameter space.

Example 4.1 (Interval regression model). Suppose that an interval re-
gression model provides moment inequalities as follows:

E(Z1Y1)≤ E(Z1Y )≤E(Z1Y2);

E(Z2Y1)≤ E(Z2Y )≤E(Z2Y2).

We assume that the data-generating process is E(Y |X) = XT θ0, where
θ0 = (0.9,0)T is the true parameter and X1 ∼ uniform[−1,1], X2 = 1 a.s.

Furthermore, let
(Z1

Z2

)

=
(X1+1

1

)

and
(Y1
Y2

)

=
(Y+0.1(U1−1)
Y+0.1(U2+1)

)

, where U1 and U2

are uniform [−1,1] independently. θ0 is not partially identified by the mo-
ment inequality models. If we let (θ1, θ2)

T ∈ R
2 be the parameter vector,

then we have four moment inequalities:

1
3θ1 + θ2 ≥ 0.2;(4.1)

1
3θ1 + θ2 ≤ 0.4;(4.2)

θ2 ≥−0.1;(4.3)

θ2 ≤ 0.1.(4.4)

The region defined by (4.1)–(4.4) on R
2 gives the nonempty identified re-

gion for θ0 with a parallelogram boundary. However, if we set θ1 = 0, (4.1)
contradicts (4.4). Hence, in this case, (4.1)–(4.4) defines an empty region.

Let us define a combination Cs = (Ms1 ,Θs2) with a vector index s =
(s1, s2), s1 ∈ {1,2, . . . ,2p− 1} and s2 ∈ {1, . . . ,2k}. Here, Ms1 denotes a sub-
set of moments, for instance, Ms1 = {m1}, Ms1 = {m1,m2}, etc. There are
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then 2p− 1 such possible subsets. In addition, we denote by Θs2 the param-
eter subspace corresponding to the selected model. By definition, Θs2 is the
subset of vectors with one or more components fixed to be zero. There are
2k possible Θs2 ’s. (Note that we can select none of the parameters, in which
case the model is a reduced model, e.g., in Cox’s proportional hazard model;
if all of the parameters are set to be zero, we get the baseline model.) The
combination Cs combines both the candidate moment functions and the pa-
rameter subspace. When selecting a subset of moment inequalities, we also
specify a subspace of the structural parameter.

Example 4.2 (Example 4.1 continued). Let Θ1 ×Θ2 be the parameter
space for (θ1, θ2), chosen large enough so that {(θ1, θ2) : 0.2 ≤ 1

3θ1 + θ2 ≤
0.4,−0.1 ≤ θ2 ≤ 0.1} ⊂Θ1 ×Θ2. A scope of candidate combinations can be
any of the following:

{E(Z1X
T θ−Z1Y1)}, Θ1 ×Θ2;

{E(Z1X
T θ−Z1Y1),E(Z1Y2 −Z1X

T θ)}, Θ1 ×Θ2;

{E(Z2X
T θ−Z2Y1)}, {0} ×Θ2;

{E(Z1X
T θ−Z1Y1),E(Z1Y2 −Z1X

T θ),E(Z2Y2 −Z2X
T θ)}, Θ1 × {0};

...

{E(Z2Y2 −Z2X
T θ)}, Θ1 ×Θ2.

Definition 4.1. A combination Cs = (Ms1 ,Θs2) is true if and only if

inf
θ∈Θs2 ,λ∈[0,∞)m

‖EMs1(X,θ)− λ‖2 = 0,

where m denotes the number of candidate moment functions in Ms1 .

If we let Ωs = {θ ∈Θs2 :EMs1(X,θ)≥ 0} be the identified region defined
by Cs, then this definition is equivalent to saying that Ωs is not empty.

We place a discrete prior p(Cs) on all of the candidate combinations. In
practice, such a prior can be either uniform [i.e., p(Cs) =

1
2k(2p−1)

for all Cs]

or model-dependent, or obtained from previous studies. As in the previous
sections, let

λ=EMs1(X,θ)

with dim(λ) =m and use the following prior conditional on Cs:

p(λ|Cs) =
∏

i≤m
ψie

−ψT λ, λ > 0,
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where the ψi’s are the prespecified second-stage parameters. Let p(θ|Cs)
be the conditional prior of the parameter θ ∈Θs2 . The conditional limited
information likelihood is given by

L(Xn|θ,λ,Cs) =
1

√

det(2π/nV )
e−n/2(M̄s1 (θ)−λ)T V −1(M̄s1 (θ)−λ),

where M̄s1(θ) =
1
n

∑n
i=1Ms1(Xi, θ). The posterior of Cs can then be ob-

tained by integrating out θ and λ, which is proportional to the “integrated
likelihood,”

p(Cs|Xn)∝
∫ ∫

Θs2×[0,∞)m
L(Xn|θ,λ,Cs)p(θ|Cs)p(λ|Cs)p(Cs)dθ dλ.(4.5)

A remark on the “dθ” part of this integration: the integration is with re-
spect to the nonzero elements of θ ∈Θs2 , where Θs2 is the parameter space
of those free parameters only. For instance, suppose that the full parameter
is (θ1, θ2, θ3) ∈Θ1 ×Θ2 ×Θ3. Once we set θ3 = 0, then Θs2 =Θ1 ×Θ2 and
integrating over θ becomes a two-dimensional integration (w.r.t. θ1, θ2). Oth-
erwise, if we set Θs2 =Θ1×Θ2×{0} and still treat it as a three-dimensional
integration, Θs2 would have a zero Lebesgue measure and, as a result, the
integration would always be zero.

We make the following assumptions.

Assumption 4.1. The parameter space Θ of the full model is compact.

The next assumption is imposed on the prior of θ.

Assumption 4.2. If Cs is true, then p(θ ∈Ωs|Cs)> 0.

Assumption 4.3. p(Cs)> 0 for each combination Cs.

The following assumption implies that Ωs is nonempty and compact, given
that Cs is true.

Assumption 4.4. Emj(X,θ) is continuous on Θs for each mj in Cs.

Intuitively, we should select as many moment inequalities as possible since
the more moment inequalities there are, the smaller the identified region
is. However, if one or more of the selected moment inequalities are false,
the identified region is empty. The following theorem illustrates that the
posterior probability is exponentially small if the selected combination is
false.
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Theorem 4.1. For combination Cs = (Ms1 ,Θs2), under Assumptions
4.1–4.4:

1. if Cs is true, then, in probability

lim inf
n→∞

p(Cs|Xn)> 0;

2. if Cs is not true, then for some α > 0,

p(Cs|Xn) = op(e
−αn)p(Cs).

4.2. Selecting the optimal combination. The maximum posterior proce-
dure provides an optimality criterion to select the combination with the
largest posterior probability

C∗ = argmax
Cs

p(Cs|Xn).(4.6)

We are interested in studying the asymptotic properties of the optimal
C∗. We hope that the MPC will produce a desirable combination in the
following three senses. First, asymptotically, C∗ should be true. Second, it
is desirable that it should contain as many moment inequalities as possible
since, intuitively, the more moment inequalities we have, the smaller the
identified region is and hence we have more information about the true
parameter. Finally, the model should be as simple as possible.

We impose the following assumption in addition to Assumptions 4.1–4.4.

Assumption 4.5. Each true candidate combination Cs defines a connect-
ed Ωs.

We first consider using a (discrete) uniform prior for the candidate com-
binations: for all Cs,

p(Cs) =
1

2k(2p − 1)
.(4.7)

Although this seems to be a natural prior to use, we found examples
where it actually functions undesirably for model or moment selection. For
example, suppose that we want to compare the posterior probabilities of
two candidate combinations, C1

s = (M1
s1 ,Θ

1
s2) and C2

s = (M2
s1 ,Θ

2
s2), using

the Bayes factor

BF12 =
p(C1

s |Xn)

p(C2
s |Xn)

.

We fix Θ1
s2 =Θ2

s2 and assume M1
s1 ⊂M2

s1 , that is, the moment inequalities

of M1
s1 are strictly contained in the moment inequalities of M2

s1 . If both C
i
s,
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i = 1,2, are true, then the identified region Ω2
s defined by C2

s should be a
strict subset of Ω1

s defined by C1
s . As explained before, a smaller identified

region is preferable since it provides more precise information about the
true parameter. Hence, we hope that BF12 is asymptotically less than one if
the MPC criterion is consistent with this intuition. However, the following
theorem indicates that, if the uniform prior (4.7) is specified, then the result
is in exactly the opposite direction.

For a matrix M , define ‖H‖=
√

trace(HHT ).

Theorem 4.2. Suppose that Assumptions 4.1–4.5 are satisfied and a
uniform prior (4.7) is applied. Suppose that both Cis, i = 1,2, are true,
M1
s1 ⊂ M2

s1 and Θ1
s2 = Θ2

s2 , In addition, suppose that ψi satisfies

ψi < e−‖ψ‖·supΘ ‖Em(X,θ)‖, i= 1, . . . , p. Then, w.p.a.1,

BF12 > 1.

Here, ψi is the second-stage parameter of the exponential prior of λi.
In practice, a small ψ is preferable because it leads to a noninformative
prior on λ. However, Theorem 4.2 says that if ψ is small (satisfying ψi <
e−‖ψ‖·supΘ ‖Em(X,θ)‖, i= 1, . . . , p) and a uniform prior for the candidate com-
binations is used, then the result will be negative: a candidate with fewer
moment constraints has a larger posterior distribution. However, this is not
a warning about the method, but rather about the potential danger of the
seemingly innocent choice of the uniform prior on the candidate combina-
tions. With this prior, it will be shown in Appendix C that the posterior
of each true combination is of order Op(1) and, up to the leading order,
is proportional to the prior measure of the identified region, as well as the
product of the ψi’s. As more moment inequalities are added, the identified
region gets smaller. Also, more small ψi’s are added in the product term.
Both of these factors make the resulting posterior probability smaller.

We will address this problem either by using a more informative prior on
the candidate combinations (Approach 1) or by placing some uninformative
priors on some components of the parameters θ and λ (Approach 2). Either
way, the posterior of each candidate is no longer of order Op(1) and the order
of the optimal candidate’s posterior will be the largest, which overrides the
effects from the prior measure of the identified region and the product of
the ψi’s.

4.3. Prior selection for consistency of MPC. We propose two approaches
to address the problem illustrated in Theorem 4.2.

Approach 1. One approach is to change the priors of all the candidate
combinations. Instead of the uniform (equally likely) priors, we use unequal
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priors. Specifically, the priors are data-size-dependent and tend to encourage
those combinations with more moment inequalities and simpler parameter
structures. One such prior could be

p(Cs)∝ nα[dim(Ms)−dim(Θs)](4.8)

for some α > 0. This choice of prior encourages Cs with large dim(Ms)−
dim(Θs).

One needs be aware that although p(Cs)∝ en(dim(Ms)−dim(Θs) also reward
large values of dim(Ms)− dim(Θs), we do not recommend its use. This is
because we have shown earlier that p(Cs|Xn) = op(e

−αn)p(Cs), that is, the
posterior probability of a false combination is exponentially small. However,
if an exponentially large prior is used, it may override the “big gap” between
the false and true combination posteriors.

The drawback of the unequal prior (4.8) is that it is not a uniform one.
In Bayesian analysis, it is usually the nature of the data that determines the
properties of the posterior and the priors are usually chosen to be uninfor-
mative. One may consider using another approach to deriving the priors.

Approach 2. In this approach, we still use the discrete uniform (equally
likely) prior for the candidate combinations. However, we partition the pa-
rameters θ and λ into “restricted” and “unrestricted” parts, according to
the biases of the selected and unselected moment functions. Formally, let

λ=EM(X,θ),

where M(X,θ) = (m1(X,θ), . . . ,mp(X,θ))
T , the vector of all the candidate

moments, and θ = (θ1, . . . , θk)
T , the vector of full parameters supported on

Θ1×· · ·×Θk. Suppose that a combination Cs = (Ms1 ,Θs2) selectsmmoment
conditionsMs1 and leaves the rest of the moments (denoted byM c

s1) unused,
while selecting a submodel parameterized by θs ∈Θs2 , setting all of the other
components of θ (denoted by θcs) to be zero. One can view model selection as
placing a restriction on θ, while moment selection can be viewed as placing
a restriction on the bias λ.

Let λs be the subvector of λ corresponding to the selected moments. Let
λcs denote the remaining components of λ corresponding to M c

s1 . We then
have

EMs1(X,θs) = λs, λs ≥ 0,

EM c
s1(X,θs) = λcs, λcs ∈R

p−m.

The bias λs for the selected moments is restricted to be nonnegative, while
the bias λcs for the unselected moments is left unrestricted. Therefore, we
can define restricted parameters as (λs, θ

c
s), with restrictions

λs ≥ 0, θcs = 0.
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In addition, we call the remaining parameters (λcs, θs) unrestricted parame-
ters because (λcs, θs) ∈R

p−m ×Θs2 . [We have thus partitioned the moment
functions into M(X,θs) = (Ms1(X,θs)

T ,M c
s1(X,θs)

T )T and parameters into
λ= (λs, λ

c
s) and θ = (θs, θ

c
s).]

For the unrestricted (selected) parameter θs, let t= dim(θs). We release
the compactness assumption on the support of θs and assume it is supported
on R

t. We then place the following “working” priors on the unrestricted
parameters:

p(λcs|Cs)∼Np−m(0, σ
2
nIp−m),(4.9)

p(θs|Cs)∼Nt(0, nσ
2
nIt),(4.10)

whereNt denotes t-dimensional multivariate normal distribution. We require
that σn →∞ as n tends to infinity, but σn/e

αn → 0,∀α> 0. Here, It denotes
the t× t identity matrix. Since the variance of each component of λcs and θs
approaches infinity as the sample size tends to infinity, (4.9) and (4.10) tend
to be very flat. Hence, this choice of prior is uninformative. In addition, we
still assign an exponential prior to the restricted parameter λs,

We then include both selected Ms and unselected M c
s to construct the

limited information likelihood, which depends only on the unrestricted θs
since θcs = 0:

L(Xn|θs, λ,Cs) =
1

√

det(2π/nV )
e−n/2(M̄(θs)−λ)T V −1(M̄(θs)−λ),

where M̄(θs) =
1
n

∑n
i=1M(Xi, θs). The posterior of Cs can then be obtained

by integrating out θs and λ= (λTs , λ
cT
s )T , which is proportional to the “in-

tegrated likelihood”:

p(Cs|Xn)∝
∫ ∫

Θs2×[0,∞)m×Rp−m

L(Xn|θs, λ,Cs)p(θs|Cs)p(λs|Cs)p(λcs|Cs)

×p(Cs)dθs dλs dλcs.
Note that since multivariate normal priors are placed on the unrestricted

parameters, the parameter vector θs is no longer supported on a compact set.
As a result, to derive the large-sample properties of p(Cs|Xn) becomes much
harder than in the previous sections because EM(X,θ) may not be bounded
on the noncompact parameter space. Instead of providing a general proof,
we will study the problem for a specific model of Example 1.3 because this is
the most interesting example in the Introduction where we consider model
and moment selection. In this example, the model selection can correspond
to selecting the useful explanatory variables and the moment selection can
correspond to selecting the valid instrumental variables. The key feature of
this example is that the moment inequality functions are linearly dependent
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on θ. We point out that to establish consistency of Approach 2 in a more
general framework is possible, but would require additional assumptions that
are much more technical.

Assumption 4.6. Suppose that the moment inequalities are given by

EZ(Y2 −XT θ)≥ 0, EZ(XT θ− Y1)≥ 0,

where Y1 ≤ Y2, and Z is a vector of positive random variables. Assume that:

(i) rank(EZXT ) = dim(X);
(ii) there exists at least one true candidate combination;
(iii) each true candidate Cs defines a compact identified region.

This assumption rules out those candidates that lead to unbounded iden-
tified regions, in which case integrals can be infinite.

The following theorem shows that with either one of the two approaches
described above, asymptotically, the optimal C∗ can have all of the desirable
properties: it is true, it defines the smallest nonempty identified region and
it corresponds to the simplest model (with the smallest number of free pa-
rameters). We refer to this result as the consistency of maximum posterior
criterion for the Bayesian moment/model selection problem.

Theorem 4.3 (Consistency of MPC). Let

C∗ = argmax
Cs

p(Cs|Xn),

where p(Cs|Xn) is obtained from either one of the following:

1. prior (4.8) for candidate combinations, with Assumptions 4.1–4.5;
2. flat prior for candidate combinations, and parameter priors (4.9) and

(4.10), with Assumptions 4.2–4.6 for the instrumental variable interval
regression model (Example 1.3).

Then, w.p.a.1, C∗ satisfies:

1. it is true;
2. among all of the true combinations, it has the largest dim(Ms)−dim(Θs).

5. Monte Carlo experiments. This section presents some Monte Carlo
simulation results. We first provide evidence for the finite-sample behaviors
of the consistent estimators described in the previous sections as well as the
posterior distribution. We simulate the models described in Examples 1 and
2 in Chernozhukov, Hong and Tamer (2007). We then show simulated evi-
dence of the consistency of MPC for the moment/model selection problem.
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Table 1

Estimation based on posterior density

εn

√

n lnn ln lnn

n= 500 [−0.2841,5.2634] [−0.123,5.113] [−0.0389,4.702]
n= 1000 [−0.2362,5.2267] [−0.1135,5.0977] [−0.0342,4.9110]
n= 5000 [−0.1158,5.1233] [−0.0477,5.0476] [−0.0202,4.9779]

Example 5.1 (Interval data). Consider Example 1.1 described in Sec-
tion 2. The parameter of interest is θ =E(Y ) with moment inequalities

E(Y2 − θ)≥ 0, E(θ − Y1)≥ 0.

We set Y1 ∼ N(0,0.1) and Y2 ∼ N(5,0.1), then Ω = [0,5]. Y1 and Y2 are
generated independently and observations with Y1 > Y2 are discarded. We
also set ψ1 = 0.1, ψ2 = 0.5 and V = I , the identity matrix in the likelihood
function. In addition, we place a flat prior on θ. We report the estimated
identified interval of θ described both in Theorem 3.2 with g(θ) = θ and in
Theorem 3.3 for sample sizes N = 500, 1000, 5000 and various choices of
εn, πn.

Table 1 reports the estimation of Ω as in Theorem 3.3. To compare the
results corresponding to the choices of εn, for each interval [a, b], we calculate
γ = (a−0)2+(b−5)2. We find that ε= ln lnn performs better than the other
two choices since it has a lower γ value.

To construct the estimator based on the posterior c.d.f., we carry out
the Metropolis algorithm to draw B = 5000 samples from the posterior dis-
tribution, then calculate the πn-quantile of the empirical c.d.f. with vari-
ous choices of πn. For the Metropolis algorithm, we set initial value θ0 = 1
and a jump distribution θ̃ ∼ N(θj,0.5). Table 2 reports the findings with

πn = e−
√
n, n−1 and 1/ lnn. πn =

1
n appears to be a better choice compared

with other two. We also note that πn = 1/ lnn tends to zero too slow to
fully estimate the entire identified interval: the estimated interval shrinks
too much inside Ω.

Table 2

Estimation based on empirical c.d.f.

πn e
−

√
n 1

n

1

lnn

n= 500 [−0.0716,5.0418] [−0.0498,5.0069] [0.4048,3.3447]
n= 1000 [−0.0422,4.9983] [−0.0383,5.0164] [0.3304,3.2542]
n= 5000 [−0.0155,5.0098] [−0.0063,4.9927] [0.2717,3.8012]
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Fig. 1. Example 5.1: the posterior density function of θ.

In addition, Figure 1 plots the posterior density function of θ with two
choices of priors: a flat prior and an N(0,0.25) prior. Theoretically, one
needs to truncate the normal distribution so that the priors are supported
on a compact set. However, since the tail of the normal density function
is very thin and we can choose a very large parameter space, we believe a
normal prior is workable here. We see that when a flat prior is used, the
posterior density function is high on the entire identified interval [0,5], but
when the prior is set to be N(0,0.25), most posterior mass falls in [0,2],
which tends to underestimate the true identified interval. However, with
this more informative prior, the posterior provides more information about
the location of θ.

Example 5.2 (Interval outcomes in regression models). We simulate
the instrumental inequality model described in Example 1.3,

E(ZY1)≤E(ZXT )θ ≤E(ZY2),

where θ = (θ1, θ2)
T ,X = (X1,X2)

T and Y = (Y1, Y2)
T ∈ R

2. Generate X ∼
N2((1,1)

T , I2). Let Z1 =X1+X2 and Z2 =X1+2X2. Generate Y1 ∼N(3,0.1),
Y2 ∼N(6,0.1) independently. We discard a stack of generated data if either
Z1 or Z2 is negative. The identified region is fΩ= {θ : 2 ≤ θ1 + θ2 ≤ 4,9 ≤
4θ1 +5θ2 ≤ 18}, a two-dimensional region with parallelogram boundary. To
estimate this model, set ψ = (0.1,0.1,0.5,0.5)T , V = I . Fixing sample size
n= 500, we implement the Metropolis algorithm to draw B = 5000 samples
from the posterior distribution.

We first put a flat prior on θ. Figure 2 (left) displays the parallelogram
boundary of Ω, as well as 5000 draws from the posterior distribution. Most
of the draws fall uniformly inside the identified set, except for those close
to the two opposite angles of the parallelogram. We can see that there is a
small “bias” at the boundaries.
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Fig. 2. Example 5.2: the identified set and MCMC draws. Left: flat prior; right: prior
(5.1).

In order to show that when a more informative prior is applied, the pos-
terior distribution indeed provides more information about the location of
the true parameter inside the identified region, we repeat the same MCMC
procedure, but with prior distribution

θ1 ∼N(10,122), θ2 ∼N(−6,122),(5.1)

where θ1 and θ2 are a priori independent. This prior can be used when, for
instance, a previous study estimates that Eθ1 ≈ 10 and Eθ2 ≈−6, with the
same standard deviation, 12. Figure 2 (right) displays 5000 MCMC draws
from the posterior derived from prior (5.1). We see that the draws mostly
concentrate at the lower-right corner inside the identified region, which is
close to (10,−6), showing that our Bayesian approach indeed provides more
information on θ in this case than the frequentist method; the latter would
only estimate the identified region and provide a confidence set, but not tell
how θ is distributed inside it.

Example 5.3 (Moment selection: interval censored data). Suppose θ ∈
Θ⊂R. We consider four moment conditions:

EY1 ≥ θ;(5.2)

EY2 ≤ θ;(5.3)

EY3 ≤ θ;(5.4)

EY4 ≥ θ.(5.5)

If we assume that Θ= [0,10] and EY1 < 0<EY2 <EY3 <EY4 < 10, then for
fixed Θ, (5.2) is incorrect. We generate N i.i.d. data from Y1 ∼N(−1,0.1),
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Table 3

Posterior probabilities, σ2
n = n. Set of true moments = {(5.3), (5.4), (5.5)}

Moments (5.3), (5.4), (5.5) (5.3), (5.4) (5.3), (5.5) (5.4), (5.5) (5.3) (5.4) (5.5)

n= 100 0.0076 0.0863 0.0398 0.0222 0.3564 0.3304 0.1572

n= 1000 0.0546 0.1979 0.0893 0.0502 0.2568 0.2387 0.1125

n= 5000 0.1645 0.2711 0.1230 0.0677 0.1580 0.1466 0.0691

Y2 ∼ N(1,0.1), Y3 ∼ N(2,0.1) and Y4 ∼ N(3,0.1), with N = 100,1000 and
5000. We fix θ ∈Θ and use the prior described in Section 4.3, Approach 2 to
construct the posterior probabilities for 24 − 1 = 15 candidate combinations
of moments. We expect to see that each combination, including (5.2), should
have a posterior close to zero for large N and combination [(5.3), (5.4), (5.5)]
should have the highest posterior probability.

The simulation result shows that if σ2n = n, then although the posterior of
combinations including (5.2) goes to zero quickly, the posterior probability
of [(5.3), (5.4), (5.5)] is still quite small, even with N = 5000, and is not the
largest one among other true combinations (Table 3). Hence, the choice σ2n =
n is too conservative. However, when σ2n = n2, the simulation result is exactly
as expected. For N = 1000 and 5000, the combination [(5.3), (5.4), (5.5)] has
the largest posterior probability (Table 4). The combinations not listed are
those including (5.2). They all have almost zero posterior, as desired.

6. Discussion. In this paper, we assume that the interior of the identified
region int(Ω) is not empty. The case when int(Ω) is empty is more compli-
cated since there is no open set contained by Ω. When Ω has no interior,
moment inequality models may contain exact moment conditions:

Em1j(X,θ0)≥ 0, j = 1, . . . , r,

Em2j(X,θ0) = 0, j = 1, . . . , p.

The identified region is then defined by

Ω= {θ :Em1(X,θ)≥ 0,Em2(X,θ) = 0}.

Table 4

Posterior probabilities, σ2
n = n2. Set of true moments = {(5.3), (5.4), (5.5)}

Moments (5.3), (5.4), (5.5) (5.3), (5.4) (5.3), (5.5) (5.4), (5.5) (5.3) (5.4) (5.5)

n= 100 0.2344 0.2879 0.1290 0.0682 0.1192 0.1104 0.0509

n= 1000 0.8286 0.0952 0.0428 0.0241 0.0039 0.0036 0.0017

n= 5000 0.9615 0.0223 0.0101 0.0056 0.0002 0.0002 0.0001
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One of the problems one needs to take into account when considering the
asymptotic behaviors of the posterior distribution is that Ω has zero Lebesgue
measure, due to the loss of dimensionality. Thus, integrating over Ω always
produces zero. For reasons of brevity, we do not provide a detailed discussion
of this case. We point out that in this case, a dense subset in Ω still plays
an important role in characterizing the large-sample behaviors of the pos-
terior distribution. Define Ξ = {θ ∈ Ω:Em1(X,θ) > 0}. By assuming that
Ξ is dense in Ω, it can still be shown that there is a large “gap” between
the large-sample posterior behavior inside and outside the identified region.
Inside Ξ, instead of being bounded below by a positive constant, we can
show that the posterior density function is bounded by a polynomial rate.
However, it still goes to zero exponentially fast outside the identified region.
Interested readers are referred to our technical report Liao and Jiang (2008).

In partially identified models, there are two different ways to make infer-
ences: one is studying the identified region (including consistent estimation
and constructing confidence regions), while the other is directly studying
the true parameter. The simulation results demonstrate that when dealing
with the first goal, a flat prior is appropriate; to achieve the second goal,
an informative prior is preferable. Hence, in this case, one should include as
much information on the prior as possible. We believe our Bayesian method
is more advantageous than the frequentist method when dealing with the
second goal since the posterior distribution can provide more information
about the inside of the identified region because of the prior distribution.
The simulation results have verified our beliefs.

Recently, Moon and Schorfheide (2009) have considered the Bayesian ap-
proach to partially identified models when the model can involve three types
of parameters: the structural parameters of interest θ, a reduced-form pa-
rameter vector φ that is point-identified by data and also a vector of auxiliary
parameters α which links structural and reduced-form parameters via some
known function θ = θ(φ,α). For a particular value of φ, the auxiliary pa-
rameter takes its value in some set Aφ and the identified set can then be
written as

Θ(φ) = {θ = θ(φ,α) :α ∈Aφ}.
After specifying a prior distribution for both φ and α, and combining with
a likelihood function of φ, a joint posterior of α and φ is derived, which
also determines the posterior of θ via θ = θ(φ,α). The authors also derive
the Bayesian credible sets and compare them with frequentist confidence
intervals for a number of particular models where θ(φ,α) is linear in (φ,α)
and does not involve other functions of the unknown data distribution. How-
ever, one of the main challenges of their approach is that it often requires
reparametrizations between (θ,α) and (φ,α). Initially, it is often more nat-
ural to place a prior on the structural parameter θ and α|θ, but it may be
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inconvenient to derive the distribution p(φ) and p(α|φ) from p(θ,α). Another
challenge is that in some models that define the relation θ(φ,α) implicitly,
if dim(φ)> dim(θ), it is nontrivial to specify a prior distribution p(φ) and
p(α|φ) such that there is a solution θ = θ(φ,α). Also, if θ(φ,α) involves an
unknown distribution of the data-generating process, there is extra variance
to account for when estimating it.

In contrast to Moon and Schorfheide (2009), we proceed in a different
framework of moment inequalities, one which does not require modelling
the likelihood function. We construct the posterior distribution of the struc-
tural parameter using the limited information likelihood and then study
the frequentist properties of the posterior. In addition, we also study the
problem of model/moment selection, which is not addressed by Moon and
Schorfheide (2009).

Based on the posterior distribution, we can, in principle, construct a cred-
ible set for the true parameter conditional on the data with a required cov-
erage probability using our method (this is beyond the scope of this paper,
but it is straightforward, using the posterior density function). Moon and
Schorfheide (2009) have derived a Bayesian credible set for the true pa-
rameter and then compared it with the frequentist confidence interval and
concluded that while frequentist confidence intervals usually extend beyond
the boundaries of the identified set, the Bayesian credible sets tend to be
located in the interior of the identified set. In the framework of this paper,
it is also possible to derive a Bayesian credible set for the identified region
if one can express the identified region explicitly in terms of θ and λ, an
interesting topic for future work.

APPENDIX A: PROOFS FOR SECTION 2

A.1. Proof of Theorem 2.1. Let g(Ω)−ε = {x ∈ g(Ω) :d(x, g(Ω)c) ≥ ε},
g(Ω)+ε = {x ∈ g(Θ) :d(x, g(Ω)) ≤ ε}.

For all ε > 0, we proceed in two steps: first, show ∃N ∈N such that when
n >N , ∀ε > 0,

g(Ω)−ε ⊂ ĝ

and then show ∃N ∈N such that when n >N , ∀ε > 0, ĝ ⊂ g(Ω)+ε.
Let inf g(Ω) = infθ∈Ω g(θ) and supg(Ω) = supθ∈Ω g(θ).
Step I-1. Show that g(Ω) = [inf g(Ω), supg(Ω)]: obviously, g(Ω)⊂ [inf g(Ω),

supg(Ω)]. On the other hand, ∀x ∈ [inf g(Ω), sup g(Ω)], since Ω is compact,
∃θ1, θ2 ∈Ω so that g(θ1)≤ x≤ g(θ2). By assumptions, Ω is connected and g
is continuous. By the intermediate value theorem, ∃θ∗ ∈Ω, x= g(θ∗). Hence,
x ∈ g(Ω).

Step I-2. Show that ∃θ∗ ∈A and a ball B(θ∗,R∗) such that B(θ∗,R∗)⊂
{θ ∈ Θ:g(θ) ≤ infθ∈Ω g(Ω)−ε}: in fact, ∀ε > 0, it follows by step I-1 that
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g(Ω)−ε = [inf g(Ω) + ε, supg(Ω) − ε]. Hence, infθ∈Ω g(Ω)−ε = inf g(Ω) + ε.
Moreover, ∃θ1 ∈Ω, g(θ1)< inf g(Ω)+ε. By the continuity of g, there exists a
ball B(θ1,R) such that ∀ω ∈B(θ1,R), g(ω)< inf g(Ω)+ε. Hence, B(θ1,R)⊂
{θ ∈Θ:g(θ)≤ infθ∈Ω g(Ω)−ε}.

If θ1 ∈ A, then let θ∗ = θ1, R
∗ = R. If θ1 ∈ Ω \ A, since A is dense in

Ω, B(θ1,
R
2 ) ∩ A 6= φ. Arbitrarily pick up an element θ2 ∈ A ∩ B(θ1,

R
2 ),

∀θ ∈ B(θ2,
R
4 ), then d(θ, θ1) ≤ d(θ, θ2) + d(θ2, θ1) ≤ R

4 + R
2 < R. Hence, θ ∈

B(θ1,R). It follows that B(θ2,
R
4 )⊂B(θ1,R)⊂ {θ ∈Θ:g(θ)≤ infθ∈Ω g(Ω)−ε}

and θ2 ∈A. Let θ∗ = θ2, R
∗ = R

4 .
Step I-3. Show that g(Ω)−ε ⊂ ĝ for large n: by assumption 2 of The-

orem 2.1, for θ∗, there exists Rθ∗ and N ∈ N such that when ρ < Rθ∗

and n > N , P (θ ∈B(θ∗, ρ)|Xn)> πn w.p.a.1. If we let R1 =min{Rθ∗ ,R∗},
then B(θ∗,R1) ⊂ {θ ∈ Θ:g(θ) ≤ infθ∈Ω g(Ω)−ε}. Hence, when n > N , ∀x ∈
g(Ω)−ε,

Fg(x) = P (g(θ)≤ x|Xn)≥ P (g(θ)≤ inf g(Ω)−ε|Xn)

≥ P (θ ∈B(θ∗,R1)|Xn)> πn.

Hence, x≥ F−1
g (πn). Likewise, we can show that x≤ F−1(1−πn). Therefore,

g(Ω)−ε ⊂ [F−1
g (πn), F

−1
g (1− πn)].

Step II. Show for large n that ĝ ⊂ g(Ω)+ε: step I-1 implies that g(Ω)+ε =
[inf g(Ω) − ε, supg(Ω) + ε]. ∀x ∈ [g(Ω)+ε]c, either x < inf g(Ω) − ε or x >
supg(Ω) + ε. If x < inf g(Ω) − ε, then {θ ∈ Θ:g(θ) ≤ x} ⊂ {θ ∈ Θ:g(θ) ≤
inf g(Ω) − ε}. In addition, since g is continuous on Θ, ∃δ > 0 such that
when d(θ,Ω)≤ δ, g(θ)> inf g(Ω)−ε. Therefore, ∀θ ∈ {θ :g(θ)≤ inf g(Ω)−ε},
d(θ,Ω)> δ, which implies that {θ :g(θ)≤ inf g(Ω)−ε} ⊂ (Ωc)−δ . By assump-
tion 1 of Theorem 2.1, ∃N ∈N such that when n >N , P (θ ∈ (Ωc)−δ|Xn)<
πn w.p.a.1. It follows that

P (g(θ)≤ x|Xn)≤ P (g(θ)≤ inf g(Ω)− ε|Xn)≤ P (θ ∈ (Ωc)−δ|Xn)<πn.

Hence, x≤ F−1
g (πn). If x > supg(Ω)+ε, then, by a similar argument, we can

show that x≥ F−1
g (1− πn). Therefore, for n >N , if x ∈ [F−1

g (πn), F
−1
g (1−

πn)], then x ∈ g(Ω)+ε. This implies that ĝ ⊂ g(Ω)+ε.
Combining steps I and II, since ε is arbitrary, dH(ĝ, g(Ω))→ 0 in proba-

bility.

APPENDIX B: PROOFS FOR SECTION 3

Throughout the proofs, φ denotes the empty set and µ(A) denotes the
Lebesgue measure of set A.
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B.1. Proof of Lemma 3.1. Recall that (Ωc)−ε = {θ :d(θ,Ω) ≥ ε},
which is compact. ∀θ ∈ (Ωc)−ε, minj

Emj(X,θ)√
vjj

< 0. ∃θ∗ ∈ (Ωc)−ε such that

supθ∈(Ωc)−ε minj
Emj(X,θ)√

vjj
=minj

Emj(X,θ
∗)√

vjj
< 0. If we let

δ =− sup
θ∈(Ωc)−ε

min
j

Emj(X,θ)√
vjj

> 0,

then ∀θ ∈ (Ωc)−ε, minj
Emj(X,θ)√

vjj
≤ −δ < − δ

2 , which implies that (Ωc)−ε ⊂
Aδ/2. Hence, P (θ ∈ (Ωc)−ε|Xn)≤ P (θ ∈Aδ/2|Xn) = op(an).

B.2. Proof of Theorem 3.1. The following lemma is useful.

Lemma B.1. With probability 1,

P (Z ≥ 0)≥ 1− p ·Φ
(

−
√
nmin

j

{

m̄j(θ)− (V ψ)j/n√
vjj

})

,(B.1)

P (Z ≥ 0)≤Φ

(√
nmin

j

{

m̄j(θ)− (V ψ)j/n√
vjj

})

.(B.2)

Proof. Let Z = (Z1, . . . ,Zp)
T .

(B.1): P (Z ≥ 0) = 1−P

(

⋃

j≤p
Zj < 0

)

≥ 1−
p
∑

j=1

P (Zj < 0)

≥ 1−
p
∑

j=1

Φ

(

−
√
n
m̄j(θ)− (V ψ)j/n√

vjj

)

≥ 1− p ·Φ
(

−
√
nmin

j

{

m̄j(θ)− (V ψ)j/n√
vjj

})

.

(B.2): P (Z ≥ 0)≤min
j
P (Zj ≥ 0) = Φ

(√
nmin

j

{

m̄j(θ)− (V ψ)j/n√
vjj

})

.
�

Proof of Theorem 3.1.1. According to Lemma 3.1, it suffices to show
that, w.p.a.1, for any δ > 0, P (θ ∈ Aδ|Xn) = op(e

−αn) for some α > 0.
Define

Âδ =

{

θ :min
j

m̄j(X,θ)√
vjj

<−δ
}

.
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Then

P (θ ∈Aδ|Xn)∝
∫

Aδ

p(θ)L(θ)dθ

=

∫

Aδ∩Âδ

p(θ)L(θ)dθ+

∫

Aδ∩Âc
δ

p(θ)L(θ)dθ

≤
∫

Âδ

p(θ)L(θ)dθ+

∫

Aδ∩Âc
δ

p(θ)L(θ)dθ,

Aδ ∩ Âcδ =
{

θ :min
j

Emj(X,θ)√
vjj

<−δ
}

∩
{

θ :
m̄i(X,θ)√

vii
≥−δ, i= 1, . . . , p

}

=

(

p
⋃

j=1

{

θ :
Emj(X,θ)√

vjj
<−δ

}

)

∩
{

θ :
m̄i(X,θ)√

vii
≥−δ, i= 1, . . . , p

}

=

p
⋃

j=1

({

θ :
Emj(X,θ)√

vjj
<−δ

}

∩
{

θ :
m̄i(X,θ)√

vii
≥−δ, i= 1, . . . , p

})

=

p
⋃

j=1

Aj ,

where

Aj =

{

θ :
Emj(X,θ)√

vjj
<−δ

}

∩
{

θ :
m̄i(X,θ)√

vii
≥−δ, i= 1, . . . , p

}

.

By the weak law of large numbers, Aj → φ. Hence, µ(Aj) = 0 for any

j. Then µ(Aδ ∩ Âcδ) = µ(
⋃

j Aj) ≤
∑

j µ(Aj) = 0 w.p.a.1. Thus, w.p.a.1,

P (θ ∈Aδ|Xn)≤Const
∫

Âδ
p(θ)L(θ)dθ. In addition, w.p.a.1, for some ε >

0,

L(θ) = P (Z ≥ 0)e−ψ
T m̄(θ)+1/(2n)ψT V ψ

∏

i

ψi

≤Const ·P (Z ≥ 0)e‖ψ‖(supθ∈Θ ‖Em(X,θ)‖+ε)+ε
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≤Const ·Φ
(√

nmin
j

m̄j(X,θ)√
vjj

+Op

(

1√
n

))

.

Therefore, w.p.a.1,

P (θ ∈Aδ|Xn)≤Const ·
∫

Âδ

p(θ)Φ

(√
nmin

j

m̄j(X,θ)√
vjj

+Op

(

1√
n

))

dθ

≤Const ·Φ
(

−δ
√
n+Op

(

1√
n

))

≤Const ·Φ
(

−δ
2

√
n

)

= op(e
−δ2/8n).

2. Define

Ωn =

{

θ :min
j

m̄j(θ)√
vjj

> 0

}

.

By Fatou’s lemma, w.p.a.1,

lim inf
n→∞

∫

Ξ
p(θ)L(θ)dθ

≥
∫

Ξ
lim inf
n→∞

p(θ)L(θ)dθ ≥
∫

Ξ∩Ω∩Ωn

lim inf
n→∞

p(θ)L(θ)dθ

≥
∫

Ξ∩Ω∩Ωn

p(θ) lim inf
n→∞

(

1− p ·Φ
(

−
√
nmin

j

m̄j(θ)− (V ψ)j/n√
vjj

))

dθ

≥
∫

Ξ∩Ω∩Ωn

p(θ)

(

1− p lim sup
n→∞

·Φ
(

−
√
nmin

j

m̄j(θ)√
vjj

+Op

(

1√
n

)))

dθ

≥
∫

Ξ∩Ω∩Ωn

p(θ)

(

1− p lim sup
n→∞

·Φ
(

−
√
nmin

j

m̄j(θ)

2
√
vjj

))

dθ

≥ inf
θ∈Ω

p(θ)µ(Ξ∩Ω∩Ωn),

µ(Ξ ∩Ω∩Ωn)

= µ(Ξ∩Ω)− µ(Ξ∩Ω ∩Ωcn) = µ(Ξ)− µ(Ξ∩Ω ∩Ωcn)

≥ µ(Ξ)− µ(Ω∩Ωcn),

where

Ω∩Ωcn =Ω∩
(

⋃

j

{

θ :
m̄j(θ)√
vjj

≤ 0

})

=
⋃

j

(

Ω∩
{

θ :
m̄j(θ)√
vjj

≤ 0

})

.
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Therefore, w.p.a.1,

µ(Ω∩Ωcn)≤
p
∑

j=1

µ

(

Ω∩
{

θ :
m̄j(θ)√
vjj

≤ 0

})

≤
p
∑

j=1

µ(θ :Emj(X,θ) = 0) = 0.

It follows that µ(Ξ∩Ω∩Ωn)≥ µ(Ξ)> 0. Since p(θ) is also bounded away
from zero on Ω, lim infn→∞P (θ ∈ Ξ|Xn)> 0 in probability. �

B.3. Proof of Theorem 3.2. In Theorem 2.1, let A = int(Ω), dense in
Ω. ∀ω ∈ int(Ω), ∃R > 0 such that B(ω,R) ⊂ Ω. Since πn → 0 but P (θ ∈
B(ω,R)|Xn) is bounded away from 0 according to part 2 of Theorem 3.1,
we have that for large n, P (θ ∈B(ω,R)|Xn)> πn. Therefore, by Theorem
2.1,

[F−1
g (πn), F

−1
g (1− πn)]→ g(Ω) in probability.

B.4. Proof of Theorem 3.3. To show this theorem, the following lemmas
are useful.

Lemma B.2. In probability,

lim sup
n→∞

max
θ∈Θ

lnp(θ|Xn)<∞.(B.3)

∀ε > 0,

lim inf
n→∞

inf
θ∈Ω−ε

p(θ|Xn)> 0.(B.4)

Proof. (B.3): For some ε > 0,

lim sup
n→∞

sup
θ∈Θ

L(θ)≤
∏

j

ψje
‖ψ‖(supθ∈Θ ‖Em(X,θ)‖+ε)+ε <∞.

Thus,

lim sup
n→∞

max
θ∈Θ

lnp(θ|Xn) = Const · lim sup
n→∞

max
θ∈Θ

lnp(θ)L(θ)

≤C · ln
(

sup
θ∈Θ

p(θ) · lim sup
n→∞

sup
θ∈Θ

L(θ)
)

<∞.

(B.4): ∀ε > 0,

lim inf
n→∞

inf
θ∈Ω−ε

L(θ)≥Const · lim inf
n→∞

inf
θ∈Ω−ε

P (Zθ ≥ 0)e−‖ψ‖·(supθ∈Θ ‖Em(X,θ)‖+ε)

≥C · lim inf
n→∞

inf
θ∈Ω−ε

P (Zθ ≥ 0)> 0.

Here, C denotes a positive constant. The last inequality follows since Zθ ∼
Np(m̄(θ)− V ψ/n,V/n), Ω−ε ⊂Ω and Em(X,θ)≥ 0 on Ω. �
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Lemma B.3. In probability,

1. for all ε > 0,

lim sup
n→∞

sup
θ∈Ω−ε

|max
ω∈Θ

lnp(ω|Xn)− lnp(θ|Xn)|<∞;

2. if εn ≺ n, then ∀ε > 0,

εn
infθ∈(Ωc)−ε |lnp(θ|Xn)| → 0.

Proof. 1. For each n,

sup
θ∈Ω−ε

|max
ω∈Θ

lnp(ω|Xn)− lnp(θ|Xn)|=max
θ∈Θ

lnp(θ|Xn)− inf
θ∈Ω−ε

lnp(θ|Xn).

The result follows immediate from Lemma B.2.

2. W.p.a.1, lnp(θ|Xn)< 0 on (Ωc)−ε, hence

inf
θ∈(Ωc)−ε

|lnp(θ|Xn)|

=− sup
θ∈(Ωc)−ε

lnp(θ|Xn)

≥−Const · ln sup
θ∈(Ωc)−ε

L(θ)

≥−C · ln sup
θ∈(Ωc)−ε

P (Zθ ≥ 0)

≥−C · ln sup
θ∈(Ωc)−ε

Φ

(√
nmin

j

m̄j(θ)− (V ψ)j/n√
vjj

)

.

As shown in the proof of Lemma 3.1, there exists some δ > 0 such that

(Ωc)−ε ⊂Aδ , where Aδ = {θ :minj
Emj(X,θ)√

vjj
<−δ}. Thus, w.p.a.1,

inf
θ∈(Ωc)−ε

|lnp(θ|Xn)| ≥ −C · ln sup
θ∈Aδ

Φ

(√
nmin

j

m̄j(θ)− (V ψ)j/n√
vjj

)

≥−C · ln sup
θ∈Aδ

Φ

(√
nmin

j

m̄j(θ)

2
√
vjj

)

≥−C · lnΦ
(

−δ
2

√
n

)

≥−C1 · n+C2 lnn+C3,

where C1 > 0,C2 and C3 denote finite constants. This implies that
infθ∈(Ωc)−ε |lnp(θ|Xn)|=Op(n).
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�

Proof of Theorem 3.3. For all ε > 0, since εn →∞, we have, by part
1 of Lemma B.3, that ∃N ∈N such that when n>N , for any θ ∈Ω−ε,

max
ω∈Θ

lnp(ω|Xn)− lnp(θ|Xn)< εn, w.p.a.1.

Therefore, when n>N , Ω−ε ⊂An, which implies that lim supn→∞ supθ∈Ω d(θ,
An)≤ ε.

On the other hand, let M = lim infn→∞maxθ∈Θ lnp(θ|Xn). By (B.3) in
Lemma B.2, M <∞. Moreover, by (B.4),

M ≥ lim inf
n→∞

inf
θ∈Ω−ε

lnp(θ|Xn)≥ ln lim inf
n→∞

inf
θ∈Ω−ε

p(θ|Xn)>−∞.

Hence, M ∈R and, by the definition of M , ∃N1 ∈N such that when n >N1,

max
θ∈Θ

lnp(θ|Xn)>M − ε.

In addition, ∀θ ∈ (Ωc)−ε, p(θ|Xn) → 0 in probability. Thus, for large n,
lnp(θ|Xn)< 0 on (Ωc)−ε. ∃N2 ∈N such that when n>N2,

inf
θ∈(Ωc)−ε

|lnp(θ|Xn)|=− sup
θ∈(Ωc)−ε

lnp(θ|Xn)> εn − (M − ε),

where the inequality follows by part 2 of Lemma B.3. Therefore, when n >
N2,

sup
θ∈(Ωc)−ε

lnp(θ|Xn)<−εn + (M − ε).(B.5)

However, when n >max{N1,N2}, ∀θ ∈An = {θ :maxω∈Θ lnp(ω|Xn)− lnp(θ|
Xn)≤ εn}, lnp(θ|Xn)≥maxω∈Θ lnp(ω|Xn)− εn >M − ε− εn. Comparing
this with (B.5), we see that θ /∈ (Ωc)−ε. In other words, d(θ,Ω)< ε. It follows
that

lim sup
n→∞

sup
θ∈An

d(θ,Ω)≤ ε.

Since ε is arbitrary, dH(An,Ω)→ 0 in probability. �

APPENDIX C: PROOFS FOR SECTION 4

Lemma C.1. If we suppose that Cs = (Ms,Θs), Ωs = {θ ∈Θs :EMs(X,θ)≥
0} and Θs is compact, then, for some ξ ∈Θs and normalization parameter
C,

p lim
n→∞

p(Cs|Xn) =C

(

∏

j∈S

)

p(Cs)P (θ ∈Ωs|Cs)e−ψ
TEMs(X,ξ).(C.1)
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Proof. By the integral intermediate value theorem, the right-hand side
of (C.1) can be written as

RHS=C

(

∏

j∈S

)

p(Cs)

∫

Θs

1Ωsp(θ|Cs)e−ψ
TEMs(X,θ) dθ.(C.2)

On the other hand,

p(Cs|Xn) =C

∫ ∫

Θs×[0,∞)m

1
√

det((2π)/nV )

× e−n/2(M̄s(θ)−λ)T V −1(M̄s(θ)−λ)

×
(

∏

j∈S
ψj

)

e−ψ
T λp(θ|Cs)p(Cs)dθ dλ(C.3)

=C

(

∏

j∈S

)

p(Cs)

∫

Θs

p(θ|Cs)p(Zθ ≥ 0)

× e−ψ
T M̄s(θ)+1/(2n)ψT V ψ dθ,

where Zθ ∼ Nm(M̄s(θ) − V ψ
n ,

V
n ). Take the difference between (C.2) and

(C.3):

|p(Cs|Xn)−RHS|
≤Const ·p(Cs)

(C.4)

×
∫

Θs

p(θ|Cs)|1Ωsp(θ|Cs)e−ψ
TEMs(X,θ)

− p(Zθ ≥ 0)e−ψ
T M̄s(θ)+1/(2n)ψT V ψ|dθ.

If we let ∆(θ) = p(θ|Cs)|1Ωsp(θ|Cs)e−ψ
TEMs(X,θ) − p(Zθ ≥ 0) ×

e−ψ
T M̄s(θ)+1/(2n)ψT V ψ|, then (C.4) can be rewritten as

|p(Cs|Xn)−RHS|

≤Const ·p(Cs)
(
∫

U1

∆(θ)dθ+

∫

U2

∆(θ)dθ+

∫

U3

∆(θ)dθ

)

,

where

U1 = {θ ∈Θs :EMs(X,θ)> 0},
U2 = {θ ∈Θs :EMs(X,θ)≥ 0,Emj(X,θ) = 0 for some mj ∈Ms},
U3 = {θ ∈Θs : for some mj ∈Ms,Emj(X,θ)< 0}.

We next look at the integrations on Ui, i= 1,2,3.
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U1: Note that Ωs = {θ ∈Θs :EMs(X,θ)≥ 0} and Zθ ∼Nm(M̄s(θ)− V ψ
n ,

N
n ).

For any ε > 0, by the uniform weak law of large numbers, w.p.a.1,
supθ∈U1

|P (Zθ ≥ 0)− 1Ωs |< ε. Hence, for large n, w.p.a.1,

sup
θ∈U1

|1Ωsp(θ|Cs)e−ψ
TEMs(X,θ) − p(Zθ ≥ 0)e−ψ

T M̄s(θ)+1/(2n)ψT V ψ|< ε.

Hence,
∫

U1

∆(θ)dθ ≤ ε

∫

U1

p(θ|Cs)dθ ≤ ε.

U2: The Lebesgue measure of U2 = 0.
U3: ∀θ ∈U3, 1θ∈Ωs

= 0, hence,

∆(θ) = p(θ|Cs)P (Zθ ≥ 0)

× e−ψ
T M̄s(θ)+1/(2n)ψT V ψ ∀ε > 0,

w.p.a.1, P (Zθ ≥ 0)< ε, thus, for large n, w.p.a.1,

∫

U3

∆(θ)dθ ≤ ε

∫

U3

p(θ|Cs)e−ψ
T M̄s(θ) dθ

≤ e‖ψ‖·(supΘs
‖EMs(X,θ)‖+ε)ε.

We have thus shown that |p(Cs|Xn)−RHS|< Const ·p(Cs)ε, w.p.a.1, with
arbitrarily small ε. �

C.1. Proof of Theorem 4.1.

1. The result follows immediately from Lemma C.1 and Assumption 4.2.
2. For some normalization parameter C,

p(Cs|Xn) =C

∫ ∫

Θs×[0,∞)m

1
√

det(2π/nV )

× e−n/2(M̄s(θ)−λ)T V −1(M̄s(θ)−λ)

×
(

∏

j∈S
ψj

)

e−ψ
T λp(θ|Cs)p(Cs)dθ dλ.

Since V −1 is positive definite and Cs = (Ms,Θs) is not true, ∃τ > 0 such
that

inf
Θs×[0,∞)m

(EMs(X,θ)− λ)TV −1(EMs(X,θ)− λ)> τ.
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Hence, w.p.a.1, infΘs×[0,∞)m(M̄s(θ)−λ)TV −1(M̄s(θ)−λ)> τ . Therefore,
w.p.a.1,

p(Cs|Xn)≤ C

(

∏

j∈S
ψj

)

e−n/2τ

×
∫ ∫

Θs×[0,∞)m

1
√

det(2π/nV )

× e−ψ
T λp(θ|Cs)p(Cs)dθ dλ

≤ Const ·nme−n/2τp(Cs)
(

∏

S

ψj

)
∫

[0,∞)m
e−ψ

T λ dλ

≤ e−τ/4np(Cs).

C.2. Proof of Theorem 4.2. If we let ∆ denote the index set correspond-
ing to the moment inequalities that are selected by C2

s but not by C1
s ,

then p(C2
sX

n) has a
∏

j∈∆ψj term that does not show up in p(C1
s |Xn). If

p(C1
s ) = p(C2

s ), by Lemma C.1,

p lim
n→∞

BF12 =
P (θ ∈Ω1

s|C1
s )

P (θ ∈Ω2
s|C2

s )
· e

−ψT
1 EM

1
s (ξ1)

e−ψ
T
2 EM

2
s (ξ2)

·
∏

j∈∆

1

ψj
.

Note that since M i
s, i= 1,2, are both true, the integral intermediate value

theorem guarantees that ξi ∈ Ωis, hence EM
i
s(ξi)≥ 0 for i = 1,2. It follows

that

p lim
n→∞

BF12 ≥
P (θ ∈Ω1

s|C1
s )

P (θ ∈Ω2
s|C2

s )
· e−ψT

1 EM
1
s (ξ1) ·

∏

j∈∆

1

ψj

≥ P (θ ∈Ω1
s|C1

s )

P (θ ∈Ω2
s|C2

s )
· e−‖ψ1‖·supθ∈Θs

‖Em(X,θ)‖ ·
∏

j∈∆

1

ψj

≥ P (θ ∈Ω1
s|C1

s )

P (θ ∈Ω2
s|C2

s )

≥ 1.

The third inequality is due to Assumption 4.6 and the last inequality follows
from Ω2

s ⊂Ω1
s.

C.3. Proof of Theorem 4.3.

Approach 1. Suppose that p(Cs)∝ nα[dim(Ms)−dim(Θs)] for some α > 0.
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1. If C∗ is false, then by part 2 of Theorem 4.1, ∃β > 0 such that

p(C∗|Xn) = op(e
−βn)nα[dim(Ms)−dim(Θs)],

which is exponentially small. However, there exists at least one true com-
bination Cs, with posterior distribution bounded away from zero. Hence,
w.p.a.1, p(Cs|Xn)> p(C∗|Xn), a contradiction.

2. Since C∗ is true, Ω∗, the identified region which is defined by it satisfies
p(θ ∈ Ω∗|C∗) > 0. By Lemma C.1, p(C∗|Xn) = Op(n

α[dim(Ms)−dim(Θs)]).
It follows immediately from the definition of C∗ that C∗ has the largest
value of dim(Ms)− dim(Θs).

Approach 2. Suppose that p(Cs) is the uniform prior of Cs, and we put
multivariate normal priors on unrestricted parameters. For any candidate
Cs,

p(Cs|Xn)∝
∫ ∫ ∫

Θs×[0,∞)m×Rp−m

L(Xn|θs, λ,Cs)p(θs|Cs)p(λs|Cs)

× p(λcs|Cs)dθs dλs dλcs.
Let

L(Xn|θs, λs,Cs) =
∫

Rp−m

L(Xn|θs, λ,Cs)p(λcs|Cs)dλcs,(C.5)

L(Xn|θs,Cs) =
∫

[0,∞)m
L(Xn|θs, λs,Cs)p(λs|Cs)dλs.(C.6)

A tedious calculation shows that

L(Xn|θs, λs,Cs) =
1

√

det(2πSn)

× exp

{

−1

2
(M̄s(θ)− λs, M̄

c
s (θ))S

−1
n

(

M̄s(θ)− λs
M̄ c
s (θ)

)}

,

where

Sn =
V

n
+

(

0 0
0 σ2nIp−m

)

; we write S−1
n = n

(

Σ1 Σ3

ΣT3 Σ2

)

.

We can then calculate (C.6):

L(Xn|θs,Cs) = Const · 1
√

det(V2)
P (Zθ ≥ 0)eτ(θ),

where:

• V2 = V22 + nσ2nIp−m, with V22 being the lower diagonal block of V ;

• Zθ ∼Nm(M̄s(θ) + Σ−1
1 ΣT3 M̄

c
s (θ)− 1

nΣ
−1
1 ψ,

Σ−1
1
n );



MOMENT INEQUALITY MODELS 39

• τ(θ) =−n
2 M̄

c
s (θ)(V22 + nσ2nIp−m)

−1M̄ c
s (θ)− ψT [Σ−1

1 ΣT3 M̄
c
s (θ) + M̄s(θ)] +

1
2nψ

TΣ−1
1 ψ.

Given that ‖V ‖=O(1), one can show that ‖Σ1‖=O(1),‖Σ2‖=O( 1
nσ2n

) and

‖Σ3‖=O( 1
nσ2n

).

Define an operator of n−1 and M̄ (·),
g(n−1, M̄(θs)) = (nσ2n)

(dim(θs)+p−m)/2L(Xn|θs,Cs)p(θs|Cs),
where L(Xn|θs,Cs) is the integrated limited information likelihood of (θs,Cs),
by integrating out λ. We use a factor (nσ2n)

(dim(θs)+p−m)/2 for rescaling so
that

g(n−1, M̄(θs)) =Op(1).

Hence, w.p.a.1, without changing the orders, we have

g(n−1, M̄(θs)) = (nσ2n)
(dim(θs)+p−m)/2L(Xn|θs,Cs)p(θs|Cs)

= Const ·P (Zθ ≥ 0)eτ(θ)e−θ
T θ/(2nσ2n).

This yields that

p(Cs|Xn) = Const ·
∫

Θs

L(Xn|θs,Cs)p(θs|Cs)dθs

= (nσ2n)
−(dim(θs)+p−m)/2Const ·

∫

Θs

g(n−1, M̄(θs))dθs.

The following lemma is needed before proceeding.

Lemma C.2. Under Assumption 4.6, in probability,

lim
n→∞

∫

Θs2

g(n−1, M̄(θs))dθs =

∫

Θs2

lim
n→∞

g(n−1, M̄(θs))dθs.

The proof is given at the end of this section.
Hence, by Lemma C.2, if Cs is true, then, in probability,

lim
n→∞

∫

Θs

g(n−1, M̄(θs))dθs =

∫

Θs

lim
n→∞

g(n−1, M̄(θs))dθs

=Const ·
∫

{θ :EMs(θ)≥0}
e−ψ

TEMs(θ) dθ

=O(1).

The second equality is due to P (Zθ ≥ 0)
p→ 1{θ∈Θs :EMs(θ)≥0} and τ(θ)

p→
ψTEMs(θ). The last equality follows since {θ ∈Θs :EMs(θ)≥ 0} is the iden-
tified region of Cs and is assumed to be compact.
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Hence, p(Cs|Xn) =Op((nσ
2
n)

−(dim(θs)+p−m)/2), which follows from the fact
that the optimal C∗ that maximizes p(Cs|Xn) has the largest value of m−
dim(θs).

Proof of Lemma C.2. We apply the following theorem.

Theorem C.1 [Billingsley (1986), Theorem 16.8]. Let f(t,w) : (T×W )→
R be a real-valued function, absolutely integrable with respect to w. Suppose
that:

1. f(t,w) is continuous on a neighborhood of t= t0 for almost all w ∈W ;
2. there exists a function g :W →R

+ such that |f(t,w)| ≤ g(w) for any t ∈ T
and

∫

W g(w)dw <∞.

Then

lim
t→t0

∫

W
f(t,w)dw =

∫

W
lim
t→t0

f(t,w)dw.

Proof. g(n−1, M̄(θs)) = Const ·P (Zθ ≥ 0)eτ(θ)e−θ
T θ/(2σ2n). Here, the sam-

ple moments and θs are separated. If we let W̄ denote a vector of all the
sample moments W̄ = (ZY1,ZY2,ZXT ), then we can write g(n−1, M̄(θs)) =
g(n−1, W̄ , θs). It suffices to show that

lim
n→∞

∫

Θs

g(n−1, W̄ , θs)dθs =

∫

Θs

lim
n→∞

g(n−1, W̄ , θs)dθs.

We proceed by verifying the conditions in Theorem C.1.

Condition 1. Note that P (Zθ ≥ 0) →p 1Ωs for almost all θs, except
on a zero-measure set {θ :∃j,Emsj(θ) = 0}. Hence, it is straightforward to
verify that g(n−1, W̄ , θs) is continuous on a small neighborhood of (0,EW )
for almost all θs.

Condition 2. In this case, the moment inequality functions are all lin-
ear in θ, hence we can write M̄ c

s (θ) = a1+B1θ and M̄s(θ) = a2+B2θ, where
Bi are matrices. We can then show that, w.p.a.1 (we omit some intermediate
calculations),

eτ(θ) ≤Ce−α
T /(2nσ2n)θs−βT θs ,

where C > 0 and α, β are constant vectors. Hence, for large n,

eτ(θ)e−θ
T θ/(2nσ2n) ≤Ce−β

T θe−1/(2nσ2n)(θ+α/2)
T (θ+α/2)eα

Tα/(8nσ2n)

(C.7)
≤Const ·e−βT θ.
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Furthermore, since rank(EZXT ) = dim(X), there exists c > 0 such that
∀θs ∈ Θs, we can always find a component Emsk(θ) of EMs(θ) such that
Emsk(θ)<−c‖θ‖. Write θs = ωr, where ω and r denote the unit direction
vector and the radius of θs, respectively. Then Emsk(θ)<−cr (here, k and r

depend on θ, but c does not). For Zθ ∼Nm(EMs(θ)+Op(
1√
n
),

Σ−1
1
n ), ∀ε > 0,

w.p.a.1, for some vk > 0,

P (Zθ ≥ 0) = P (Nm(M̄s(θ) +Op(n
−1),Σ−1

1 /n)≥ 0)

≤ P (N(m̄sk(θ) +Op(n
−1), vk/n)≥ 0)

≤ P (N(Emsk(θ) + ε, vk/n)≥ 0)
(C.8)

= 1−Φ

(

−
√
n
Emsk(θ) + ε√

vk

)

≤ 1−Φ

(√
n(cr− ε)√

vk

)

≤
√

vk
n

1√
2π(cr− ε)

e−(1/2)(n/vk)(cr−ε)2 .

The last inequality follows from Mill’s ratio inequality. We can choose ε= cr
2 ,

then, for large n, P (Zθ ≥ 0)≤Const ·e−c2r2/(8vk). Combining with (C.7), we
obtain an integrable function to upper bound g(n−1, M̄(θs)): for all n,

g(n−1, M̄(θs))≤Const ·e−βT θe−c
2r2/(8vk)

=Const ·e−c2/(8vk)(r+4vkβ
Tω/c2)2e2vk(β

Tω)2/c2

≤Const ·e−c2/(8vk)(r+4vkβ
Tω/c2)2 .

To see that this upper bound function is integrable, write θ = rω, so
∫

Θs

e−c
2/(8vk)(r+4vkβ

Tω/c2)2 dθs =

∫ ∞

0
e−c

2/(8vk)(r+4vkβ
Tω/c2)2 dr

∮

{ω : ‖ω‖=1}
dω

≤
√

8πvk
c2

S({ω :‖ω‖= 1}),

where S({ω :‖ω‖= 1}) denotes the surface area of the unit ball {ω :‖ω‖= 1}.
�

Completion of the Proof of Theorem 4.3, Approach 2. It is left to show
that the posterior of a false combination is exponentially small. Let Cs =
(EMs,Θs) be a false combination. Then, by definition, we can write ξ =
infΘs×[0,∞)dim(λ)‖EMs(X,θ)−λ‖2 > 0. Define a compact ball B(dn) = {θ :‖θ‖ ≤
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dn} and Un = {θ :‖θ‖ > dn} for some radius dn →∞, with the rate to be
specified below. Then

p(Cs|Xn)∝
∫

B(dn)
L(Xn|θ,Cs)p(θs|Cs)dθs +

∫

Un

L(Xn|θ,Cs)p(θs|Cs)dθs.

On one hand, w.p.a.1, we can show that

L(Xn|θ,Cs)≤ Const ·e−ξn/2 det(Sn)−1/2e−nM̄
c
s (θ)

TΣT
3 M̄s(θ)−n/2M̄c

s (θ)
TΣ2M̄c

s (θ)

×
∫

λs≥0
e−(ψ−nΣ3M̄c

s (θ))
T λs dλs

≤ Const ·e−ξn/2 det(Sn)−1/2e−nM̄
c
s (θ)

TΣT
3 M̄s(θ).

Hence,
∫

B(dn)
L(Xn|θ,Cs)p(θs|Cs)dθs ≤Const(nσ2n)

−(dim(Θs)+p−m)/2e−ξn/2 ·
∫

B(ω,dn)
e−nM̄

c
s (θ)

TΣT
3 M̄s(θ) dθ. Note that ‖Σ3‖=O( 1

nσ2n
) and, in this example,

M̄(θ) is linear in θ, hence supθ∈B(dn) ‖nM̄ c
s (θ)

TΣT3 M̄s(θ)‖ ≤Const(dn/σn)
2,

w.p.a.1. Assuming that (dn/σn)
2 = op(n), we have ξn≻ ( dnσn )

2. Hence,
∫

B(dn)
L(Xn|θ,Cs)p(θs|Cs)dθs

≤ (nσ2n)
−(dim(Θs)+p−m)/2e−ξn/2ec(dn/σn)

2
ddim(Θs)
n

≤ e−αn

for some α> 0. On the other hand,
∫

Un

L(Xn|θ,Cs)p(θs|Cs)dθs

∝ (nσ2n)
−(dim(Θs)+p−m)/2

∫

Un

P (Zθ ≥ 0)eτ(θ)e−θ
T θ/(2nσ2n) dθ.

We use (C.7), eτ(θ)e−θ
T θ/(2nσ2n) ≤ Const ·e−βT θ, for some constant vector β.

Combining with (C.8) and using the same trick as before by writing θ =
ω‖θ‖, we have

∫

Un

L(Xn|θ,Cs)p(θs|Cs)dθs ≤Const ·
∫ ∞

dn

e−an(r+b)
2
dr · ddim(Θs)

n ,

where a > 0, b ∈ R are constant. By Mill’s ratio inequality, it is less than
e−αnd

2
n for some α> 0. �
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