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Abstract We revisit the adaptive Lasso in a high-dimensional linear model,
and provide bounds for its prediction error and for its number of false positive
selections. We compare the adaptive Lasso with an “oracle” that trades off
approximation error against an ℓ0-penalty. Considering prediction error and
false positives simultaneously is a way to study variable selection performance in
settings where non-zero regression coefficients can be smaller than the detection
limit. We show that an appropriate choice of the tuning parameter yields a
prediction error of the same order as that of the least squares refitted initial
Lasso after thresholding, while the number of false positives is small, depending
on the size of the trimmed harmonic mean of the oracle coefficients.
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1 Introduction

We consider the linear model

Y = Xβ + ǫ,

where β ∈ R
p is a vector of coefficients, X is an (n×p)-design matrix, and Y is

an n-vector of noisy observations, ǫ being the noise term. The design matrix X
is treated as fixed. The Gram matrix is Σ := XTX/n. We assume throughout
the normalization Σj,j = 1 for all j ∈ {1, . . . , p}.
We examine the case p ≥ n (i.e., a high-dimensional situation). Regularized es-
timation with the ℓ1-norm penalty, also known as the Lasso
(Tibshirani [1996]), refers to the following convex optimization problem:

β̂ := argmin
β

{

‖Y −Xβ‖22/n+ λ‖β‖1
}

, (1)

where λ > 0 is a penalization parameter.

Regularization with ℓ1-penalization in high-dimensional scenarios has become
extremely popular. The methods are easy to use, due to recent progress in
specifically tailored convex optimization (Meier et al. [2008], Friedman et al.
[2010]).

Consistency results for the prediction error can be found in Greenshtein and Ritov
[2004]. The prediction error of the Lasso is asymptotically oracle optimal
under some conditions on the design matrix X, see e.g. van de Geer [2008],
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Bickel et al. [2009], Koltchinskii [2009a,b] where also estimation in terms of the
ℓ1- or ℓ2-loss is considered. The “restricted eigenvalue condition” of Bickel et al.
[2009] (see also Koltchinskii [2009a,b]) plays a key role here. Candès and Plan
[2009] use a different approach, where assumptions on the set of true coefficients
allow for a major relaxation of the incoherence condition.

For consistent variable selection with the Lasso, it is known that the so-called
“neighborhood stability condition” (Meinshausen and Bühlmann [2006]) for the
design matrix, which has been re-formulated in a nicer form as the “irrepre-
sentable condition” (Zhao and Yu [2006]), is sufficient and essentially necessary.
Under certain “incoherence conditions”, Wainwright [2007, 2009] analyzes the
smallest sample size needed to recover a sparse signal. Because irrepresentable
conditions or incoherence conditions are restrictive - they are much stronger
than restricted eigenvalue conditions - (see van de Geer and Bühlmann [2009]
for a comparison), we conclude that the Lasso for variable selection only works
in a rather narrow range of problems, excluding cases where the design exhibits
strong (empirical) correlations.

There is also a bias problem with ℓ1-penalization, due to the shrinking of the
estimates which correspond to true signal variables A discussion can be found in
Zou [2006], Meinshausen [2007]. Regularization with the ℓq-“norm” with q < 1
would mitigate some of the bias problems but are computationally infeasible as
the penalty is non-convex. As an interesting alternative, one can consider multi-
step procedures where each of the steps involves a convex optimization only. A
prime example is the adaptive Lasso which is a two-step algorithm and whose
repeated application corresponds in some “loose” sense to a non-convex penal-
ization scheme (Zou and Li [2008]). The adaptive Lasso was originally proposed
by Zou [2006]. He analyzed the case where p is fixed. Further progress in the
high-dimensional scenario has been achieved by Huang et al. [2008]. Under a
rather strong mutual incoherence condition between every pair of relevant and
irrelevant covariables, they prove that the adaptive Lasso recovers the correct
model and has an oracle property.

Meinshausen and Yu [2009] examined the variable selection property of the
Lasso followed by a thresholding procedure, when all non-zero components are
large enough. Under a relaxed incoherence assumption, they show that the
estimator is still consistent in the ℓ2-norm sense. In addition, they show it is
possible to achieve variable selection consistency. Thresholding and multistage
procedures are also considered in Candès et al. [2006]. In Zhou [2009, 2010],
it is shown that a multi-step thresholding procedure can accurately estimate a
sparse vector β ∈ R

p under the restricted eigenvalue condition of Bickel et al.
[2009]. The two-stage procedure in Zhang [2009] applies “ selective penaliza-
tion” in the second stage. This procedure is studied assuming incoherence
conditions. A more general framework for multi-stage variable selection was
studied by Wasserman and Roeder [2009]. Their approach controls the proba-
bility of false positives (type I error) but pays a price in terms of false negatives
(type II error).

A key motivation of our work is to continue the exploration of the computa-
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tionally tractable adaptive Lasso for variable selection, without requiring the
stringent irrepresentable conditions or incoherence conditions on the design ma-
trix X. Furthermore, we avoid assumptions saying that the minimal non-zero
coefficients βtrue of the “true” regression are “sufficiently large” since allowing
for small non-zero regression coefficients appears to be much more realistic.
Consequently, it is impossible to infer the true underlying active set

Strue = {j : βj,true 6= 0},

since co-variables j whose corresponding absolute coefficient |βj,true| is below
a detection limit cannot be inferred from data (say with probability tending
to 1 as n → ∞). Thus, we have to tolerate some false negative selections, i.e.
variables from Strue which are not selected by the statistical estimator.

To study and quantify the variable selection property of an estimator, we con-
sider its prediction error together with its number of false positive selections.
The prediction error is closely tied to false negative selections, as for example
described in Lemma 5.2 and the remarks following it, and hence, looking at
prediction error and false positive selections together translates to performance
for variable selection in settings where we do not make any assumptions on the
size of minj∈Strue |βj,true|.

2 The adaptive Lasso and its target

The adaptive Lasso is

β̂adap := argmin
β

{

‖Y −Xβ‖22/n + λinitλadap

p
∑

j=1

|βj |
|β̂j,init|

}

. (2)

Here, β̂init is the one-stage Lasso defined in (1), with initial tuning parameter
λ = λinit, and λadap > 0 is the tuning parameter for the second stage. Note

that when |β̂j,init| = 0, we exclude variable j in the second stage.

We write f̂init := Xβ̂init and f̂adap := Xβ̂adap, with active sets Ŝinit := {j :

β̂j,init 6= 0} and Ŝadap := {j : β̂j,adap 6= 0}, respectively.
The sparse object to recover may be the “true” unknown parameter βtrue ∈
R
p of the linear regression. More generally, we aim at recovering a sparse

approximation of
IEY := f0,

when the regression f0 itself is not necessarily sparse. As we only consider
estimation in a linear model and use penalized least squares loss, we can (by a
projection argument) without loss of generality assume that f0 is linear, say

f0 = Xβtrue.
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Variable selection with the adaptive Lasso is generally only studied under the
assumption that the true underlying signal f0 is sparse. It may however well
be that many of the |βj,true| are non-zero, but very small. Thus, its active set

Strue = {j : βj,true 6= 0}

may be quite large, and not the set we want to recover.

We believe that an extension to the case where f0 is only “approximately”
sparse, better reflects the true state of nature, and will highlight the role of
assumptions on the size of the coefficients. We then need to decide what we
are actually targeting at. There are various sensible possibilities. Our proposal
is to target at the approximation of f0 that trades off the number of non-zero
coefficients against fit. It is defined as follows.

For a set S and for β ∈ R
p, we let

βj,S := βj l{j ∈ S}, j = 1, . . . , p.

Given a set of indices S ⊂ {1, . . . , p}, the best approximation of f0 using only
variables in S is

fS = XbS := arg min
f=XβS

‖f − f0‖2.

Thus, fS is the projection of f0 on the span of the variables in S. Our target is
now the projection fS0 , where

S0 := argmin
S

{

‖fS − f0‖22/n+ 7λ2init|S|/φ2(6, S)
}

.

Here, |S| denotes the size of S. Moreover, φ2(6, S) is a “restricted eigenvalue”
(see Section 4 for its definition), and the constants are chosen in relation with
the oracle result (see Lemma 6.1). In other words, fS0 is the optimal ℓ0-penalized
approximation, albeit that it is discounted by the restricted eigenvalue φ2(6, S0).

We refer to fS0 as the “oracle”. The set S0 is called the active set of fS0 , and
b0 = bS0 are its coefficients, i.e.,

fS0 = Xb0.

The choice of the projection fS0 = Xb0 as “target” is relatively arbitrary. It
can be easily verified that in what follows, one may replace b0 by any other
vector β0, provided one also replaces ‖β̂init − b0‖q by ‖β̂init −β0‖q (q ≥ 1). The

vector b0 is a natural candidate for β0 (as β̂init is close to b
0, see Lemma 5.1 and

Corollary 6.1). One may also argue that another natural candidate to target
at is (βtrue)Sδ

true
, where δ > 0 is some threshold, and Sδ

true := {j : |βj,true| > δ}
(see also Zhou [2010]). Moreover, since the adaptive Lasso will not take up
variables that were already abandoned by the initial Lasso, one may also think
of first replacing f0 by its projection fŜinit

on the space spanned by variables in

Ŝinit, and then take the best ℓ0-penalized approximation of this projection. Of
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course, this is then a random target. Nevertheless, with this target the adaptive
Lasso will not get blamed for the variables missed by the initial Lasso.

To settle the matter, we will choose b0 as target in what follows.

We assume that S0 has a relatively small number s0 := |S0| of nonzero coeffi-
cients. Inferring the sparsity pattern, i.e. variable selection, refers to the task
of correctly estimating the support set S0, or more modestly, to have a limited
number of false positives (type I errors) and false negatives (type II errors)1. It
can be verified that under reasonable conditions (e.g. i.i.d. Gaussian noise and
properly chosen tuning parameter λ) the “ideal” estimator

β̂ideal := argmin
β

{

‖Y −Xβ‖22/n+ λ2|{j : βj 6= 0}|
}

,

has O(s0) false positives (see for instance Barron et al. [1999] and van de Geer
[2001]). With this in mind, we generally aim at O(s0) false positives (see also
Zhou [2010]), yet keeping the prediction error as small as possible.

We show that the two-stage adaptive Lasso can combine a limited number of
false positives with good prediction properties (see Theorem 3.1). Invoking
these results to prove bounds for the number of false negatives is relatively
straightforward.

2.1 Organization of the paper

In the next section, we present some of the main results, in a simplified formu-
lation. Most notation and definitions are given in Section 4. In Section 5, we
consider the noiseless case, i.e., the case where ǫ = 0. The reason is that many of
the theoretical issues involved concern the approximation properties of the two
stage procedure, and not so much the fact that there is noise. By studying the
noiseless case first, we separate the approximation problem from the stochastic
problem. We first obtain in Subsection 5.1 some simple bounds for the initial
Lasso and its thresholded version. In Subsection 5.2 we derive results for the
adaptive Lasso by comparing it with a “oracle-thresholded” initial Lasso. When
the trimmed harmonic mean of the squared coefficients of the target is large
enough, the adaptive Lasso combines good variable selection properties with
good prediction properties. Both initial and adaptive Lasso are special cases of
a weighted Lasso, which we consider in Subsection 5.3. Subsection 5.4 briefly
discusses the weighted irrepresentable condition. Section 6 studies the noisy
case. Here, the previous results are summarized and conditions on the tuning
parameters are examined. Section 7 concludes. All proofs are in Section 8.

1For a generic estimator β̂ and active set S0, a type I error is a non-zero estimate β̂j when
j /∈ S0. A type II error occurs when β̂j = 0 while j ∈ S0.
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3 A preview of the results

Clearly, by choosing the tuning parameters λinit and λadap very large, one can
get rid of all coefficients and hence have no false positives. However, the pre-
diction error will then be very large. In practice, the tuning parameters are
generally chosen by cross validation. With this in mind, we discuss choices of
λadap which optimize our bounds for the prediction error. This means that λinit
and λadap cannot be chosen arbitrary large.

Let
δ̂2init := ‖Xβ̂init − f0‖22/n,

be the prediction error of the initial Lasso, and and, for q > 1,

δ̂q := ‖β̂init − b0‖q
be its ℓq-error. Denote the prediction error of the adaptive Lasso as

δ̂2adap := ‖Xβ̂adap − f0‖22/n.
The behavior of the adaptive Lasso depends on the design, as well as on the
true f0, and actually on the interplay between the two. This means that many
cases can be distinguished. If δ̂∞ is small, the adaptive Lasso will generally have
good prediction error δ̂adap. On the other hand, for good variable selection, it

will need some assumptions on the size of b0. If δ̂∞ is large, our bounds indicate
that δ̂adap is large. The tuning parameter λadap can then be large too, and the
variable selection properties may follow without additional assumptions on b0.

To present a correct preview, yet keep the exposition simple, we will use order
symbols. Our expressions are functions of n, p, X, and f0, and also of the
tuning parameters λinit and λadap. For positive functions g and h, we say that
g = O(h) if ‖g/h‖∞ is bounded, and g ≍ h if in addition ‖h/g‖∞ is bounded.
Our results depend on the restricted eigenvalue φ0 := φ(6, S0, 2s0), which we
generally think of as being not too small, i.e., 1/φ0 = O(1). The exact definition
of this constant is given in Section 4. Moreover, to simplify the expressions,
we assume throughout that ‖fS0 − f0‖22/n = O(λ2inits0/φ

2
0), which roughly says

that the oracle “squared bias” term is not substantially larger than the oracle
“variance” term. We will furthermore discuss here the case where the noise
ǫ is N (0, I)-distributed, so that we can present an explicit expression for the
lower bound on λinit. Extension to other distributions is straightforward, as we
show in Section 6. The results may furthermore be improved when the largest
eigenvalue of the Gram matrix XTX/n is well-behaved (e.g., when it is O(1),
see Section 6).

We define for δ > 0, the set of thresholded coefficients

Sδ
0 := {j : |b0j | > δ}.

The next theorem, in particular its result 3), contains main ingredients of
the present work. Results 1) and 2) are not new (see e.g. Bunea et al. [2006,
2007a,b], Bickel et al. [2009], Koltchinskii [2009a]), albeit that we replace the
perhaps non-sparse βtrue by the sparser b0 (see also van de Geer [2008]).
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Theorem 3.1 With ǫ ∼ N (0, I), take λinit ≥ 2λnoise, where, for a given t > 0,

λnoise = 2

√

2t+ 2 log p

n
.

Then, with probability at least 1− 2 exp[−t], the following statements hold.

1) There exists a bound δupperinit = O(λinit
√
s0/φ0) such that

δ̂init ≤ δupperinit .

2) For q ∈ {1, 2,∞}, there exists bounds δupperq satisfying

δupper1 = O(λinits0/φ
2
0), δ

upper
2 = O(λinit

√
s0/φ

2
0), δ

upper
∞ = O(λinit

√
s0/φ

2
0),

such that
δ̂q ≤ δupperq , q ∈ {1, 2,∞}.

3) Let δupper2 and δupper∞ be such bounds, satisfying δupper∞ ≥ δupper2 /
√
s0, and

δupper2 = O(λinit
√
s0/φ

2
0). Let |b0|2harmonic be the trimmed harmonic mean

|b0|2harmonic :=

(

∑

|b0j |>2δupper∞

1

|b0j |2
)−1

.

Suppose that

λ2adap ≍
(

1

n

∥

∥

∥

∥

f
S
4δ

upper
∞

0

− f0
∥

∥

∥

∥

2

2

+ λ2inits0/φ
2
0

)

|b0|2harmonic

λ2init/φ
2
0

. (3)

Then

δ̂2adap = O

(

1

n

∥

∥

∥

∥

f
S
4δ

upper
∞

0

− f0
∥

∥

∥

∥

2

2

+ λ2inits0/φ
2
0

)

,

and

|Ŝadap\S0| = O

(

λ2inits0
φ60

/

|b0|2harmonic

)

.

Theorem 3.1 is a reformulation of part of Corollary 6.3. According to Theorem
3.1, the larger the trimmed harmonic mean |b0|2harmonic, the better the variable
selection properties of the adaptive Lasso are. A large value for δupper∞ will
make |b0|2harmonic large, but on the other hand can increase the bound for the

prediction error δ̂2adap. Note that

|b0|2harmonic ≥ 4(δupper∞ )2/s0.

This implies that when we take δupper∞ ≍ λinit
√
s0/φ

2
0, then

|b0|−2
harmonic = O(φ40/λ

2
init),
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and hence, with large probability,

|Ŝadap\S0| = O(s0/φ
2
0).

If in fact
|b0|−2

harmonic = O(φ60/(λ
2
inits0)), (4)

we get that with large probability

|Ŝadap\S0| = O(1).

We shall show in Example 5.1 (see also (13)) that without additional assump-
tions on the Gram matrix Σ = XTX/n, condition (4) is actually necessary to
guarantee the “weighted irrepresentable condition” (see Subsection 5.4 for its
definition), the latter ensuring zero false positives. In that sense, our results
are tight.

The assumption we make on the tuning parameter λadap is such that the pre-
diction error (1/n)‖f

S
4δ

upper
∞

0

− f0‖22 and a penalty term are balanced. In this

way, we attempt to mimic a choice for λadap based on cross validation. Thus,
(3) is not to be understood as if we assume the expression on the right hand
side to be known.

The bound we provide above for δ̂adap may be subject to improvement. In fact,
we shall show that the threshold δupper∞ can be replaced by an “oracle” threshold
which minimizes (for a given λadap) bounds for the prediction error (see (8)).
The choice of λadap we then advocate is the one which minimizes the prediction
error obtained with the oracle threshold. This refinement is more involved and
therefore postponed to Subsection 5.2 (for the noiseless case) and Section 6 (for
the noisy case).

Note that Theorem 3.1 allows for a large choice of δupper∞ , larger than a tight
bound for δ̂∞. However, with such a large choice, the choice (3) for the tuning
parameter is also much too large. Thus, a too large threshold will not reflect in
any way a choice for λadap yielding - given the procedure - an optimal prediction
error, or mimic a cross validation choice for λadap. We always may take δupper∞ =
O(λinit

√
s0/φ

2
0). Under incoherence conditions, one may prove that one can

take as small as δupper∞ = constant × λinit, where the constant depends on the
incoherence conditions (see Lounici [2008]). Because the adaptive Lasso inherits
properties of the initial Lasso, we conjecture that the “oracle” threshold yielding
optimal prediction error will not be much smaller than δ̂∞.

The situation is simplified if we assume that the minimal coefficient

b0min := min
j∈S0

|b0j |

is sufficiently large. For example, when

b0min > 4δupper∞ ,

8



then thresholding at 4δupper∞ will not increase the prediction error. The bound
of Theorem 3.1 then coincides with the bound for δ̂2init, namely

δ̂2adap = O(λ2inits0/φ
2
0).

The number of false positives is again O(s0/φ
2
0). If bmin is even larger, the

prediction error remains of the same order, but the number of false positives
decreases, and may even vanish.

4 Notation and definitions

For the noiseless case, it is convenient to formulate the problem in L2(Q), where
Q is a probability measure on some space X . Let {ψj}pj=1 ⊂ L2(Q) be a given
dictionary. The ψj will play the role of the co-variables. The Gram matrix is

Σ :=

∫

ψTψdQ.

We assume that Σ is normalized, i.e., that
∫

ψ2
j dQ = 1 for all j. Write a linear

function of the ψj with coefficients β ∈ R
p as

fβ :=

p
∑

j=1

ψjβj .

The L2(Q)-norm is denoted by ‖ · ‖, so that

‖fβ‖2 = βTΣβ.

Recall that for an arbitrary β ∈ R
p, and an arbitrary index set S, we use the

notation
βj,S = βj l{j ∈ S}.

The largest eigenvalue of Σ is denoted by Λ2
max, i.e.,

Λ2
max := max

‖β‖2=1
βTΣβ.

We will also need the largest eigenvalue of submatrices containing the inner
products of variables in S:

Λ2
max(S) := max

‖βS‖2=1
βTSΣβS .

Its minimal eigenvalue is

Λ2
min(S) := min

‖βS‖2=1
βTSΣβS .
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4.1 Restricted eigenvalues

A restricted eigenvalue condition is a condition of similar nature as a condition
on the minimal eigenvalue of Σ , but with the coefficients β restricted to subsets
of Rp. An overview can be found in van de Geer and Bühlmann [2009].

Define for an index set S, and for L > 0, the sets of restrictions

R(L,S) := {β : ‖βSc‖1 ≤ L
√

|S|‖βS‖2}.

The restricted eigenvalue condition we impose corresponds to the so-called
adaptive version as introduced in van de Geer and Bühlmann [2009]. It differs
from the restricted eigenvalue condition in Bickel et al. [2009] or Koltchinskii
[2009a,b]. This is due to the fact that we want to mimic the oracle fS0 , and do
not choose f0 as target, so that we have to deal with a bias term ‖fS0 − f0‖.
Definition: Restricted eigenvalue. For N ≥ |S|, we call

φ2(L,S,N) := min

{ ‖fβ‖2
‖βN ‖22

: N ⊃ S, |N | ≤ N, β ∈ R(L,N )

}

the (L,S,N)-restricted eigenvalue. The (L,S,N)-restricted eigenvalue condi-
tion holds if φ(L,S,N) > 0. For the case N = |S|, we write φ(L,S) :=
φ(L,S, |S|).
It is easy to see that φ(L,S) ≤ Λmin(S) for all L > 0. For a given S, our
restricted eigenvalue condition is stronger than the one in Bickel et al. [2009]
or Koltchinskii [2009a,b]. On the other hand, we apply it to the smaller set S0
instead of to Strue.

Let fS := argminf=fβS
‖fβS

− f0‖ be the projection of f0 on the |S|-dimensional
linear space spanned by the variables {ψj}j∈S . We denote the coefficients of fS
by bS , i.e.,

fS =
∑

j∈S
ψjb

S
j = fbS .

5 The noiseless case

Consider a fixed target f0 = fβtrue ∈ L2(Q). The initial Lasso is

βinit := argmin
β

{

‖fβ − f0‖2 + λinit‖β‖1
}

.

We assume that the tuning parameter λinit is set at some fixed value. Of course,
in the noiseless case, the optimal - in terms of prediction error - value for λinit
is λinit = 0. However, in the noisy case, a strictly positive lower bound for λinit
is dictated by the noise level.

Write

finit := fβinit
, Sinit := {j : βj,init 6= 0}, δinit := ‖finit − f0‖.

10



The adaptive Lasso is

βadap := argmin
β







‖fβ − f0‖2 + λinitλadap

p
∑

j=1

|βj |
|βj,init|







.

The second stage tuning parameter λadap is again assumed to be strictly posi-
tive.

Write

fadap := fβadap
, Sadap := {j : βj,adap 6= 0}, δadap := ‖fadap − f0‖.

We now fix a set S0. This will be the set of variables we want to find. They
are intuitively the ones with the largest coefficients |βj,true|. However, when
we delete the smallest coefficients and refit, the newly refitted coefficients are
different. As explained in Section 2, we settle this by taking S0 as the set
obtained by a trading off dimension against fit, namely the set

S0 := argmin
S

{

‖fS − f0‖2 + 3λ2init|S|
φ2(2, S)

}

, (5)

where the constants are now from Lemma 5.1. We call fS0 the oracle, and S0
the oracle active set, and we let b0 := bS0 .

Write
φ0 := φ(2, S0, 2s0).

For simplicity, we assume throughout that

‖fS0 − f0‖2 = O(λ2inits0/φ
2
0),

which roughly says that the approximation error does not overrule the penalty
term. To avoid too many details, we use here the restricted eigenvalue φ20
instead of φ2(2, S0), because the smaller φ20 will occur in the bound for the
ℓ2-norm ‖βinit − b0‖2 (see Lemma 5.1).

5.1 The initial Lasso and its thresholded version

The adaptive Lasso inherits some of its properties from the initial Lasso. In
addition, we will derive theory for the adaptive Lasso via the thresholded and
refitted initial Lasso. Therefore, we first consider the initial Lasso and thresh-
olding.

Recall that
δinit := ‖finit − f0‖.

For q ≥ 1, we define
δq := ‖βinit − b0‖q.

11



Lemma 5.1 Let

δ2oracle := ‖fS0 − f0‖2 + 3λ2init|S0|
φ20

.

We have

δ2init + λinit‖(βinit)Sc
0
‖1 ≤ 2‖fS0 − f0‖2 + 6λ2init|S0|

φ2(2, S0)
≤ 2δ2oracle.

Moreover

δ1 ≤ 3‖fS0 − f0‖2/λinit +
3λinit|S0|
φ2(2, S0)

≤ 3δ2oracle/λinit,

and
δ2 ≤ 6δ2oracle/(λinit

√
s0).

We thus conclude that
δ2init = O(λ2inits0/φ

2
0),

and
δ1 = O(λinits0/φ

2
0), δ2 = O(λinit

√
s0/φ

2
0).

But then also
δ∞ = O(δ2) = O(λinit

√
s0/φ

2
0).

The latter can be improved under coherence conditions on the Gram matrix.
To simplify the exposition, we will not discuss such improvements in detail (see
Lounici [2008]).

We note that in Lemma 5.1, we may replace f0 by its projection fSinit
on the

space spanned by the variables {ψj}j∈Sinit
that are selected by the initial Lasso.

We then replace S0 by the optimal S given in (5) with this newly defined f0.
With this replacement, the result follows by using Pythagoras’ Theorem. (That
is, it follows by a slight adjustment of the proof of Lemma 5.9.) This means
that when Sinit does not have the screening property (i.e., when Sinit does not
contain S0), one can simply accept this, and see how well one can do with the
remaining variables.

We now first look at false negatives and then false positives. Define

Sδ
0 = {j : |b0j | > δ}.

For a generic estimator S̃ of S0, we define the set of δ-false negatives as Sδ
0\S̃.

Moreover, we define δS0∞ := ‖(βinit)S0 − b0‖∞. The following lemma is a trivial
application of the triangle inequality.

Lemma 5.2 There are no δS0∞ -false negatives.

Because δS0∞ ≤ ‖(βinit)S0 − b0‖2 ≤ ‖finit − f0‖/φ0, the above lemma shows
that once one has a good bound for the prediction error, only small values of
b0 are possibly not detected. We remark that the same reasoning applies to
the adaptive Lasso. The results can be refined using the KKT conditions (see
Section 5.3 for their definition), but we omit the details.

We now turn to the false positives.

12



Lemma 5.3 It holds that

|Sinit\S0| ≤ 4Λ2
max

δ2init
λ2init

.

Hence, the initial estimator has number of false positives

|Sinit\S0| = Λ2
maxO(s0/φ

2
0).

In many cases, the eigenvalue Λ2
max is quite large; it can even be almost as large

as p. Therefore, from the result of Lemma 5.3 one generally cannot deduce
good variable selection properties of the initial Lasso.

Next, we consider thresholding. Let for δ > 0,

Sδ
init := {j : |βj,init| > δ},

and
f δinit := f(βinit)Sδ

init

=
∑

j∈Sδ
init

ψjβj,init.

Observe that fSδ
init

is the refitted estimator after thresholding at δ.

The following lemma presents a bound for the prediction error of the thresholded
and refitted initial estimator.

Lemma 5.4 We have

‖fSδ
init

− f0‖ ≤ ‖f δinit − f0‖,

and moreover,
‖fSδ

init
− f0‖ ≤ ‖f

Sδ+δ∞
0

− f0‖

≤ ‖fS0 − f0‖+ Λmax(S0\Sδ∞+δ
0 )

√

|S0\Sδ+δ∞
0 |(δ + δ∞).

We know that ‖fS0 − f0‖ = O(λinit
√
s0/φ0) and δ∞ = O(λinit

√
s0/φ

2
0). There-

fore, Lemma 5.4 with δ = 3δ∞ (which is the value that will used in Corollary
5.1 ahead), gives

‖f3δ∞Sinit
− f0‖ ≤ ‖f

S4δ∞
0

− f0‖

= O(λinit
√
s0/φ0) + 4Λmax(S0\S4δ∞

0 )

√

|S0\S4δ∞
0 |δ∞

= O(λinit
√
s0/φ0)

(

1 + Λmax(S0\S4δ∞
0 )

√

|S0\S4δ∞
0 |/φ0

)

. (6)

When b0min := minj∈S0 |b0j | is larger than 4δ∞, we obviously have S0\S4δ∞
0 = ∅.

In that case, the prediction error after thresholding at 3δ∞ is still of the same
order as the oracle bound. If b0min is small, the situation is less clear. The
prediction error can then be worse than the oracle bound, and Lemma 5.4 does
not tell us whether it improves by taking the threshold δ small, say δ2/

√
s0 ≤

13



δ < δ∞ (with the lower bound for δ being inspired by the comment following
Lemma 5.5).

The number of false positives and false negatives of the thresholded initial Lasso
is examined in the next lemma.

Lemma 5.5 The thresholded initial estimator has number of false positives

|Sδ
init\S0| ≤

δ22
δ2
.

Moreover, for any K > 0, its number of (K + 1)δ-false negatives is

|S(K+1)δ
0 \Sδ

init| ≤
δ22

K2δ2
.

If we take δ ≥ δ2/
√
s0, we get from Lemma 5.5 that

|Sδ
init\S0| ≤ s0, (7)

i.e., then we have at most s0 false positives after thresholding.

Clearly, the larger the threshold δ the smaller the number of false positives.
On the other hand, a large δ may result in a bad prediction error. According
to Lemma 5.4, the prediction error ‖fSδ

init
− f0‖2 can be quite large for δ much

larger than δ∞. With δ in the range δ2/
√
s0 ≤ δ ≤ 3δ∞, the prediction error

is perhaps not very sensitive to the exact value of δ. Looking ahead to the
noisy case, cross validation should moreover prefer a larger threshold due to
the additional estimation error that occurs if one keeps too many coefficients.

5.2 The adaptive Lasso

Observe that the adaptive Lasso is somewhat more reluctant than thresholding
and refitting: the latter ruthlessly disregards all coefficients with |βj,init| ≤ δ
(i.e., these coefficients get penalty ∞), and puts zero penalty on coefficients
with |βj,init| > δ. The adaptive Lasso gives the coefficients with |βj,init| ≤ δ
a penalty of at least λinit(λadap/δ) and those with |βj,init| > δ a penalty of at
most λinit(λadap/δ).

Recall
δadap := ‖fadap − f0‖.

Lemma 5.6 We have, for all δ ≥ δ2/
√
s0,

δ2adap + λinitλadap
∑

j∈(Sδ
init)

c

|βj,adap|
|βj,init|

≤ 2‖fSδ
init

− f0‖2 + 6λ2init
φ20

λ2adap
∑

j∈Sδ
init

1

β2j,init
.

14



The above lemma is an obstructed oracle inequality, where the oracle is re-
stricted to choose the index set as the set of variables that are left over after
removing the smallest |βj,init|. If λadap is chosen small enough, one sees that
the prediction error ‖fSδ

init
− f0‖2 of the refitted thresholded initial estimator is

not overruled by the penalty term on the right hand side. This means that the
prediction error of the adaptive Lasso is not of larger order than the prediction
error of the refitted thresholded initial Lasso. Note that we may take λadap ≥ δ,
because for λadap ≤ δ, the penalty term in the bound of Lemma 5.6 is not larger
than 6λ2inits0/φ

2
0 (see also Lemma 5.7), which - in order of magnitude - is the

oracle bound (which cannot be improved).

Lemma 5.6 leads to defining the “oracle” threshold as

δ0 := arg min
δ≥δ2/

√
s0







‖fSδ
init

− f0‖2 + 3λ2init
φ20

λ2adap
∑

j∈Sδ
init

1

β2j,init







. (8)

This oracle has active set Sδ0
init, with size |Sδ0

init| = O(s0). In what follows
however, we will mainly choose δ = 3δ∞. Thus, our bounds are good when
the oracle threshold δ0 is not too different from 3δ∞. If in the range δ2/

√
s0 ≤

δ ≤ 3δ∞ the prediction error ‖fSδ
init

− f0‖ is roughly constant in δ, the oracle
threshold will at least be not much smaller than 3δ∞. When the oracle threshold
is larger than this, it is straightforward to reformulate the situation. This, we
have omitted to avoid too many cases.

Some further results for the prediction error δadap follow by inserting bounds
for the initial Lasso.

Lemma 5.7 It holds that

∑

j∈Sδ
init

1

β2j,init
≤ 1

δ2

{∣

∣

∣

∣

{j : δ − δ∞ < |b0j | ≤ 2δ∞}
∣

∣

∣

∣

+ 4δ2|b0|−2
harmonic

}

.

Moreover, for δ ≥ δ2/
√
s0,

∑

j∈Sδ
init

1

β2j,init
≤ 2s0

δ2
.

Corollary 5.1 With the special choice δ = 3δ∞, we get

∑

j∈S3δ∞
init

1

β2j,init
≤ 4|b0|−2

harmonic.

Corollary 5.2 Using the bound of Lemma 5.7 in Lemma 5.6 gives that for all
δ ≥ δ2/

√
s0,

δ2adap ≤ 2‖fSδ
init

− f0‖2

+
6λ2init
φ20

λ2adap
δ2

{∣

∣

∣

∣

{j : δ − δ∞ < |b0j | ≤ 2δ∞}
∣

∣

∣

∣

+ 4δ2|b0|−2
harmonic

}

.
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If δ2/
√
s0 ≤ 3δ∞, we may choose δ = 3δ∞ to find

δ2adap ≤ 2‖f
S3δ∞
init

− f0‖2 + 24λ2init
φ20

λ2adap|b0|−2
harmonic. (9)

According to Lemma 5.4,

‖f
S3δ∞
init

− f0‖ ≤ ‖f
S4δ∞
0

− f0‖

= O(λinit
√
s0/φ0)

(

1 + Λmax(S0\S4δ∞
0 )

√

|S0\S4δ∞
0 |δ∞

)

.

Inserting these yields

δ2adap ≤ 2‖f
S4δ∞
0

− f0‖2 + 24λ2init
φ20

λ2adap|b0|−2
harmonic

= O

(

λ2inits0
φ20

)(

1 + Λ2
max(S0\S4δ∞

0 )|S0\S4δ∞
0 |δ2∞

)

+
24λ2init
φ20

λ2adap|b0|−2
harmonic. (10)

We proceed by considering number of false positives of the adaptive Lasso.

Lemma 5.8 We have

|Sadap\S0| ≤ 4
δ2adap
λ2adap

δ22
λ2init

∧ 2Λmax
δadap
λadap

δ2
λinit

.

We will choose λadap ≥ 3δ∞ in such a way that that the prediction error and
the penalty term in (9) are balanced, so that

δ2adap
λ2adap

= O







λ2init
φ20

∑

|b0j |>2δ∞

1

|b0j |2






. (11)

Let is summarize the consequences of this choice in a corollary.

Corollary 5.3: Main result for the noiseless case

We take the choice for λadap given by (11).

a) It then holds that

|Sadap\S0| = O

(

λ2inits0
φ40

|b0|−2
harmonic ∧ Λmax

λinit
√
s0

φ20
|b0|−1

harmonic

)

.

- When λ2init|b0|−2
harmonic/φ

2
0 = O(1), we get |Sadap\S0| = O(s0/φ

2
0).

- When also Λmax = O(1), we get |Sadap\S0| = O(
√
s0/φ0).
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- With λ2inits0|b0|−2
harmonic/φ

4
0 = O(1), we get |Sadap\S0| = O(1) (or even

|Sadap\S0| = 0 if the constants are small enough). This corresponds with the
bound of Corollary 5.4, implying the weighted irrepresentable condition defined
in Subsection 5.4, a bound which, according to Example 5.1, cannot be improved.

b) We know that δ∞ = O(δ2) = O(λinit
√
s0/φ

2
0). Suppose now that this cannot

be improved, i.e., that also

λinit
√
s0/φ

2
0 = O(δ∞).

Then we get

|b0|−2
harmonic = O

(

φ40
λ2init

)

,

Hence, when the convergence in sup-norm is slow, we can get relatively few
false positives, but possibly a not-so-good prediction error. When δ∞ ≥ δ2/

√
s0

is small, the bound
∑

|b0j |>δ∞

1

|b0j |2
≤

∑

|b0j |>δ2/
√
s0

1

|b0j |2

may be appropriate. Assuming this to be O(φ40/λ
2
init) amounts to assuming that

“on average”, the coefficients b0j are “not too small”. For example, it is allowed

that O(1) coefficients are as small as λinit/φ
2
0.

c) Suppose now that

b0min := min
j∈S0

|b0j | ≥ λinit
√
s0/φ

2
0.

Then
∑

|b0j |>2δ∞

1

|b0j |2
≤ φ40/λ

2
init.

With this (or larger) values for b0min, we also see that the refitted thresholded
estimator f3δ∞Sinit

has prediction error O(δ2init) = O(λ2inits0/φ
2
0). If

b0min ≥ λinits0/φ
3
0,

we in fact only have O(1) false positives.

d) More generally, in view of Lemma 5.4, the prediction error of the adaptive
Lasso can be bounded by

δ2adap = O

(

λ2inits0
φ20

)(

1 + Λ2
max(S0\S4δ∞

0 )|S0\S4δ∞
0 |δ2∞

)

.

Thus, our theory shows similar bounds for the adaptive Lasso and thresholding,
in terms of prediction error and variable selection.
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5.3 The weighted Lasso

As the initial and adaptive Lasso are special cases of the weighted Lasso, some
of the results in Subsections 5.1 and 5.2 are consequences of those in this sub-
section.

The weighted Lasso is

βweight := argmin
β







‖fβ − f0‖2 + λinitλweight

p
∑

j=1

wj |βj |







,

where the {wj}pj=1 are non-negative weights.

We set fweight := fβweight
. Moreover, we define

‖wS‖22 :=
∑

j∈S
w2
j , w

min
Sc := min

j /∈S
wj .

By the reparametrization β 7→ γ :=Wβ, whereW = diag(w1, · · · , wp), one sees
that the weighted Lasso is a standard Lasso with Gram matrix

Σweight :=W−1ΣW−1.

We emphasize however that Σweight is generally not normalized, i.e., generally
diag(Σweight) 6= I.

We first present a bound for the prediction error and then consider variable
selection.

Lemma 5.9 For all S satisfying ‖wS‖2/wmin
Sc ≤ L

√

|S|, and all β, we have

‖fweight−f0‖2+λinitλweight
∑

j /∈S
wj |βj,weight| ≤ 2‖fβS

−f0‖2+
6λ2initλ

2
weight

φ2(2L,S)
‖wS‖22,

and

λinitλweight‖wS‖2‖(βweight)S − βS‖2 + λinitλweight
∑

j /∈S
wj |βj,weight|

≤ 3‖fβS
− f0‖2 +

3λ2initλ
2
weight

φ2(2L,S)
‖wS‖22.

Our next theme is variable selection. An important characterization of the
solution βweight can be derived from the Karush-Kuhn-Tucker (KKT) conditions
(see Bertsimas and Tsitsiklis [1997]).

Weighted KKT-conditions We have

2Σ(βweight − βtrue) = −λwWτweight.
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Here, ‖τweight‖∞ ≤ 1, and moreover

τj,weightl{βj,weight 6= 0} = sign(βj,weight), j = 1, . . . , p.

The KKT-conditions can be invoked to derive the next lemma, where we use
the notation

‖(1/w)S‖22 :=
∑

j∈S

1

w2
j

.

Lemma 5.10 We have

|Sweight\S0| ≤ 4
‖fweight − f0‖2

λ2weight

‖(1/w)Sweight\S0
‖22

λ2init

∧2Λmax
‖fweight − f0‖

λweight

‖(1/w)Sweight\S0
‖2

λinit
.

5.4 The weighted irrepresentable condition

It is known that the initial Lasso essentially needs the irrepresentable condition
in order to have no false positives (Zhao and Yu [2006]). Similar statements can
be made for the weighted Lasso. In Corollary 5.2, we showed that under certain
conditions on the trimmed harmonic mean, the adaptive Lasso has no false
positives. This subsection links this to the weighted irrepresentable condition.

For a (p× p) -matrix Σ = (σj,k). we define

Σ1,1(S) := (σj,k)j,k∈S,

Σ2.1(S) := (σj,k)j /∈S, k∈S.

We let WS := diag({wj}j∈S).
Definition We say that the weighted irrepresentable condition holds for S if
for all vectors τS ∈ R

|S| with ‖τS‖∞ ≤ 1, one has

‖W−1
Sc Σ2,1(S)Σ

−1
1,1(S)WSτS‖∞ < 1.

The reparametrization β 7→ γ := W−1β leads to the following lemma, which is
the weighted variant of the first part of Lemma 6.2 in van de Geer and Bühlmann
[2009]. Here, we actually take f0 as target, instead of its ℓ0-sparse approxima-
tion fS0 . Recall

Strue := {j : βj,true 6= 0}.
Lemma 5.11
Suppose the weighted irrepresentable condition is met for Strue. Then Sweight ⊂
Strue.
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We now consider conditions for the weighted irrepresentable condition to hold.
We recall that wmin

Sc := minj /∈S wj, and and define, as in van de Geer and Bühlmann
[2009], the adaptive restricted regression

ϑadaptive(S) := max
β∈R(1,S)

|(fβSc , fβS
)|

‖fβS
‖2 .

Here, (f, f̃) denotes the inner product between f and f̃ as elements of L2(Q).

Lemma 5.12

sup
‖τS‖∞≤1

‖W−1
Sc Σ2,1(S)Σ

−1
1,1(S)WSτS‖∞ ≤ ‖wS‖2

√

|S|wmin
Sc

ϑadaptive(S).

It is not difficult to see that ϑadaptive(S) ≤
√

|S|/Λmin(S). Hence, we arrive at
the following corollary.

Corollary 5.4 Suppose that

‖wS‖2 < Λmin(S)w
min
Sc . (12)

Then the weighted irrepresentable condition holds for S.

With, for j ∈ Strue, the “ideal” weights

wj = 1/|βj,true|, j ∈ Strue,

and with furthermore wmin
Sc
true

= 1/δ∞, where (say) δ∞ = λinit
√
s/φ20, and strue =

|Strue|, inequality (12) reads

∑

j∈Strue

1

|βj,true|2
≤ Λ2

min(Strue)φ
4
0

λ2initstrue
. (13)

This corresponds to the third case in Corollary 5.3 a). The next example shows
that there exist Gram matrices Σ which have smallest eigenvalue 1−ρ, ρ ∈ (0, 1),
and where the weighted irrepresentable condition needs needs the separation

‖wStrue‖2 ≤ wmin
Sc
true
/ρ.

Example 5.1 Let Strue = {1, . . . , s}, with cardinality s := |Strue|, be the active
set, and suppose that

Σ :=

(

Σ1,1 Σ1,2

Σ2,1 Σ2,2

)

,

where Σ1,1 := I is the (s × s)-identity matrix, and

Σ2,1 := ρ(c2c
T
1 ),

with 0 ≤ ρ < 1, and with c1 an s-vector and c2 a (p − s)-vector, satisfying
‖c1‖2 = ‖c2‖2 = 1. Moreover, suppose Σ2,2 is the ((p − s) × (p − s))-identity
matrix. The smallest eigenvalue of Σ is 1− ρ. Take c1 = wStrue/‖wStrue‖2, and
c2 = (0, . . . , 1, 0, . . .)T , where the 1 is placed at argminj∈Sc

true
wj . Then

sup
‖τStrue‖∞≤1

‖W−1
Sc
true

Σ2,1Σ
−1
1,1WStrueτStrue‖∞ = ρ‖wStrue‖2/wmin

Sc
true
.
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6 Adding noise

Consider an n-dimensional vector of observations

Y = f0 + ǫ,

and the weighted (noisy) Lasso

β̂weight = argmin
β

{

‖Y − fβ‖22/n+ λinitλweight

p
∑

j=1

wj|βj |
}

. (14)

Here, f0, the dictionary {ψj}, and fβ :=
∑

ψjβj are now considered as vectors
in R

n. The norm we use is the normalized Euclidean norm

‖f‖ := ‖f‖n := ‖f‖2/
√
n : f ∈ Rn,

induced by the inner product

(f, f̃)n :=
1

n

n
∑

i=1

fif̃i, f, f̃ ∈ R
n.

We define the projections fS, in the same way as in the previous section. The
ℓ0-sparse projection fS0 =

∑

j∈S0
b0j , is now defined with a larger constant (7

instead of 3) in front of the penalty term, and a larger constant (L = 6 instead
of L = 2) in the restrictions R(L,S) of the restricted eigenvalue condition:

S0 := argmin
S

{

‖fS − f0‖2n +
7λ2init|S|
φ2(6, S)

}

.

We also change the constant φ0 accordingly:

φ0 := φ(6, S0, 2s0).

Let
f̂weight := fβ̂weight

, Ŝweight := {j : β̂j,weight 6= 0}.

We define the estimators f̂init and f̂adap as in Section 2, with active sets Ŝinit
and Ŝadap. The unpenalized least squares estimator using the variables in S is

f̂S = fb̂S := arg min
f=fβS

‖Y − fβS
‖n.

We define as before, for δ > 0,

Ŝδ
init := {j : |β̂j,init| > δ}, Sδ

0 := {j : |b0j | > δ}.

The refitted version after thresholding, based on the data Y, is f̂Ŝδ
init

.
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We let
δ̂init := ‖f̂init − f0‖n, δ̂adap := ‖f̂adap − f0‖n,

and moreover, for q ≥ 1,
δ̂q := ‖β̂init − b0‖q.

To handle the (random) noise, we define the set

T :=

{

max
1≤j≤p

2|(ǫ, ψj)n| ≤ λnoise

}

,

where λnoise is chosen in such a way that

IP(T ) ≥ 1− α

where (1−α) is the confidence we want to achieve. In other words, λnoise/2 is a
bound for the maximal sample correlation between the noise and the variables
ψj , which holds with large probability. Using the probability bound IP(|Z| ≥√
2t) ≤ 2 exp[−t] for a standard normal random variable Z, one can easily

derive that when ǫ ∼ N (0, I), and with

λnoise = 2

√

2t+ 2 log p

n
,

one has
IP(T ) ≥ 1− 2 exp[−t].

We will first formulate the noisy weighted Lasso. Once this is done, results for
the initial Lasso, its thresholded version, and for the adaptive Lasso, follow in
the same way as in Subsections 5.1 and 5.2. Therefore, we do not repeat all
derivations in detail. The main point is to take care that the tuning parameters
are chosen in such a way that the noisy part due to variables in Sc

0 are overruled
by the penalty term. In our situation, this can be done by taking λinit ≥ 2λnoise,
and λadap large enough. A lower bound for λadap depends on the behavior of
the initial estimator (see Corollary 6.2). In Corollary 6.3, we let λadap depend

on λinit, s0 and φ0, on a bound δupper∞ for δ̂∞, on the prediction error of f
S
4δ

upper
∞

0

,

and on the trimmed harmonic mean of the |b0j |2.
After presenting the noisy versions of Lemma 5.9 and Lemma 5.10 (their proof
is a straightforward adjustment of the noiseless case, and hence omitted), we
give a result for the least squares estimator using only the variables j with
large enough |β̂j,init|. We then present the corollaries for the noisy initial and
noisy adaptive Lasso, as regards prediction error and variable selection. These
corollaries have “random” quantities in the bounds. We end with a corollary
containing the main result for the noisy case, where the random bounds are
replaced by fixed ones, and where we moreover choose a more specific lower
bound for λadap.
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Lemma 6.1 Suppose we are on T . Let λinit ≥ 2λnoise. Let S satisfy

‖wS‖2/wmin
Sc ≤ L

√

|S|, L ≥ 1,

and
λweight‖wS‖2 ≥

√

|S|.
For all β we have

‖f̂weight − f0‖2n + λinitλweight
∑

j /∈S
wj|β̂j,weight|/2

≤ 2‖fβS
− f0‖2n +

14λ2initλ
2
weight

φ2(6L,S)
‖wS‖22,

and

λinitλweight‖wS‖2‖(βweight)S − βS‖2 + λinitλweight
∑

j /∈S
wj |βj,weight|

≤ 5‖fβS
− f0‖2n +

7λ2initλ
2
weight

φ2(6L,S)
‖wS‖22.

Lemma 6.2 Suppose we are on T . Assume λinit ≥ 2λnoise and λweightw
min
Sc
0

≥ 1.
We have

|Ŝweight\S0| ≤ 16
‖f̂weight − f0‖2n

λ2weight

‖(1/w)Ŝweight\S0
‖22

λ2init

∧4Λmax
‖f̂weight − f0‖n

λweight

‖(1/w)Ŝweight\S0
‖2

λinit
.

The least squares estimator f̂Ŝδ
init

using only variables in Ŝδ
init (i.e., the projection

of Y = f0+ ǫ on the linear space spanned by {ψj}j∈Ŝδ
init

) has similar prediction

properties as fŜδ
init

(the projection of f0 on the same linear space). This is

because, as is shown in the next lemma, their difference is small.

Lemma 6.3 Let δ ≥ δ̂2/
√
s0. Then

‖f̂Ŝδ
init

− fŜδ
init

‖2n ≤ 2λ2noises0
φ20

.

Finally2, we present two corollaries, one treating prediction error and variable
selection of the initial Lasso, the other one prediction error and variable selection
of the adaptive Lasso. The consequences of these two corollaries, presented in
Corollary 6.3, give qualitatively the same conclusion as in the noiseless case.

2Of separate interest is a direct comparison of the noisy initial Lasso with the noisy ℓ0-
penalized estimator. Replacing f

0 by Y in Lemma 5.1 gives

‖Y − f̂init‖
2
n ≤ 2min

S

{

‖Y − f̂S‖
2
n +

3λ2
init|S|

φ2(2, S)

}

.
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Corollary 6.1 Let

δ2oracle := ‖fS0 − f0‖2n +
7λ2init|S0|

φ2(6, S0, 2s0)
.

Take λinit ≥ 2λnoise. We have on T ,

δ̂2init ≤ 2δ2oracle.

Moreover, on T ,
δ̂1 ≤ 5δ2oracle/λinit,

and
δ̂2 ≤ 10δ2oracle/(λinit

√
s0).

Also, on T ,

|Ŝinit\S0| ≤ 16Λ2
max

δ̂2init
λ2init

.

Corollary 6.2 Suppose we are on T . Take λinit ≥ 2λnoise and δ ≥ δ̂2/
√
s0.

Let

λ2adap
∑

j∈Ŝδ
init

1

β̂2j,init
≥ |Ŝδ

init|.

Then

δ̂2adap +
1

2
λinitλadap

∑

j /∈Ŝδ
init

|β̂j,adap|
|β̂j,init|

≤ 2‖fŜδ
init

− f0‖2 + 14λ2init
φ20

λ2adap
∑

j∈Ŝδ
init

1

β̂2j,init
.

If moreover
λadap ≥ ‖(β̂init)Sc

0
‖∞,

then

|Ŝadap\S0| ≤ 16
δ̂2adap
λ2adap

δ̂22
λ2init

∧ 4Λmax
δ̂adap
λadap

δ̂2
λinit

.

The randomness in the bounds for the adaptive Lasso can be easily handled
invoking fixed bounds δupper2 ≥ δ̂2 and δupper∞ ≥ δ̂∞, that are assumed to hold
on T . We define

|b0|2harmonic :=







∑

|b0j |>2δupper∞

1

|b0j |2







−1

.

The special case δ = 3δupper∞ then gives

Corollary 6.3: Main result for the noisy case

Let δ2oracle := ‖fS0 − f0‖2n + 7λ2inits0/φ
2
0. Let

δupper2 :=
10δ2oracle
λinit

√
s0
.
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Suppose we are on T . Suppose δ̂∞ ≤ δupper∞ , where 3δupper∞ ≥ δupper2 /
√
s0. Let

λinit ≥ 2λnoise and λadap ≥ 3δupper∞ . Then

δ̂2adap ≤ 2

∥

∥

∥

∥

f
S
4δ

upper
∞

0

− f0
∥

∥

∥

∥

2

n

+
56λ2init
φ20

λ2adap|b0|−2
harmonic.

The choice

λ2adap = 9

(∥

∥

∥

∥

f
S
4δ

upper
∞

0

− f0
∥

∥

∥

∥

2

n

+λ2inits0/φ
2
0

) |b0|2harmonic

4λ2init/φ
2
0

,

indeed has
λ2adap ≥ s0|b0|2harmonic ≥ (3δupperinfty )2.

With this choice, we find

δ̂2adap ≤ 128

{

∥

∥

∥

∥

f
S
4δ

upper
∞

0

− f0
∥

∥

∥

∥

2

n

+ λ2inits0φ
2
0

}

,

and

|Ŝadap\S0| ≤ (32M)2
λ2init
φ60

|b0|−2
harmonics0 ∧ 32MΛmax

λinit
φ30

|b0|−1
harmonic,

where

M :=
10δ2oracle
λ2inits0/φ

2
0

.

7 Conclusion

Estimating the support S0 of the non-zero coefficients is a hard statistical prob-
lem. The irrepresentable condition, which is essentially a necessary condition
for exact recovery of the non-zero coefficients by the one step Lasso, is much
too restrictive in many cases. In this paper, our main focus is on having O(s0)
false positives while achieving good prediction. This is inspired by the behavior
of the “ideal” ℓ0-penalized estimator. As noted in Section 1, such a viewpoint
describes the performance of variable selection in settings where some of the
regression coefficients may be smaller than the detection limit.

When using cross validation, the best one can expect is a choice of the tun-
ing parameters that reflects the optimal prediction error of the procedure. We
have examined thresholding with least squares refitting and the adaptive Lasso,
optimizing the bounds on the prediction error for choosing the tuning param-
eters. According to our theory (and for simplicitly not exploiting the fact that
the adaptive Lasso mimics thresholding and refitting using an “oracle” thresh-
old), the two methods are comparable when the trimmed harmonic mean of the
squared coefficients of the target is large enough. When the coefficients of the
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initial Lasso converge rather slowly in sup-norm to the target, the condition on
the trimmed harmonic mean is trivially true.

The adaptive Lasso with cross validation does fitting and variable selection
in one single standard algorithm, giving the solution path for all λadap with
O(n|Sinit|min(n, |Sinit|)) essential operation counts. The tuning parameter λadap
is then chosen based on the performance in the validation sets. Cross validation
for thresholding and refitting amounts to removing, for each k, the k smallest
estimated initial coefficients |β̂j,init|, and evaluating the least squares solution
based on the remaining variables on the validation sets. Therefore, the two
methods are also computationally comparable.

8 Proofs

8.1 Proofs for Subsection 5.1

Proof of Lemma 5.1. The first result is a special case of Lemma 5.9, taking
β = b0 and S = S0. The second result then follows from this Lemma, as

‖βinit − b0‖1 ≤ √
s0‖(βinit)S0 − b0S0

‖2 + ‖(βinit)Sc
0
‖1.

The third result follows from taking β = b0 and S = N in Lemma 5.9, where N
is the set S0, complemented with the s0 largest - in absolute value - coefficients
of (βinit)Sc

0
. Then ‖fb0−f0‖ = ‖fS0−f0‖. Moreover φ(2,N ) ≤ φ(2, S0, 2s0) = φ0.

Thus, from Lemma 5.9, we get

λinit
√
2s0‖(βinit)N − b0N ‖2 + λinit‖(βinit)N c‖1 ≤ 3‖fS0 − f0‖2 + 6λ2inits0

φ20
.

Moreover, as is shown in Lemma 2.2 in van de Geer and Bühlmann [2009] (with
original reference Candès and Tao [2005], and Candès and Tao [2007]),

‖(βinit)N c‖2 ≤ ‖(βinit)S0‖1/
√
s0 ≤

3‖fS0 − f0‖2 + 3λ2inits0/φ
2
0

λinit
√
s0

.

So then
‖βinit − b0‖2 ≤ ‖(βinit)N − b0N ‖2 + ‖(βinit)N c‖2

≤ 6‖fS0 − f0‖2 + 9λ2inits0/φ
2
0√

s0λinit
≤ 6δ2oracle
λinit

√
s0
.

⊔⊓
Proof of Lemma 5.2. This follows from

|βj,init| ≥ |b0j | − |βj,init − b0j |.

⊔⊓
Proof of Lemma 5.3. This is a special case of Lemma 5.10. ⊔⊓
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Proof of Lemma 5.4. The first inequality is trivial, as the refitted version is
the projection of f0 on the space spanned by the variables in Sδ

init, and f
δ
init is

in this space.

For the second result, we note that if |βj,init| ≤ δ, then |b0j | ≤ δ + δ∞. In other
words

Sδ+δ∞
0 ⊂ Sδ

init.

Hence
‖fSδ

init
− f0‖ ≤ ‖f

Sδ+δ∞
0

− f0‖.
Moreover,

‖fb0
S0

− fb0
S
δ+δ∞
0

‖2 = (b0
S0\Sδ+δ∞

0

)TΣ(b0
S0\Sδ+δ∞

0

)

≤ Λ2
max(S0\Sδ+δ∞

0 )‖b0
S0\Sδ+δ∞

0

‖22

≤ Λ2
max(S0\Sδ+δ∞

0 )|S0\Sδ+δ∞
0 |(δ + δ∞)2.

But then
‖f

Sδ+δ∞
0

− f0‖ = min
β=β

S
δ+δ∞
0

‖fβ − f0‖

≤ ‖f0b
S
δ+δ∞
0

− f0‖ ≤ ‖fS0 − f0‖+ ‖fb0
S0

− fb0
S
δ+δ∞
init

‖ ≤

‖fS0 − f0‖+ Λmax(S0\Sδ+δ∞
0 )

√

|S0\Sδ+δ∞
0 |(δ + δ∞).

⊔⊓
Proof of Lemma 5.5. We clearly have

δ2|Sδ
init\S0| ≤

∑

j∈Sδ
init\S0

|βj,init|2 ≤ ‖βinit − b0‖22 ≤ δ22 .

Whence the first result.

Moreover,

K2δ2|S(K+1)δ
0 \Sδ

init| ≤
∑

j∈S(K+1)δ
0 \Sδ

init

|βj,init − b0j |2 ≤ ‖βinit − b0‖22 ≤ δ22 .

This gives the second result.

⊔⊓

8.2 Proofs for Subsection 5.2

Proof of Lemma 5.6. This follows from applying Lemma 5.9, with L = 1.
We only have to show that

φ(2, Sinit) ≥ φ0.

Because (see (7)),
|Sδ

init\S0| ≤ s0.
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indeed
φ(2, Sδ

init) ≥ φ(2, Sδ
init ∪ S0)) ≥ φ(2, S0, 2s0) = φ0.

⊔⊓
Proof of Lemma 5.7. We use that if |βj,init| > δ, then |b0j | > δ−δ∞. Moreover,

if |b0j | > 2δ∞, then |βj,init| ≥ |b0j |/2. Hence,
∑

j∈Sδ
init

1

β2j,init
=

∑

|βj,init|>δ, |b0j |≤2δ∞

1

β2j,init
+

∑

|βj,init|>δ, |b0j |>2δ∞

1

β2j,init

≤ 1

δ2











∣

∣

∣

∣

{j : δ − δ∞ < |b0j | ≤ 2δ∞}
∣

∣

∣

∣

+ 4δ2
∑

|b0j |>2δ∞

1

|b0j |2











.

The second result follows from
∑

j∈Sδ
init

1

β2j,init
≤ 1

δ2
|Sδ

init|,

and, invoking (7),
|Sδ

init| ≤ |Sδ
init\S0|+ |S0| ≤ 2s0.

⊔⊓
Proof of Lemma 5.8. This is a special case of Lemma 5.10. ⊔⊓

8.3 Proofs for Subsection 5.3

Proof of Lemma 5.9. We have

‖fweight−f0‖2+λinitλweight
p
∑

j=1

wj|βj,weight| ≤ ‖fβS
−f0‖2+λinitλweight

∑

j∈S
wj|βj |,

and hence
‖fweight − f0‖2 + λinitλweight

∑

j /∈S
wj |βj,weight|

≤ ‖fβS
− f0‖2 + λinitλweight

∑

j∈S
wj|βj,weight − βj |

≤ ‖fβS
− f0‖2 + λinitλweight‖wS‖2‖(βweight)S − βS‖2.

Case i). If

‖fβS
− f0‖2 ≤ λinitλweight‖wS‖2‖(βweight)S − βS‖2,

we get

‖fweight−f0‖2+λinitλweight
∑

j /∈S
wj |βj,weight| ≤ 2λinitλweight‖wS‖2‖(βweight)S−βS‖2.

(15)
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It follows that

‖(βweight)Sc‖1 ≤ 2L
√

|S|‖(βweight)S − (β)S‖2.

But then
‖(βweight)S − βS‖2 ≤ ‖fweight − fβS

‖/φ(2L,S)
≤ ‖fweight − f0‖/φ(2L,S) + ‖fβS

− f0‖/φ(2L,S).
This gives

‖fweight − f0‖2 + λinitλweight
∑

j /∈S
wj |βj,weight|

≤ 2λinitλweight‖wS‖2‖fweight − f0‖/φ(2L,S)
+2λinitλweight‖wS‖2‖fβS

− f0‖/φ(2L,S)

≤ 1

2
‖fweight − f0‖2 + ‖fβS

− f0‖2 +
3λ2initλ

2
weight‖wS‖22

φ2(2L,S)
.

Hence,

‖fweight−f0‖2+2λinitλweight
∑

j /∈S
wj|βj,weight| ≤ 2‖fβS

−f0‖2+
6λ2initλ

2
weight‖wS‖22

φ2(2L,S)
.

Case ii) If

‖fβS
− f0‖2 > λinitλweight‖wS‖2‖(βweight)S − βS‖2,

we get

‖fweight − f0‖2 + λinitλweight
∑

j /∈S
wj|βj,weight| ≤ 2‖fβS

− f0‖2.

For the second result, we add in Case i), λinitλweight‖wS‖2‖(βweight)S − βS‖2 to
the left and right hand side of (15):

‖fweight−f0‖2+λinitλweight‖wS‖2‖(βweight)S−βS‖2+λinitλweight
∑

j /∈S
wj |βj,weight|

≤ 3λinitλweight‖wS‖2‖(βweight)S − βS‖2.
The same arguments now give

3λinitλweight‖wS‖2‖(βweight)S − βS‖2 ≤

‖fweight − f0‖2 + 3‖fβS
− f0‖2 +

3λ2initλ
2
weight‖wS‖2

φ2(2L,S)
.

In Case ii), we have

λinitλweight
∑

j /∈S
wj |βj,weight| ≤ 2‖fβS

− f0‖2,
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and also
λinitλweight‖wS‖2‖(βweight)S − βS‖2 < ‖fβS

− f0‖2.
So then

λinitλweight‖wS‖2‖(βweight)S − βS‖2 + λinitλweight
∑

j /∈S
wj |βj,weight|

< 3‖fβS
− f0‖2.

⊔⊓
Proof of Lemma 5.10. By the weighted KKT conditions, for all j

2(ψj , fweight − f0) = −λinitλweightwjτj,weight.

Hence,

∑

j∈Sweight\S0

2|(ψj , fweight − f0)|2 ≥ λ2initλ
2
weight‖wSweight\S0

‖22

≥ λ2initλ
2
weight|Sweight\S0|2/‖(1/w)Sweight\S0

‖22.
On the other hand

∑

j∈Sweight\S0

|(ψj , fweight − f0)|2 ≤ Λ2
max(Sweight\S0)‖fweight − f0‖2.

Clearly,
Λ2
max(Sweight\S0) ≤ Λ2

max ∧ |Sweight\S0|.

⊔⊓

8.4 Proofs for Subsection 5.4

Proof of Lemma 5.12. Clearly,

‖W−1
Sc Σ2,1(S)Σ

−1
1,1(S)WSτS‖∞ ≤ ‖Σ2,1(S)Σ

−1
1,1(S)WSτS‖∞/wmin

Sc .

Define
βS := Σ−1

1,1(S)WSτS.

Then

‖W−1
Sc Σ2,1(S)Σ

−1
1,1(S)WSτS‖∞ = sup

‖γSc‖1≤1
|γTScW−1

Sc Σ2,1(S)Σ
−1
1,1(S)WSτS|

= sup
‖WScβSc‖1≤1

|βTSΣ2,1(S)βS | = sup
‖WScβSc‖1≤1

|(fβSc , fβS
)|

≤ sup
‖βSc‖1≤1/wmin

Sc

|(fβSc , fβS
)|
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= sup
‖βSc‖1≤‖wS‖2‖βS‖2/wmin

Sc

|(fβSc , fβS
)|

‖wS‖2‖βS‖2

= sup
‖βSc‖1≤‖wS‖2‖βS‖2/wmin

Sc

|(fβSc , fβS
)|

‖fβS
‖2

‖fβS
‖2

‖wS‖2‖βS‖2
.

But

‖fβS
‖2

‖wS‖2‖βS‖2
=

τTSWSΣ
−1
1,1(S)WSτS

√

τTSW
2
SτS

√

τSWSΣ
−2
1,1(S)WSτS

‖WSτS‖2
‖wS‖2

≤ 1.

We conclude that

‖W−1
Sc Σ2,1(S)Σ

−1
1,1(S)WSτS‖∞ ≤ sup

‖βSc‖1≤‖wS‖2‖βS‖2/wmin
Sc

|(fβSc , fβS
)|

‖fβS
‖2

=
‖wS‖2

√

|S|wmin
Sc

ϑadaptive(S).

⊔⊓

8.5 Proofs for Section 6

The proofs of Lemma 6.1 and 6.2 are a straightforward extension of their noise-
less versions, and therefore omitted.

Proof of Lemma 6.3. This follows from

‖f̂Ŝδ
init

− fŜδ
init

‖2n ≤ 2(ǫ, f̂Ŝδ
init

− fŜδ
init

)n,

and
2(ǫ, f̂Ŝδ

init
− fŜδ

init
)n ≤ λnoise‖b̂Ŝ

δ
init − bŜ

δ
init‖1

≤
√
2s0‖b̂Ŝ

δ
init − bŜ

δ
init‖2 ≤

√
2s0‖f̂Ŝδ

init
− fŜδ

init
‖n/φ20.

⊔⊓
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