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Abstract

In this paper, we present a statistical framework for modeling conditional quantiles of spatial processes

assumed to be strongly mixing in space. We establish the L1 consistency and the asymptotic normality

of the kernel conditional quantile estimator in the case of random fields. We also define a nonparametric

spatial predictor and illustrate the methodology used with some simulations.
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1 Introduction

Let (X,Y ) be a pair of random variables with values in R
d×R and defined on a probability space (Ω,A, P ).

Assume that the joint density of (X,Y ) and the marginal density of X exist and are denoted respectively by
f(x, y) and g(x). In the following, we suppose that F (·|x), the conditional distribution function of Y given
X = x exists and we denote by f(·|x) the density of Y given X = x. For p ∈]0, 1[ and for fixed x ∈ R

d,
let µp(x) be the conditional quantile of order p of F (·|x), that can be seen as a solution of the equation
F (y|x) = p. Another alternative characterization of the pth conditional quantile (see for example Gannoun
et al. [6]) is µp(x) = argminθ∈R

E [(2p− 1)(Y − θ) + |Y − θ| |X = x].
We are interested to the non-parametric estimation of µp(x) in the case of spatial dependent observations.
Nonparametric conditional quantile estimation technics have already been developed for non spatial (inde-
pendent or mixing) real valued processes. Such results have provided useful tools for solving for example
some prediction problems of strictly stationary processes satisfying the α-mixing condition. The existing
results in the non-spatial case include the works of Matzner-Løber [10], Collomb [4], Gannoun et al. [6],
Laksaci et al. [8].
In nonparametric spatial estimation, the existing works concern mainly the estimation of a probability den-
sity and regression functions, see the key references: Tran [12], Biau and Cadre [2], Carbon et al. [3].
For the spatial quantile conditional estimation case, there exist only few results in our knowledge. Abdi et al.
[1] considered the pointwise p−mean and almost complete consistencies of a double kernel quantile estimator
for real-valued random fields. Hallin et al. [7] give a Bahadur representation and asymptotic normality re-
sults of the local linear quantile estimator. Laksaci and Fouzia [9] consider the case where the regressor take
their values in a semi-metric space and show the strong and weak consistency of the conditional quantile.
In this paper, we will go beyond all these last spatial works and provide the L1 consistency and an asymp-
totic normality of a kernel conditional quantile estimate of a strictly stationary spatial process satisfying the
α-mixing condition. In addition, we employe our results to solve some nonparametric prediction problems.
The organization of this paper is as follows. The estimation procedure is presented in Section 2. Section 3
gives some necessary conditions and then establishes the main asymptotic results. Section 4 is devoted to
simulations results. Technical proofs are given in Section 5.
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2 Nonparametric estimator of the conditional quantile

Let us consider a strictly stationary process ((Xi, Yi), i ∈ In) with values in R
d × R where (Xi, Yi) has the

same distribution as (X,Y ). For n ∈ (N∗)N , we define a rectangular region In by In = {i = (i1, . . . , iN ) ∈
(N∗)N , 1 ≤ ik ≤ nk, k = 1, . . . , N}. We set n̂ = n1 . . . nN , and we write n → ∞ if mink=1,...,N nk → ∞.
The well known kernel estimates of f and g are defined by

fn(x, y) =
1

n̂hd+1

∑

i∈In

K

(
x−Xi

h

)
w

(
y − Yi
h

)
and gn(x) =

1

n̂hd

∑

i∈In

K

(
x−Xi

h

)
, where K and w are

two probability density functions, and the bandwidths h = h(n) is a sequence of positive real numbers such
that h → 0 as n → ∞. The kernel estimate of the conditional density fn(y|x) is naturally defined by the
ratio fn(x, y) over gn(x) while the estimator of the conditional distribution function (see the one introduced
by Roussas [11]) is defined by

Fn(y|x) =
ψn(x, y)

gn(x)
1I{gn(x) 6=0},

ψn(x, y) =
1

n̂hd+1

∑

i∈In

K

(
x−Xi

h

)∫ y

−∞

w

(
z − Yi
h

)
dz.

For a fixed x, the estimator of the pth conditional quantile noted µp,n(x) can be defined as the root of the
equation Fn(z|x) = p. Alternatively, one can consider the local constant estimator defined by

νp,n(x) = argmin
θ∈R

∑

i∈In

(|Yi − θ|+ (2p− 1)(Yi − θ))K

(
x−Xi

h

)
.

In this paper, we will focus on the study of the asymptotic behavior of µp,n. For the study of νp,n, one can
adapt the technics developed in Zhou [14].

3 Main results

To establish the asymptotic results, we will suppose that the sequence (Xi, Yi))i∈(N∗)N satisfies the following

mixing condition: there exists a function χ : R
+ → R

+ with χ(t) ↓ 0 as t → ∞, such that whenever
E,E′ ⊂ (N∗)N with finite cardinals,

α (B(E),B(E′)) := sup {|P (A ∩B)− P (A)P (B)|; A ∈ B(E), B ∈ B(E′)}
≤ φ(CardE,CardE′)χ(dist(E,E′)),

where B(E) (resp. B(E′)) denotes the Borel σ-fields generated by (Xi, Yi)i∈E (resp. (Xi, Yi)i∈E′), Card E
(resp. Card E′) the cardinality of E (resp. E′), dist(E,E′) the Euclidean distance between E and E′, and
φ : N2 → R

+ is a symmetric positive function which is non decreasing in each variable. Throughout this
paper, we will assume that φ satisfies

φ (n,m) ≤ Cmin (n,m) , ∀n,m ∈ N (1)

or
φ (n,m) ≤ C (n+m+ 1)

κ
, ∀n,m ∈ N (2)

for some κ ≥ 1 and some C > 0. If φ ≡ 1, then the field (Xi, Yi)i∈(N∗)N is called strongly mixing. In this
paper, we consider the case where χ(i) tends to zero at a polynomial rate, that is,

χ(i) = O(i−β), (3)
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with β > 0. We fix a compact subset S of Rd. Denote a = inf{y : F (y|x) > 0} and b = sup{y : F (y|x) < 1},
we will suppose that V ⊆ [a, b] is a compact neighborhood of the unknown quantile µ(x). For mixing
coefficients with polynomial decreasing rate (3), the constraints on the bandwidth will be related to β by
means of

θ1 =
N(d+ 1)(d+ 2) + (d+ 1)β

β −N(d+ 5)
, θ2 =

N(d+ 2)− β

β −N(d+ 5)
,

θ3 =
N(d2 + 4d+ 2) + (d+ 1)β

β −N(d+ 4 + 2κ)
, θ4 =

N(d+ 1)− β

β −N(d+ 4 + 2κ)
.

Denote Ωn =
√

log n̂

n̂hd . Let ε be an arbitrary small positive number and set u(n) =
∏N

i=1(logni)(log logni)
1+ε.

It is clear that
∑

n∈ZN 1/(n̂u(n)) <∞. In the sequel, we use the following hypotheses.

(A1) f and g are respectively continuous on R
d+1 and R

d, g satisfies a Lipschitz condition, g(x) > 0, ∀x ∈ S.

(A2) There exists D ≥ 0 such that the pairs (Xi, Xj) and ((Xi, Yi), (Xj, Yj)) admit a density, say gi,j and
fi,j, as soon as dist(i, j) > D. Moreover, for some constant c ≥ 0,

|fi,j(s, t)− f(s)f(t)| ≤ c, ∀s, t ∈ R
d+1

and

|gi,j(u, v)− g(u)g(v)| ≤ c, ∀u, v ∈ R
d.

(A3) i) f (i,j)(·, ·) = ∂i+jf
∂xi

l
∂yj (·, ·) exists, is bounded and integrable for 0 ≤ i+ j ≤ 2, and 0 ≤ l ≤ d.

ii) F (y|x) has continuous second partial derivatives with respect to x.

(A4) F (y|x) has continuous second derivative with respect to y.

(A5) The kernel K is integrable, symmetric and is a lipschitzian density function on R
d with compact

support. Moreover
∫
Rd ‖s‖2K(s)ds <∞.

(A6) The kernel w is a symmetric and lipschitzian density function on R and has compact support.

(A7) limn→∞ n̂hd+2 (log n̂)−1 = 0.

(A8) The function µp(x) satisfies a uniform uniqueness property on S:

∀ε > 0, ∃η > 0, ∀r : S → R, sup
x∈S

|µp(x) − r(x)| ≥ ε⇒ sup
x∈S

|F (µp(x)|x) − F (r(x)|x)| ≥ η.

(A9) n̂hθ1(log n̂)θ2 (u(n))
−2N

β−N(d+5) → ∞.

(A10) n̂hθ3(log n̂)θ4 (u(n))
−2N

β−N(d+4+2κ) → ∞.

Comments on the hypotheses:

Assumptions (A9) and (A10) imply conditions (3.7) and (3.8) of Theorem 3.3 in Carbon et al. [3] and they
also imply the classical condition n̂hd+1/ log n̂ → ∞.
Assumption (A8) is introduced for getting consistency results on the quantile from those of the conditional
distribution.

In order to state the asymptotic results, we will suppose that (A9) and (1) or (A10) and (2) are satisfied.
The following two theorems give uniform almost sure convergence results of respectively Fn(y|x) and µp,n(x)
and permit to establish the L1 consistency of µp,n(x) (see Corollary 1).
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Theorem 1 Assume (A1)-(A7) hold, then

sup
y∈V

sup
x∈S

|Fn(y|x)− F (y|x)| = O (Ωn) a.s.

Theorem 2 If (A1)-(A8) are satisfied, then we have

sup
x∈S

|µp,n(x) − µp(x)| a.s.→ 0.

Corollary 1 Assume (A1)-(A8) hold, then

E
[
{µp,n(Xn)− µp(Xn)}1I{Xn∈S}

] a.s.→ 0.

To establish the following asymptotic normality of µp,n(x) (Theorem 3), we will suppose that for any (x, y) ∈
S × V , there exists c > 0 such that f(y|x) > c. Moreover, we will assume that the following additional
conditions on the bandwidth hold for some 0 < γ < 1.

(C1) n̂hd(1+2N(1−γ)) → ∞.

(C2) There exists a sequence of positive integers q = qn → ∞ with q = o
(
(n̂hd(1+2N(1−γ)))1/2N

)
such that

n̂
∑∞

i=1 i
N−1χ(iq) → 0 and h−d(1−γ)

∑∞
i=q i

N−1(χ(i))1−γ → 0.

Theorem 3 Assume that (A1)-(A8), (C1) and (C2) hold. If there exists c ≥ 0 such that n̂hd+4 → c, then

√
n̂hd (µp,n(x)− µp(x))

L→ N
(
c
B(x, µp(x))

f(µp(x)|x)
,
σ2(x, µp(x))

(f(µp(x)|x))2
)
,

where

B(x, y) =
1

2

{
d∑

i,j=1

[
∂2F (y|x)
∂xi∂xj

+
2

g(x)

∂g(x)

∂xi

∂F (y|x)
∂xj

] ∫

Rd

‖s‖2K(s)ds

+
∂2F (y|x)
∂y2

∫

R

t2w(t)dt

}
. (4)

σ2(x, y) =
F (y|x) [1− F (y|x)]

g(x)

∫

Rd

K2(z)dz. (5)

3.1 Prediction

Let (ξi, i ∈ In) be a R−valued strictly stationary random spatial process, assumed to be bounded, observable
over a region In ⊂ N

N and observed over a subset On of In, n = (n1, ..., nN) ∈ N
N . The aim of this section

is to predict ξi0 , at a given fixed point i0 not in On ⊂ N
N . In practice (e.g. for simplicity), we expect that

ξi0 depends only on the values of the process on a bounded neighborhood Vi0 ⊂ On. In other words, we
expect that the process (ξi) satisfies a Markov property, see for example Biau and Cadre [2], Dabo-Niang
and Yao [5]. Moreover, we assume that Vi0 = V + i0, where V is a fixed bounded set of sites that does not
contain 0. It is well known that the best predictor of ξi0 given the data in Vi0 in the sense of mean-square
error is

E(ξi0 |ξi, i ∈ Vi0).

Let Vi = V + i = {u+ i, u ∈ V} for each i ∈ N
N , and d be the cardinal of V (d is also the cardinal of each

Vi). To define a predictor of ξi0 , let us consider the R
d-valued random variables ξ̃i = {ξu, u ∈ Vi ⊂ On}.

The notation of the previous sections are used by setting Xi = ξ̃i, Yi = ξi, i ∈ N
N .

As a predictor of ξi0 , we take the conditional quantile estimate ξ̂i0 = µp,n(ξ̃i0) of order p, particularly the
conditional median p = 0.5. We deduce from the previous consistency results, the following corollary that
gives the convergence of the predictor ξ̂i0 .
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Corollary 2 i) Under the conditions of Corollary 1, we have

E

[
{µp,n(ξ̃i0)− µp(ξ̃i0)}1I{ξ̃i0∈S}

]
a.s.→ 0.

ii) Under the conditions of Theorem 3, and if n̂hd+4 → 0, then

√
n̂hd

(
µp,n(ξ̃i0)− µp(ξ̃i0)

)
L→ N

(
0,

σ̂2(ξ̃i0 , µp(ξ̃i0))

(f(µp(ξ̃i0)|ξ̃i0))2

)
,

where

σ̂2(x, y) =
Fn(y|x) [1− Fn(y|x)]

gn(x)

∫

Rd

K2(z)dz.

These consistency results permit to have an approximation of an 1 − α confidence interval of ξi0 given

by Îα = [a−(ξ̃i0), a+(ξ̃i0)], where

a±(ξ̃i0) = µp,n(ξ̃i0)±Q1−α
2

σ(ξ̃i0 , µp,n(ξ̃i0))√
n̂hdfn(µp,n(ξ̃i0)|ξ̃i0)

, (6)

where Qζ denotes the ζ-quantile of the standard normal distribution, and the unknown parameters (of the
asymptotic variance in Corollary 2) are replaced by kernel estimates.
Note also that the quantiles of order p1 and p2 (p1 < p2) can be used to construct a predictive interval that
consists of the (p2 − p1)100% confidence interval with bounds µp1,n(ξ̃i0) and µp2,n(ξ̃i0).

4 A simulation study

In this section, we study the performance of the conditional quantile predictor introduced in the previous
section towards some simulations. Let us denoted by GRF (m, σ2, s) a Gaussian random field with mean m
and covariance function defined by

ϑ(h) = σ2 exp

{
−
(‖h‖

s

)2
}
, h ∈ R

2.

Set

In = {i = (i, j) ∈ (N∗)2, 1 ≤ i ≤ 61, 1 ≤ j ≤ 61} (7)

On = {i = (i, j) ∈ (N∗)2, 1 ≤ i ≤ 21, 1 ≤ j ≤ 21} ∪ {i = (22, j), 1 ≤ j ≤ 15}. (8)

We consider a random field (ξi)i∈In
from the following model

ξi = Ui ∗
(
sin(2Xi) + 2 exp{−(16Xi)

2}
)
+ Zi, i ∈ N

2 (9)

where X = (Xi)i∈In
is a GRF (0, 5, 3), Z = (Zi)i∈In

is a GRF (0, 0.1, 5) independent of X and Ui =
1
n̂

∑
j∈In

exp
(
− ‖i−j‖

2

)
. The choice of Ui in the model (9) is motivated by a reinforcement of the spatial local

dependency. The field (ξi, i ∈ In) is observable over the rectangular region In and observed over the subset
On defined in (7) and (8).
We want to predict the values ξi1 , . . . , ξim at given fixed sites i1, . . . , im not in On, with m = 10. The sample
obtained from model (9), observed in On is plotted in Figure 1 below with the 10 non observable values of
the field at i1, . . . , im.
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Figure 1: The random field (ξi) with non observed values ξi1 , . . . , ξi10 in the white rectangular cases.

As explained in Section 3.1, for any k ∈ {1, . . . ,m}, we take the conditional quantile estimate ξ̂ik =
µp,n(ξ̃ik) as a predictor of ξik , where ξ̃ik are observed on On and the vicinity V = {−1, 1} × {−1, 1} or
{−2,−1, 1, 2}× {−2,−1, 1, 2}.
To compute µp,n, we select the standard normal density as kernel K and the Epanechnikov kernel as w. For
the bandwidth selection, we use the rule developed in Yu and Jones [13],

hn = hmean

(
p(1− p)

φ(Φ−1(p))2

)1/5

,

where hmean is the bandwidth for kernel smoothing estimation of the regression mean, φ and Φ, are respec-
tively, the standard normal density and distribution function.
To evaluate the performance of the predictor ξ̂ik , we compute the mean absolute error (MAE):

MAE =
1

m

m∑

k=1

|ξ̂ik − ξik |.

The following Table gives the predictors of ξik , k = 1, ...,m for p ∈ {0.05, 0.5, 0.95}, V = {−1, 1}× {−1, 1}
on the left, V = {−2,−1, 1, 2}× {−2,−1, 1, 2} on the right and the prediction error.

Table 1: Predictive data for V = {−1, 1}× {−1, 1} on the left and V = {−2,−1, 1, 2}×{−2,−1, 1, 2} on the
right.

p = 0.05 True data p = 0.5 p = 0.95 p = 0.05 True data p = 0.5 p = 0.95
0.1653 0.2009 0.1930 0.2192 0.1835 0.2009 0.2129 0.2362
-0.2553 −0.2315 -0.2289 -0.1862 -0.2195 −0.2315 -0.1984 -0.1766
0.1516 0.1966 0.1990 0.2362 0.1912 0.1966 0.2129 0.2362
-0.5313 −0.4906 -0.5062 -0.4782 -0.5472 −0.4906 -0.5313 -0.5033
0.2693 0.2901 0.2929 0.3168 0.2237 0.2901 0.2465 0.2676
-0.2748 −0.2535 -0.2527 -0.2289 -0.2838 −0.2535 -0.2606 -0.2401
0.3696 0.3941 0.4007 0.4269 0.3805 0.3941 0.3834 0.4269
-0.5539 −0.5177 -0.5295 -0.5062 -0.5472 −0.5177 -0.5313 -0.5033
-0.3678 −0.3217 -0.3463 -0.3193 -0.3637 −0.3217 -0.3487 -0.3231
-0.2983 −0.2843 -0.2702 -0.2455 -0.3096 −0.2843 -0.2863 -0.2671

MAE 0.0308 0.0089 0.0252 0.0298 0.0206 0.0244
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We derive from the results of Tables 1 a 90% predictive interval where the extremities are the 5% and
95% quantiles estimates, for each of the 10 prediction sites (see Section 3.1 for more details). Note that
these 90% predictive intervals contain the true values. The average length for the 10 intervals is 0.05604 for
V = {−1, 1} × {−1, 1} and 0.04455 for V = {−2,−1, 1, 2}× {−2,−1, 1, 2}.
The numerical results show that our proposed predictor gives good results on the above simulated field. A
next step would be to apply the predictor to a spatial real data and deserves futur investigations.

5 Appendix

The letter C will be used to denote constants whose values are unimportant. Before proving the main results,
let us give the following notations:

ψ(x, y) =

∫ y

−∞

f(x, z)dz, K1(y) =

∫ y

−∞

w(z)dz.

Next, we need the following results.

Lemma 1 Assume that (A3)-(A7) hold, then,

sup
y∈V

sup
x∈S

|Eψn(x, y)− ψ(x, y)| = O (Ωn) .

The proof of Lemma 1 is classical (see for example Matzner and Løber [10]).

Lemma 2 Let Assumptions (A1)-(A6) hold. If (A9) and (1) or (A10) and (2) are satisfied, then,

sup
y∈V

sup
x∈S

|ψn(x, y)−Eψn(x, y)| = O (Ωn) a.s.

Proof of Lemma 2. Define

Zi(x, y) =
1

n̂hd+1
K

(
x−Xi

h

)∫ y

−∞

w

(
t− Yi
h

)
dt =

1

n̂hd
K

(
x−Xi

h

)
K1

(
y − Yi
h

)
,

∆i(x, y) = Zi(x, y)−EZi(x, y),

then Sn(x, y) = ψn(x, y)−Eψn(x, y) =
∑

i∈In

∆i(x, y).

Lemma 3 Under Assumptions (A1), (A2), (A5) and (A6), we have

∑

i∈In

E(∆i(x, y))
2 +

∑

i6=j
i,j∈In

E∆i(x, y)∆j(x, y) = O

(
1

n̂hd

)
.

The proof of Lemma 3 is similar to the proof of Lemma 2.2 in Tran [12].

Let us introduce a spatial block decomposition that has been used by Tran [12] and Carbon et al. [3].
Without loss of generality, assume that ni = 2pqi for 1 ≤ i ≤ N . The random variables ∆i(x, y) can be

7



grouped into 2Nq1 × q2 × · · · × qN cubic blocks of side p. Denote

Ux(1,n, j, y) =

(2jk+1)p∑

ik=2jkp+1
k=1,...,N

∆i(x, y), U
x(2,n, j, y) =

(2jk+1)p∑

ik=2jkp+1
k=1,...,N−1

2(jN+1)p∑

iN=(2jN+1)p+1

∆i(x, y),

Ux(3,n, j, y) =

(2jk+1)p∑

ik=2jkp+1
k=1,...,N−2

2(jN−1+1)p∑

iN−1=(2jN−1+1)p+1

(2jN+1)p∑

iN=2jNp+1

∆i(x, y),

Ux(4,n, j, y) =

(2jk+1)p∑

ik=2jkp+1
k=1,...,N−2

2(jN−1+1)p∑

iN−1=(2jN−1+1)p+1

2(jN+1)p∑

iN=(2jN+1)p+1

∆i(x, y),

and so on. Finally, note that

Ux(2N−1,n, j, y) =

(2jk+1)p∑

ik=2jkp+1

(2jN+1)p∑

iN=2jNp+1

∆i(x, y), Ux(2N ,n, j, y) =

(2jk+1)p∑

ik=2jkp+1
k=1,...,N

∆i(x, y).

For each integer 1 ≤ i ≤ 2N , let

T x(n, i, y) =

qk−1∑

jk=0
k=1,...,N

Ux(i,n, j, y), Sn(x, y) =

2N∑

i=1

T x(n, i, y).

Observe that, for any ε > 0

P (|Sn(x, y)| > ε) = P



∣∣∣∣∣∣

2N∑

i=1

T x(n, i, y)

∣∣∣∣∣∣
> ε


 ≤ 2NP

(
|T x(n, i, y)| > ε/2N

)
.

Without loss of generality, we consider just the case where i = 1 and we enumerate in an arbitrary way
the q̂ = q1 . . . qN terms Ux(1,n, j, y) of the sum T x(n, 1, y) that we call W1, . . . ,Wq̂. Note that Ux(i,n, j, y)
is measurable with respect to the σ-field generated by Zi, with i such that 2jkp + 1 ≤ ik ≤ (2jk + 1)p,
k = 1, . . . , N .
These sets of sites are separeted by a distance at least p and since the Zi are bounded, then we have for all
i = 1, . . . , q̂, |Wi| ≤ C(n̂hd)−1pN‖K‖∞. Lemma 4.4 in Carbon et al. [3] ensures that there exist independent
random variables W ∗

1 , . . . ,W
∗
q̂ such that for all i = 1, . . . , q̂,

E|Wi −W ∗
i | ≤ C(n̂hd)−1pN‖K‖∞φ(n̂, pN )χ(p).

Markov’s inequality leads to

P

(
q̂∑

i=1

|Wi −W ∗
i | > ε/2N+1

)
≤ C2N+1(n̂hd)−1pN q̂‖K‖∞φ(n̂, pN)ε−1χ(p). (10)

By Bernstein’s inequality, we have

P

(
|

q̂∑

i=1

W ∗
i | > ε/2N+1

)
≤ 2 exp

{
−ε2/(2N+1)2

4
∑q̂

i=1 EW
∗2
i + 2C(n̂hd)−1pN‖K‖∞ε/2N+1

}
. (11)
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Combining (10) and (11), we have

P (|Sn(x, y)| > ε) ≤ 2NP

(
q̂∑

i=1

|Wi −W ∗
i | > ε/2N+1

)
+ 2NP

(
|

q̂∑

i=1

W ∗
i | > ε/2N+1

)

≤ 2N+1 exp

{
−ε2/(2N+1)2

4
∑q̂

i=1 EW
∗2
i + 2C(n̂hd)−1pN‖K‖∞ε/2N+1

}

+C22N+1φ(n̂, pN )(n̂hd)−1pN q̂‖K‖∞ε−1χ(p).

By Lemma 3, one has
∑q̂

i=1 EW
∗2
i = O( 1

n̂hd ) and since n̂ = 2NpN q̂, we have

P (|Sn(x, y)| > ε) ≤ 2N+1 exp

{ −ε2n̂hd
22N+4C + 2N+2CpNε

}
+ C2N+1φ(n̂, pN )h−dε−1χ(p).

Let λ > 0 and set ε = λΩn, p = Ω
−1/N
n . For the first part of Lemma 2, a simple computation shows that for

sufficiently large n̂,

P (|Sn(x, y)| > λΩn) ≤ 2N+1 exp

{ −λ2 log n̂
22N+4C + 2N+2Cλ

}
+ C2N+1pNh−dλ−1Ω−1

n χ(p)

≤ Cn̂−b + Cλ−1h−dΩ
β−2N

N
n , (12)

with b > 0. Analogously, for the second part, as above we have

P (|Sn(x, y)| > λΩn) ≤ 2N+1 exp

{ −λ2 log n̂
22N+4C + 2N+2Cλ

}
+ C2N+1n̂κh−dλ−1Ω−1

n χ(p)

≤ Cn̂−b + Cλ−1n̂κh−dΩ
β−N
N

n . (13)

Now, set Rn = hd+1Ωn and rn =
(

hd+2

n

)1/2
. Since S is a compact, it can be covered with dn cubes Bk

having sides of length Rn and center at xk with dn ≤ CR−d
n . The compact set V can be covered with ln

intervalls Il having length rn and center at yl, with ln ≤ Cr−1
n . We have

dnln ≤ Cn1/2h−
d+2
2

(
hd+1Ωn

)−d−1
. (14)

Define S1n = supy∈V maxk supx∈Bk
|ψn(x, y)− ψn(xk, y)|

S2n = max
k

max
l

sup
y∈Il

|ψn(xk, y)− ψn(xk, yl)| , S3n = max
k

max
l

sup
y∈Il

|Eψn(xk, yl)−Eψn(xk, y)|

S4n = sup
y∈V

max
k

sup
x∈Bk

|Eψn(xk, y)−Eψn(x, y)| , S5n = max
k

max
l

|ψn(xk, yl)−Eψn(xk, yl)| .

Then, we can write sup
y∈V

sup
x∈S

|ψn(x, y)−Eψn(x, y)| ≤ S1n + S2n + S3n + S4n + S5n. The proof of Lemma 2

follows easily from the combination of the two following lemmas.

Lemma 4 Under Assumptions (A5) and (A6),

Sin = O (Ωn) a.s., i = 1, 2, 3, 4.

Lemma 5 Assume that (A1), (A2), (A5) and (A6) hold. If (A9) and (1) or A(10) and (2) are satisfied,
then

S5n = O (Ωn) a.s.
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Proof of Lemma 4. On one hand, since the kernel K satisfies the Lipschitz condition, we have clearly

|ψn(x, y)− ψn(xk, y)| ≤ Cn̂−1h−d−1
∑

i∈In

‖x− xk‖ ≤ Ch−d−1Rn = O (Ωn) .

On the other hand, observe that h−d−1rn =
(
n̂hd

)−1/2
= O (Ωn). Since w satisfies the Lipschitz condition,

|ψn(xk, y)− ψn(xk, yl)| ≤ Cn̂−1h−d−1
∑

i∈In

|y − yl| ≤ Ch−d−1rn = O (Ωn) ,

which gives the proof of Lemma 4.

Proof of Lemma 5. For ε > 0, we have

P

(
max

l
max

k
|ψn(xk, yl)−Eψn(xk, yl)| > ε

)
≤ lndnP (|ψn(xk, yl)−Eψn(xk, yl)| > ε) .

Setting ε = λΩn with λ > 0 and taking into account (12) and (13), it suffices to show that lndnn̂
−bn̂u(n) → 0

and lndnh
−dΩ

β−2N
N

n n̂u(n) → 0, or lndnn̂
κh−dΩ

β−N
N

n n̂u(n) → 0.
First, observe that condition n̂hd → ∞ implies that n̂ > Ch−d, so that

n̂(d+1)(d+2)/2d > Ch−(d+1)(d+2)/2. (15)

Using (14) and (15), we have

lndnn̂
−bn̂u(n) ≤ Ch−(d+1)(d+2)/2(log n̂)−d/2n̂1/2n̂−bn̂d/2n̂u(n)

≤ Cn̂(d2+3d+1)/d−b(log n̂)−d/2u(n),

which goes to 0 if b > (d2 + 3d+ 1)/d.
Next, again (14) and a computation show that

lndnh
−dΩ

β−2N
N

n n̂u(n) ≤ C
[
n̂(log n̂)

β−N(d+2)
N(d+5)−β u(n)

2N
N(d+5)−β h

−N(d+1)(d+2)−dβ)
N(d+5)−β

]N(d+5)−β

2N

,

which goes to 0 by Assumption (A9) and β > N(d+ 5).
Analogously, (14) and a computation show that

lndnn̂
κh−dΩ

β−N
N

n n̂u(n) ≤ C

[
n̂(log n̂)

β−N(d+1)
N(d+4+2κ)−β u(n)

2N
N(d+4+2κ)−β h

−N(d2+4d+2)−dβ)
N(d+4+2κ)−β

]N(d+4+2κ)−β

2N

,

which goes to 0 by Assumption (A10) and β > N(d+ 4+ 2κ). The conclusion of Lemma 5 follows from the
Borel Cantelli’s Lemma.

Proof of Theorems 1 and 2. First, from Carbon et al. [3], we have supx∈S |gn(x) − g(x)| = O (Ωn) a.s.
Now, a standard decomposition gives

sup
y∈V

sup
x∈S

|Fn(y|x)− F (y|x)|

≤ 1

infx∈S gn(x)

{
sup
y∈V

sup
x∈S

|ψn(x, y)− ψ(x, y)|+ sup
y∈V

sup
x∈S

(F (y|x)|g(x) − gn(x)|)
}

≤ 1

infx∈S gn(x)

{
sup
y∈V

sup
x∈S

|ψn(x, y)−Eψn(x, y)| + sup
y∈V

sup
x∈S

|Eψn(x, y)− ψ(x, y)|+ sup
x∈S

|g(x)− gn(x)|
}
.
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Since by (A1), gn(x) is bounded away from 0, Theorem 1 follows from the preceding inequality, Lemmas 1 and
2. Next, from (A8), to prove Theorem 2, it suffices to show that supx∈S |F (µp,n(x)|x) − F (µp(x)|x)| → 0.
We have

|F (µp,n(x)|x) − F (µp(x)|x)| ≤ |F (µp,n(x)|x) − Fn(µp,n(x)|x)| + |Fn(µp,n(x)|x) − F (µp(x)|x)|
≤ |F (µp,n(x)|x) − Fn(µp,n(x)|x)| ≤ sup

y∈V
|Fn(y|x) − F (y|x)| .

Thus, supx∈S |F (µp,n(x)|x) − F (µp(x)|x)| ≤ supx∈S supy∈V |Fn(y|x) − F (y|x)| , so that Theorem 2 follows
from an application of Theorem 1.

Proof of Corollary 1. First, by Lyapounov’s inequality, we have

E [µp,n(Xn)− µp(Xn)] ≤ E [|µp,n(Xn)− µp(Xn)|] ≤
(
E
[
(µp,n(Xn)− µp(Xn))

2
])1/2

,

so, we can write

E
[
(µp,n(Xn)− µp(Xn)) 1I{Xn∈S}

]
≤

(
E
[
(µp,n(Xn)− µp(Xn))

21I{Xn∈S}

])1/2
.

Then we also have

E
[
(µp,n(Xn)− µp(Xn))

21I{Xn∈S}

]
≤ E

[
sup
x∈S

(µp,n(x)− µp(x))
2

]
.

An integration by parts gives

E

[
sup
x∈S

(µp,n(x)− µp(x))
2

]
≤ 2

∫ ∞

0

vP

(
sup
x∈S

|µp,n(x)− µp(x)| > v

)
dv.

Using Assumption (A8), we have that for n large enough,
∫ ∞

0

vP

(
sup
x∈S

|µp,n(x) − µp(x)| > v

)
dv ≤ 2

∫ ∞

0

tP

(
sup
x∈S

|F (µp(x)|x) − Fn(µp(x)|x)| > t

)
dt

≤ 2

∫ ∞

0

tP

(
sup
x∈S

sup
y∈V

|F (y)|x)− Fn(y|x)| > t

)
dt,

and Corollary 1 follows from Theorem 1.

Proof of Theorem 3. Since

F (µp(x)|x) = p = Fn(µp,n(x)|x),

by Taylor’s expansion, we have

µp,n(x) − µp(x) =
1

fn(µ∗
p,n(x)|x)

[F (µp(x)|x) − Fn(µp(x)|x)] ,

where µ∗
p,n(x) lies between µp,n(x) and µp(x). To prove the asymptotic normality, it suffices to show that

the numerator is normally distributed, and the denominator converges to f(µp(x)|x) in probability. We have
the following propositions.

Proposition 1 Under (A1)-(A6), (C1) and (C2), if there exists c ≥ 0 such that n̂hd+4 → c, then

√
n̂hd (Fn(y|x) − F (y|x)) L→ N

(
cB(x, y), σ2(x, y)

)
,

where B(x, y) and σ2(x, y) are defined in (4) and (5).
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Proposition 2 Assume that (A1), (A3)-(A7) hold. If (A9) and (1) or (A10) and (2) are satisfied, then
√

n̂hd+1

log n̂
sup
y∈V

|fn(y|x)− f(y|x)| a.s.→ 0.

Proof of Proposition 1. Proposition 1 is a consequence of the two following lemmas.

Lemma 6 If Assumptions (A1) and (A3)-(A6) are satisfied, then

EFn(y|x) − F (y|x) = h2

2
B(x, y) + o(h2) +O

(
1

n̂hd

)
,

where B(x, y) is defined in (4).

The proof of Lemma 6 is classical and therefore is omitted (see Matzner-Løber [10]).

Lemma 7 Assume that Assumptions (A1)-(A6), (C1) and (C2) hold, then

√
n̂hd (Fn(y|x) −EFn(y|x)) L→ N

(
0, σ2(x, y)

)
,

where σ2(x, y) is defined in (5).

Proof of Lemma 7. Assume for the moment that for any pair (c1, c2) ∈ R
2 with c21 + c22 6= 0,

√
n̂hd [c1 (gn(x) −Egn(x)) + c2 (ψn(x, y)−Eψn(x, y))]

L→ N
(
0, σ∗2

)
, (16)

where σ∗2 =
[
c21g(x) + c22ψ(x, y) + 2c1c2ψ(x, y)

] ∫

Rd

K2(z)dz. Now, set

Wn =
1

gn(x)
[ψn(x, y)−Eψn(x, y)]−

Eψn(x, y)

gn(x)Egn(x)
[gn(x) −Egn(x)] ,

W ∗
n =

1

g(x)
[ψn(x, y)−Eψn(x, y)]−

ψ(x, y)

g2(x)
[gn(x) −Egn(x)] .

On one hand, according to (16), we have
√
n̂hdW ∗

n

L→ N
(
0, σ2

)
, with σ2 being defined in (5).

On the other hand,
√
n̂hd [Wn −W ∗

n ]

=
√
n̂hd

{[
1

gn(x)
− 1

g(x)

]
[ψn(x, y)−Eψn(x, y)] +

[
ψ(x, y)

g2(x)
− Eψn(x, y)

gn(x)Egn(x)

]
[gn(x) −Egn(x)]

}

which goes to 0 in probability.
Finally, we conclude with the decomposition

√
n̂hd (Fn(y|x)−EFn(y|x)) =

√
n̂hdW ∗

n +
√
n̂hd [Wn −W ∗

n ] +O

(
1√
n̂hd

)
.

Now, (16) is proved following the same lines as the proof of Theorem 3.1 in Tran [12].

Proof of Proposition 2. We have

sup
y∈V

|fn(y|x)− f(y|x)| ≤ 1

gn(x)
sup
y∈V

|fn(x, y)− f(x, y)|+ 1

gn(x)
sup
y∈V

f(y|x)|gn(x) − g(x)|.

Hence to prove Proposition 2, it suffices to show that sup
y∈V

|fn(x, y)− f(x, y)| P→ 0, this is proved by following

the same lines as in the proof of Theorem 3.3 in Carbon et al. [3].
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