[Article]

www.whxb.pku.edu.cn

Nb_2O_5/γ -Al₂O₃表面铌氧物种的分散状态与酸性特征

何杰^{1,2,*}范以宁²

('安徽理工大学化学工程学院,安徽淮南 232001; '南京大学化学化工学院,介观化学教育部重点实验室,南京 210093)

摘要: 负载型 Nb₂O₅ 是多种催化反应的有效催化剂. 以草酸铌为前驱物, γ-Al₂O₃ 为载体, 通过浸渍法制备不同 负载量的 Nb₂O₅/γ-Al₂O₃ 催化剂. 采用粉末 X 射线衍射(XRD)、激光拉曼光谱(LRS)和吡啶吸附傅立叶变换红外 (Py-IR)光谱方法对催化剂表面铌氧(NbO₃)物种的分散特征、酸性特征进行表征, 通过异丁烯(IB)与异丁醛(IBA) 缩合生成 2,5-二甲基-2,4-己二烯(DMHD)反应评价催化剂表面酸催化活性. 结果表明, Nb 在 γ-Al₂O₃ 表面的单层 分散容量(*Γ*_{Nb})为 7.6 μmol·m⁻², 与"嵌入模型"理论分析 Nb⁵⁺分散在 γ-Al₂O₃ 优先暴露晶面(110)上八面体空位中 的单层分散容量值 7.5 μmol·m⁻² 接近, 即分散的 Nb⁵⁺离子键合在 γ-Al₂O₃ 表面八面体空位中. 在低负载量下, 分散在 γ-Al₂O₃ 表面的 Nb₂O₅ 主要以孤立的 NbO₄ 物种形式通过 Nb—O—Al 键与载体表面键合, 与 LRS 结果一致. 处于孤立状态下的 NbO₄ 物种使表面 Lewis 酸位量下降. 随负载量的增加, 孤立的 NbO₄ 物种通过 Nb—O—Nb 键连接而聚集, 并形成表面 Brönsted 酸位, 随着 NbO₄ 聚集度增加, 表面 Brönsted 酸密度增加, 酸性增强, 对 IBA 与 IB 缩合反应催化活性增加. 当负载量超过单层分散容量时, NbO₄ 物种呈现三维聚集状态, DMHD 的转化频率(TOF)降低, 同时表面 Brönsted 酸性增强, 导致目标产物 DMHD 的选择性降低. Nb₂O₅/γ-Al₂O₃ 催化剂表面 Brönsted 酸特征与 NbO₄ 物种聚集状态密切相关.

关键词: 表面酸性; Nb₂O₂/γ-Al₂O₃; 表面 NbO_x 物种; 烯醛缩合反应 中图分类号: O643

Dispersion and Acidity of Niobia on Nb₂O₅/γ-Al₂O₃

HE Jie^{1,2,*} FAN Yi-Ning²

(¹School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui Province, P. R. China; ²Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China)

Abstract: Supported niobium pentoxide materials are effective catalysts for a variety of reactions. Nb₂O₅/ γ -Al₂O₃ catalysts with different Nb₂O₅ loadings were prepared by aqueous solution impregnation using niobium oxalate as a precursor on γ -Al₂O₃. The samples were characterized with respect to the dispersion state of the niobium oxide species on γ -Al₂O₃ by X-ray power diffraction (XRD) and laser Raman spectroscopy (LRS). The nature of the surface acidity was investigated using Fourier-transform infrared spectroscopy of pyridine adsorption (Py-IR). The catalytic activity of the as-prepared catalysts was evaluated by the condensation reaction of *iso*-butene (IB) and *iso*-butyraldehyde (IBA) to form 2,5-dimethyl-2,4-hexadiene (DMHD). Results reveal that the dispersion capacity (Γ _{Nb}) of Nb on γ -Al₂O₃ is about 7.6 µmol·m⁻². This value is almost identical to the density of the octahedral vacant sites of the preferentially exposed (110) plane (7.5 µmol·m⁻²) on the surface of the γ -Al₂O₃ support. Additionally, the "incorporated model" suggests that Nb⁵⁺ cations are located on the vacant sites of the (110) plane on γ -Al₂O₃ support through Nb—O—Al bonds at a loading well below that corresponding to monolayer dispersion. This is consistent with the result from LRS. The formation of isolated NbO_x species, which binds to the surface of the support through Nb—O—Al bonds, causes a

*Corresponding author. Email: jhe@aust.edu.cn; Tel: +86-554-6668497.

Received: August 28, 2009; Revised: December 3, 2009; Published on Web: January 4, 2010.

The project was supported by the National Key Basic Research Program of China (G1999022400).

国家重点基础研究发展计划(G1999022400)资助项目

[©] Editorial office of Acta Physico-Chimica Sinica

decrease in the amount of surface Lewis acid sites (LAS) on the Nb₂O₅/ γ -Al₂O₃ catalysts. With an increase in Nb₂O₅ loading, polymeric NbO_x species are formed by the Nb—O—Nb bridging of neighboring isolated NbO_x species and Brönsted acid sites (BAS) are generated. We found that the catalytic activity towards the condensation reaction of IB and IBA to form DMHD increased because the amount and strength of the Brönsted acid sites increased as the number of polymeric niobia species increased. When the loading exceeds the monolayer dispersion capacity, the catalytic activity (turnover frequency (TOF) of DMHD) decreased because of the formation of the three-dimensional NbO_x species. Additionally, the selectivity of DMHD decreased because of an increase in the strength of the Brönsted acid sites. We suggest that the strength of the Brönsted acid sites are related to the state of NbO_x on the surface of the Nb₂O₃/ γ -Al₂O₃ catalysts.

Key Words: Surface acidity; Nb₂O₃/γ-Al₂O₃; NbO₄ surface species; Olefin-aldehyde condensation

铌氧化物及其材料在许多催化应用领域均是有 效的催化剂[1-5],如酸催化、选择性氧化、光催化等. 除了直接用作催化剂外, 铌氧化物还用于二维氧化 铌覆盖层[6-11]、氧化物载体[12]或混合氧化物[13-14]以及 催化剂的促进剂四等.在铌氧化物众多的催化反应 中,酸催化是其重要应用之一.作为一种酸性氧化 物, Nb₂O₅的酸性与大多数氧化物不同, 晶相 Nb₂O₅ 几乎不呈现酸性,以无定型态存在的铌酸(Nb₂O₅· nH2O)具有较强的酸性且对一些反应具有较高的酸 催化活性,同时它具有很好的耐水性[16-17],如作为烯 烃水合、醇脱水、脂肪酸与醇酯化以及烯醛缩合等反 应的催化剂,因此,在有机合成及石油化工等领域铌 酸作为酸催化剂有非常良好的应用前景.将 Nb₂O₅ 负载于金属氧化物载体上,因表面 NbO,物种与载 体之间的相互作用使得表面铌氧化物的物理化学性 质与本体相明显不同,并随着载体性质、负载量以及 制备条件不同,表面铌氧化物的结构状态以及催化 性质发生变化^[7,9-10,18-19]. 负载型 Nb₂O₅ 主要起酸催化 剂的作用, 表面 NbO_x 物种的状态与酸特征之间存 在着密切的关系^[6,9-11], 而酸性特征与催化性能密切 联系.本研究在运用 X 射线衍射(XRD)相定量分析 等方法讨论 NbO₂ 物种在 TiO₂ 表面分散状态的基础 上¹⁹,进一步采用该方法并结合激光拉曼光谱(LRS) 技术以及"嵌入模型"研究 Nb2O5/y-Al2O3 催化剂表 面 NbO_x 物种的分散状态及其与载体/y-Al₂O₃ 之间 的相互作用;通过异丁烯(IB)与异丁醛(IBA)缩合生 成 2.5-二甲基-2.4-己二烯(DMHD)反应的酸催化性 能以及吡啶吸附红外光谱表征催化剂表面酸性特 征, 探讨 γ-Al₂O₃ 表面 NbO₄ 物种的分散状态、表面 酸性特征以及酸催化活性之间的关系.

1 实验部分

1.1 负载型 Nb₂O₅/γ-Al₂O₃ 催化剂制备

将一定量铌酸(AR)溶于 0.5 mol·L[¬] H₂C₂O₄ (AR) 溶液制成草酸铌溶液,将直径约为 2 mm 的 γ-Al₂O₃ 小球(天津化工研究院, S_{BET}=232 m²·g⁻¹)浸入计量的 上述溶液中,于 333-343 K 旋转蒸发除去水分,再 经 393 K 干燥 12 h,在设定温度空气气氛中焙烧一 定时间,得到负载型铌氧化物催化剂.高负载量的催 化剂由多次浸渍焙烧方法制备.

1.2 催化剂表征

X射线粉末衍射(XRD)测定在 Shimadzu XD-3A 型 X 射线衍射仪上进行, Cu Km λ=0.15418 nm, Ni 滤波, 管电压 35 kV, 管电流 15 mA. 以晶相 V₂O₅ 为 内标求得不同负载量样品中 Nb₂O₅(202)面与 V₂O₅ (001)面衍射峰的相对强度 IND-06(202)/IV-06(001),用外推法 求得 Nb₂O₅ 在 γ-Al₂O₃ 载体表面的单层分散容量. 红 外光谱测试在德国 Bruker 公司 Vector 22 型红外光 谱仪上进行. 催化剂样品经研磨后压成自支撑片(约 6 mg)于 573 K、10⁻³ Pa 下抽空处理 2 h, 降至室温后 摄取本底红外光谱.处理后的样品室温下吸附吡啶 饱和蒸汽(蒸汽压为 612 Pa) 30 min, 然后分别于298、 423 和 573 K 下抽空 1 h, 冷却至室温摄谱. 减去样 品的本底谱即得样品吸附吡啶的红外光谱(Py-IR). 分辨率 4.0 cm⁻¹, 扫描次数: 120. 激光拉曼光谱 (LRS)测试在法国 JY 公司 JY HR800 型激光 Raman 光谱仪上进行, 激发光源波长 546 nm.

1.3 催化性能评价

IB/IBA 缩合生成 DMHD 反应在一台直型不锈 钢反应装置上进行,反应条件见文献[20].

2 结果与讨论

实验考察 Nb₂O₅ 在 γ -Al₂O₃ 载体表面的分散状态以及晶相形成条件,将 Nb 负载量 Γ_{Nb} 为 19.5 μ mol·m⁻²的样品于不同温度焙烧 24 h 后,用 XRD 方法检测表面 Nb₂O₅ 晶相形成温度. 结果表明,在

873 K 及以下温度未观察到明显的晶态Nb₂O₅ 形成, 当焙烧温度达 973 K 时, Nb₂O₅ 在载体 γ-Al₂O₃ 表面 形成 γ-Nb₂O₅ 晶相.

不同负载量的 Nb₂O₃/ γ -Al₂O₃ 样品经 973 K 焙 烧 24 h 后的 XRD 测定结果示于图 1. 由图 1 可见, 当Nb 负载量在 6.5 μ mol·m⁻² 以下时,未见晶相 Nb₂O₅ 衍射峰,当 Nb 负载量达 9.7 μ mol·m⁻² 时, XRD 谱中出现了 Nb₂O₅ 衍射峰,且其强度随着 Nb₂O₅ 负载量增加而明显增强. 以晶相 V₂O₅ 为内标 物测定 Nb₂O₅/ γ -Al₂O₃ 中 Nb₂O₅(202)与 V₂O₅(001)面 衍射峰相对强度($I_{Nb_2O_5(202)}/I_{V_2O_5(001})$ 与 Nb₂O₅ 负载量的 关系,结果示于图 2. 用外推求得 Nb 在 γ -Al₂O₃ 表面 的单层分散容量为 7.6 μ mol·m⁻².

Nb₂O₅/γ-Al₂O₃催化剂 LRS 谱示于图 3. Nb 负载量在分散容量 7.6 µmol·m⁻²以下时, Nb₂O₅/γ-Al₂O₃催化剂仅在 906 cm⁻¹处出现一拉曼峰, 该峰归属于载体 γ-Al₂O₃表面八面体 NbO₆物种^[21]. 随负载量增加, 906 cm⁻¹拉曼峰位置峰强度增加, 这是由于载体表面 NbO₆物种浓度增加. 当负载量超过单层分散容量时, Nb₂O₅/γ-Al₂O₃催化剂在 600–700 cm⁻¹范围出现一个宽的拉曼峰(图 3d), 该峰与无定形铌酸和晶相 Nb₂O₅中聚集的 NbO₄物种 Nb—O—Nb 拉曼位移相近, 表明超出分散容量的这部分铌氧物种以三维聚集体或晶相形式存在, 结果与 XRD 结果一致.

研究氧化物与载体之间的相互作用,载体表面 结构是一个不可或缺的重要因素,嵌入模型^[23]从载 体的优先暴露晶面讨论氧化物在载体上的分散.该

图 1 不同负载量的 Nb₂O₅/γ-Al₂O₃样品 XRD 图 Fig.1 XRD patterns of Nb₂O₅/γ-Al₂O₃ catalysts with different Nb₂O₅ loading

 $\Gamma_{Nb}/(\mu mol \cdot m^{-2})$: (a) 6.5, (b) 9.7, (c) 13.0, (d) 16.2, (e) 19.5

图 2 Nb₂O₅/γ-Al₂O₃催化剂 XRD 定量分析结果 Fig.2 XRD quantitative phase analysis result for Nb₂O₅/γ-Al₂O₃ catalysts

模型认为,负载型离子化合物在载体表面上分散过 程是其阳离子进入载体表面空位,相伴的阴离子定 位其上以保持电中性.据此,离子型化合物在氧化 物载体表面的分散容量与载体表面空位密切相关.

γ-Al₂O₃ 具有缺陷尖晶石结构^[23],属立方晶系. 在每一个单胞中含有 32 个 O 原子和 64/3 个 Al 原 子,其中 Al 原子占据着四面体和八面体位置. Jimenez-Conzalez 等^[24]的研究表明,γ-Al₂O₃ 表面主要 (约90%)呈(110)面取向.该面有两层结构: C 层和 D 层,其离子排列方式示于图 4. Schuit 等^[25]认为 C 层 和 D 层所占比例相等. C 层单位网格中有 2 个八面 体(Oct.)空位和 6 个四面体(Tet.)空位,而 D 层单位 网格中有 2 个八面体空位和 8 个四面体空位.按 Al³⁺半径 0.055 nm 和 O²⁻半径 0.14 nm^[26]可计算出 γ-Al₂O₃ 的C 层和 D层结构中空位密度分别为 31.2 和

图 3 Nb₂O₅/γ-Al₂O₃ 催化剂的 LRS 谱 Fig.3 LRS of Nb₂O₅/γ-Al₂O₃ samples with different Nb₂O₅ loading

 $\Gamma_{\rm Nb}$ /(µmol·m⁻²): (a) 1.7, (b) 3.6, (c) 5.7, (d) 8.1

34.2 μmol·m⁻². 其中,八面体空位密度均为7.5 μmol·m⁻². 由于该载体表面存在四面体与八面体两 种空位,半径大小不同的阳离子分散组分的嵌入存 在着择位问题. 已经发现,分散的金属阳离子优先占 据γ-Al₂O₃表面的四面体空位还是八面体空位与被 分散的金属氧化物的性质和负载量以及样品的焙烧 温度有关^[27]. 图 3 结果表明, NbO_x 氧物种在γ-Al₂O₃ 表面呈六配位的八面体结构,可以认为 Nb⁵⁺进入八 面体空位而形成具有八面体结构的 NbO_x 物种. 根据 "嵌入模型",在γ-Al₂O₃ 的 C 层与 D 层每嵌入 1 个 Nb⁵⁺离子,将有 2.5 个 O²离子以保持电中性,当所有 可用的八面体空位都被 Nb⁵⁺离子占据后,覆盖 O²⁻离 子形成密置单层,如图 4 所示. 据此可以估算出 Nb 在γ-Al₂O₃表面的分散容量为 7.5 μmol·m⁻², 与实测 值甚为一致.

为探讨 Nb₂O₃/γ-Al₂O₃ 催化剂 NbO₄ 物种所处状态 与催化性能的关系,以 IB 与 IBA 缩合生成 DMHD 反应为探针,研究不同负载量的 Nb₂O₅/γ-Al₂O₃ 催化剂对 IB 与 IBA 缩合反应催化性能.由于 晶相 Nb₂O₅ 表面几乎不具有酸性,在制备 Nb₂O₅/γ-Al₂O₃ 系列催化剂,将焙烧温度控制在 773 K,焙烧 时间控制在 6 h,以保证负载量超过单层分散容量时 的 Nb₂O₅ 在 γ-Al₂O₃ 载体表面处于无定型状态.

载体 γ-Al₂O₃ 对 IB 与 IBA 缩合反应几乎不具 有催化活性,而晶相 Nb₂O₅ 虽有一定催化活性但反 应物IBA 的转化率(10.0%)和产物 DMHD 的选择性 (51.4%)均明显偏低,而在无定型形态的铌酸上, IBA 的转化率和产物 DMHD 的选择性分别为 66.2%和 86.8%,均比晶相 Nb₂O₅ 的高得多. 负载型 Nb₂O₅/γ-

图 4 Nb₂O₅ 在 γ -Al₂O₃ 的(110)面上分散的示意图 Fig.4 Schematic structure of the dispersed Nb₂O₅ on γ -Al₂O₃(110)

图 5 Nb₂O₅/γ-Al₂O₃催化剂的 IB 与 IBA 缩合生成 DMHD 的催化性能

Fig.5 Catalytic acitivity of Nb₂O₅/γ-Al₂O₃ catalysts for condensation reaction of IB and IBA to DMHD

Al₂O₃ 催化剂对 IB 与 IBA 缩合反应的催化活性和 产物 DMHD 的选择性与 Nb₂O₅ 负载量密切相关,结 果示于图 5. 以催化剂单位时间每个 Nb⁵⁺离子的 DMHD 产物收率估算催化活性(转化频率 TOF),结 果示于图 6. 随负载量的增加, TOF 呈线性上升,当 负载量超过单层分散容量时 TOF 值下降,这是催化 剂表面 NbO₂ 物种利用率降低的结果. 图中还显示, 随样品中 Nb 的负载量不同,这种变化表现为两条 斜率不同的直线线形变化, 两线相交于 7.5 μmol· m⁻² 附近, 与 XRD 测定和按嵌入模型所预测的 Nb₂O₅ 在 γ-Al₂O₃上的分散容量相近.

IB 与 IBA 缩合形成 DMHD 反应是一典型的酸 催化反应^[9,20,23]. 为考查负载量不同的 Nb₂O₅/γ-Al₂O₃ 催化剂中表面 NbO_x 物种酸催化性能的差异, 测定

图 6 Nb₂O₅/γ-Al₂O₃催化剂上 IB 与 IBA 缩合成 DMHD 的 TOF 随 Nb₂O₅ 负载量的变化

图 7 Nb₂O₅/γ-Al₂O₃催化剂表面酸特征与负载量的关系 Fig.7 Acidity feature of the Nb₂O₅/γ-Al₂O₃ catalyst with Nb₂O₅ loading

了一系列催化剂样品吸附吡啶后的红外光谱(Py-IR),分别以1440-1460和1535-1550 cm⁻¹特征吸收 峰面积与样品表面积之比表示 L 酸位和 B酸位相 对酸量,并以不同温度下的酸量变化反映酸强度变 化^[20,28],结果示于图 7. 从图 7 可见,载体 γ-Al₉O₃表 面未观察到 B 酸位,但具有最大的 L 酸位量.将 Nb₂O₅分散到 γ-Al₂O₃表面后,导致 Nb₂O₅/γ-Al₂O₃样 品表面可检测到的 L 酸位量下降, 这可能是 Nb⁵⁺填 充到 γ-Al₂O₃ 表面八面体空位的结果. 在单层分散 之前,样品表面L酸位量随着Nb₂O₅负载量的增加 先下降而后增加,在单层分散后,样品的表面酸特征 由 NbO_x 物种控制. Nb₂O₅ 负载到 γ-Al₂O₃ 表面后在 改变催化剂表面 L 酸位量的同时, 在较高的负载量 下形成了 B 酸位. Nb 负载量为 1.7 μmol·m⁻² 的样 品未检测到 PyH+振动吸收峰, 可以认为其表面 B 酸 位量低于检测范围,负载量为 3.6 µmol·m⁻² 的样品 表面 B 酸位量很小, 而负载量为 5.7 μmol·m⁻² 的样 品表面 B 酸位量明显增加, 此后, 增加 Nb₂O₅ 的负 载量,表面B酸位量进一步增加.

从图 7 还可见, Nb 负载量为 3.6 μmol·m⁻² 的样 品表面只有强度较弱的 B 酸位. 随着负载量的增加, 在 B 酸位浓度增加的同时强度增加, Nb 负载量为 13.9 μmol·m⁻² 的样品上出现了类似于铌酸表面较 强的 B 酸位. 因此, Nb₂O₃/γ-Al₂O₃ 催化剂表面的 B 酸位量与 Nb₂O₅ 在γ-Al₂O₃ 表面的分散状态密切相 关.

负载型氧化物催化剂表面的 B 酸位来自于其 表面的可质子化羟基. Kataoka 等^[29]认为,表面羟基 是否具有 B 酸酸性可通过其键强度大小来判断, 只有键强度在 0.1-0.4 v.u.(valence unit)之间的羟基 才有可能产生 B 酸性, 键强度越接近于 0.1 v.u., B 酸酸性越强. 在负载型 Nb₂O₅/γ-Al₂O₃ 催化剂表面 存在着 Al-OH、Nb-OH 端羟基和 Al-OH-Al、 Nb-OH-Al、Nb-OH-Nb 桥羟基^[1830-31]. 按Kataoka 等方法计算, 端羟基 Al-OH 和 Nb-OH 的键强度 分别为 1.50 和 1.17 v.u., 表明这些端羟基不具有 B 酸酸性. 桥羟基 Al-OH-Al、Nb-OH-Al 和 Nb-OH-Nb 的键强度分别为 1.0、0.67 和 0.33 v.u., 只 有 Nb-OH-Nb 桥羟基的键强度在 0.1-0.4 v.u.范 围,即在这些桥羟基中,只有 Nb-OH-Nb 桥羟基 呈现明显的 B 酸酸性, 而 Nb-OH-Al 桥羟基几乎 不呈现 B 酸性, 理论预测与实验结果一致. 这一结 果表明,在Nb₂O₂/γ-Al₂O₃催化剂表面,B酸位由 Nb-OH-Nb桥羟基产生. 在低负载量下, Nb₂O₅在 γ-Al₂O₃ 表面以孤立的 NbO_x 物种形式存在, 与表面 形成 Nb-O-Al 键, 因而没有可观测到的 B 酸位. 随着 Nb₂O₅ 负载量增加, 相邻的 Nb—O—Al 键间形 成 Nb-O-Nb 键,从而在催化剂表面形成了 B 酸 位.结果表明,当负载量增加到一定值时,载体 γ-Al₂O₃ 表面孤立的 NbO₂ 物种结合形成了聚集态 NbO, 的物种, 即形成 Nb-O-Nb 键, 这一值即为表 面 B 酸位形成的阈值,超过这一阈值表面出现了可 观测量的 B 酸位,并且 B 酸位量随 Nb2O5 负载量的 增加,表面NbO,物种聚集程度增加,B酸量增加,同 时 B 酸位强度增强. 在单层分散容量以上, NbO, 物 种聚集体向三维方向增长,形成了多层 Nb-O-Nb 键结构,结果每一个 Nb 原子周围的 Nb 原子数增 加,有利于 B 酸位的形成,表面 B 酸位增加,强度增 强,并出现了较强的 B 酸位,具有无定型体相结构 的铌酸(Nb₂O₅·nH₂O)具有最大的表面 B 酸位量和最 强的 B 酸强度.

IB 与 IBA 缩合生成 DMHD 的反应是 B 酸催 化反应^[20,23],催化剂表面 B 酸位量与催化活性呈现 良好的相关性,通过比较图 5 与图 7 结果可以看出 这一相关性,即在 Nb₂O₃/γ-Al₂O₃ 催化剂上,随着 Nb₂O₅ 负载量的增加,表面 Nb—O—Nb 物种增加, 表面 B 酸位量增加,导致 IB 与 IBA 反应生成 DMHD 的 TOF 值增加. 在单层分散容量以上,由于 表面形成了较强的 B 酸位,使 DMHD 的选择性降 低.我们认为,在 IB 与 IBA 缩合生成 DMHD 的反 应中,聚集状态 NbO₄ 物种形成的 Nb—OH—Nb 桥 羟基比孤立的 NbO₄ 物种形成的 Nb—OH—Al 桥羟 基具有更高的催化活性.

3 结 论

(1)由 XRD 定量分析方法测得 Nb 在 γ-Al₂O₃ 表面的单层分散容量为 7.6 μmol·m⁻²,与"嵌入模型"按 Nb⁵⁺离子进入 γ-Al₂O₃ 优先暴露面(110)面 C 层和 D 层的八面体空位估算值7.5 μmol·m⁻² 一致.

(2)当 Nb₂O₅ 的负载量远低于其分散容量时,高 度分散于 γ-Al₂O₃表面八面体空位的 NbO_x 物种主 要通过 Nb—O—Al 键与 γ-Al₂O₃表面连接,随着负 载量的增加,孤立的 NbO_x 物种倾向于与近邻的 NbO_x 通过 Nb—O—Nb 键相连而聚合.当 Nb₂O₅ 的 负载量超过其单层分散容量,表面 NbO_x 物种通过 Nb—O—Nb 键聚合形成三维聚集态 NbO_x 物种结 构.

(3) Nb₂O₅/γ-Al₂O₃ 催化剂表面的 B 酸位特征与 载体表面 NbO_x 物种聚集状态密切相关.只有聚集 状态的 NbO_x 物种形成的 Nb—OH—Nb 桥羟基才呈 现明显的 B 酸酸性.随着负载量增加, NbO_x 物种聚 合度增大,更多的 Nb—O—Al 键转化为 Nb—O— Nb 键,表面 B 酸酸量增加,强度增强, IB 与IBA 缩 合形成 DMHD 转化频率(TOF)增加.

(4) 当 Nb₂O₅ 的负载量超过其单层分散容量, 其中只有部分 NbO_x 物种位于表面, 与二维 NbO_x 物种相比较其表面利用率下降, Nb₂O₅/γ-Al₂O₃ 催化 剂活性(TOF)下降, 同时表面出现较强的 B 酸位, 导 致DMHD 的选择性降低.

References

- 1 Izabela, N.; Maria, Z. Chem. Rev., 1999, 99: 3603
- 2 Ziolek, M. Catal. Today, 2003, 78: 47
- 3 Tanabe, K. Catal. Today, 2003, 78: 65
- Ding, Q. P.; Yuan, Y. P.; Xiong, X.; Li, R. P.; Huang, H. B.; Li, Z.
 S.; Yu, T.; Zou, Z. G.; Yang, S. G. J. Phys. Chem. C, 2008, 112: 18846
- Jang, J. S.; Kim, H. G.; Reddy, V. R.; Bae, S. W.; Ji, S. M.; Lee, J.
 S. J. Catal., 2005, 231: 213
- 6 Abdel-Rehim, M.; Santos, A. C. B.; Camorim, V. L. L.; Faro Jr., A. C. Appl. Catal. A-Gen., 2006, 305: 211
- 7 Onfroy, T.; Manoilova, O. V.; Bukallah, S. B.; Hercules, D. M.; Clet, G.; Houalla, M. Appl. Catal. A-Gen., 2007, 316: 184
- 8 Braga, V. S.; Dias, J. A.; Dias, S. C. L.; Macedo, J. L. Chem.

Mater., 2005, 17: 690

- 9 He, J.; Fan, Y. N.; Qiu, J. H.; Chen, Y. Acta Chim. Sin., 2004, 62:
 1311 [何 杰,范以宁,邱金恒,陈 懿. 化学学报, 2004, 62:
 1311]
- Onfroy, T.; Clet, G.; Houalla, M. J. Phys. Chem. B, 2005, 109: 14588
- Sumiya, S.; Oumi, Y.; Sadakane, M.; Sano, T. Appl. Catal. A-Gen., 2009, 365: 261
- Chary, K. V. R.; Srikanth, C. S.; Rao, V. V. Catal. Commun., 2009, 10: 459
- Carreon, M. A.; Guliants, V. V.; Guerrero-Perez, M. O.; Baöares, M. A. *Catal. Commun.*, **2009**, **10**: 416
- Martos, M.; Julián, B.; Dehouli, H.; Gourier, D.; Cordoncillo, E.;
 Escribano, P. J. Solid State Chem., 2007, 180 : 679
- Guerrero-Pérez, M. O.; Bañares, M. A. Catal. Today, 2009, 142: 245
- 16 Tanabe, K.; Okazaki, S. Appl. Catal. A-Gen., 1995, 133: 191
- 17 Okuhara, T. Chem. Rev., 2002, 102: 3641
- Burcham, L. J.; Datka, J.; Wachs, I. E. J. Phys. Chem. B, 1999, 103: 6015
- Carniti, P.; Gervasini, A.; Marzo, M. J. Phys. Chem. C, 2008, 112: 14064
- 20 He, J.; Fang, Y. N.; Qiu, J. H. Acta Petrolei Sinica (Petroleum Processing Scetion), 2006, 22: 18 [何 杰, 范以宁, 邱金恒. 石油学报(石油加工), 2006, 22: 18]
- 21 Jehng, J. M.; Wachs, I. E. J. Phys. Chem., 1991, 95: 7373
- Dong, L.; Chen, Y. Chin. J. Inorg. Chem., 2000, 16: 250
 (董 林,陈 懿. 无机化学学报, 2000, 16: 250)
- 23 Chen, Y.; Zhang, L. F. Catal. Lett., 1992, 12: 51
- 24 Jimenez-Conzalez, J.; Schmeiber, D. Surf. Sci., 1991, 250: 59
- 25 Schuit, G. A.; Gates, B. C. AIChE J., 1973, 19: 417
- 26 Zhang, X. Y. Handbook of applied chemistry. Beijing: National Defense Industry Press, 1988: 25 [张向宇. 应用化学手册. 北京: 国防工业出版社, 1988: 25]
- 27 Xia, W. S.; Chen, Y.; Wan, H. L. J. Mol. Catal. A-Chem., 1999, 138: 185
- 28 He, J.; Fan, Y. N.; Qiu, J. H.; Chen, Y. Chin. J. Inorg. Chem.,
 2004, 20: 789 [何 杰,范以宁,邱金恒,陈 懿. 无机化学学报, 2004, 20: 789]
- 29 Kataoka, T.; Dumesic, J. A. J. Catal., 1988, 112: 66
- Bernholc, J.; Horsley, J. A.; Murrell, L. L.; Sherman, L. G.; Soled,
 S. J. Phys. Chem., 1987, 91: 1526
- Turek, A. M.; Wachs, I. E.; DeCanio, E. J. Phys. Chem., 1992, 96: 5000