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Abstract

The non-Gaussian quasi maximum likelihood estimator is frequently used

in GARCH models with intension to improve the efficiency of the GARCH

parameters. However, the method is usually inconsistent unless the quasi-

likelihood happens to be the true one. We identify an unknown scale param-

eter that is critical to the consistent estimation of non-Gaussian QMLE. As a

part of estimating this unknown parameter, a two-step non-Gaussian QMLE

(2SNG-QMLE) is proposed for estimation the GARCH parameters. Without

assumptions on symmetry and unimodality of the distributions of innovations,

we show that the non-Gaussian QMLE remains consistent and asymptotically

normal, under a general framework of non-Gaussian QMLE. Moreover, it has
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higher efficiency than the Gaussian QMLE, particularly when the innovation

error has heavy tails. Two extensions are proposed to further improve the

efficiency of 2SNG-QMLE. The impact of relative heaviness of tails of the

innovation and quasi-likelihood distributions on the asymptotic efficiency has

been thoroughly investigated. Monte Carlo simulations and an empirical study

confirm the advantages of the proposed approach.

1 Introduction

Volatility has been a crucial ingredient in modeling financial time series and design-

ing risk management and trading strategies. It is often observed that volatilities tend

to cluster together. This characteristic of financial data suggests that volatilities are

autocorrelated and changing over time. Engle (1982) proposed ARCH (autoregres-

sive conditional heteroscedasticity) to model volatility dynamics by taking weighted

averages of past squared forecast errors. This seminal idea led to a great richness

and variety of volatility models. Among numerous generalizations and developments,

GARCH model by Bollerslev (1986) has been commonly used:

xt = vtεt (1)

v2t = c+

p
∑

i=1

ãix
2
t−i +

q
∑

j=1

b̃jv
2
t−j (2)

In this GARCH(p, q) model, variance forecast takes weighted average of not only

past square errors but also historical variances. The simplicity and intuitive appeal

make GARCH model, especially GARCH(1, 1), a workhorse and good start point in
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many financial applications.

Earlier literature on inference from ARCH/GARCH models is based on the max-

imum likelihood estimation (MLE) with conditional Gaussian assumption on the in-

novations. Plenty of empirical evidence, however, has documented heavy-tailed and

asymmetric innovation distributions of εt, rendering this assumption unjustified, see

for instance Diebold (1988). Consequently, MLE using Student’s t or generalized

Gaussian likelihood functions has been introduced, see e.g. Engle and Bollerslev

(1986), Bollerslev (1987), Hsieh (1989), and Nelson (1991). However, these meth-

ods may lead to inconsistent estimates if the distribution of the innovation is mis-

specified. Alternatively, the Gaussian MLE, regarded as a quasi maximum likeli-

hood estimator (QMLE) may be consistent, see e.g. Elie and Jeantheau (1995), and

asymptotically normal, provided that the innovation has a finite fourth moment,

even if it is far from Gaussian, see Hall and Yao (2003) and Berkes et al. (2003).

The asymptotic theory dates back to as early as Weiss (1986) for ARCH models,

Lee and Hansen (1994) and Lumsdaine (1996) for GARCH(1, 1) with stronger con-

ditions, and Bollevslev and Wooldbridge (1992) for GARCH(p, q) under high level

assumptions.

Nevertheless, gain in robustness comes with efficiency loss. Theoretically, the

divergence of Gaussian likelihood from the true innovation density may considerably

increase the variance of the estimates, which thereby fails to reach the Cramér-

Rao bound by a wide margin, reflecting the cost of not knowing the true innovation

distribution. Engle and Gonzalez-Rivera (1991) has suggested a semiparametric pro-

cedure that can improve the efficiency of the parameter estimates up to 50% over
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the QMLE based on their Monte Carlo simulations, but still incapable of capturing

the total potential gain in efficiency, see also Linton (1993). Drost and Klaassen

(1997) has put forward an adaptive two-step semiparametric procedure based on a

re-parametrization of the GARCH(1, 1) model with unknown but symmetric error.

Gonzlez-Rivera and Drost (1999) has compared its efficiency gain/loss over Gaussian

QMLE and MLE. All the effort would become void if the innovation fails to have a

finite fourth moment. Hall and Yao (2003) has considered the Gaussian QMLE and

shown that it would converge to stable distributions asymptotically rather than a

normal distribution.

The empirical reason of Gaussian QMLE’s efficiency loss is that financial data are

generally heavy tail distributed. The conditional normality assumption is violated.

For example, Bollevslev and Wooldbridge (1992) reported that sample kurtosis of

estimated residuals of Gaussian QMLE on S&P500 monthly data is 4.6, well exceed-

ing the Gaussian kurtosis which is 3. It is therefore intuitively appealing to develop

QMLE based on non-Gaussian likelihoods, especially heavy tailed likelihoods. And

the efficiency loss of Gaussian QMLE can be greatly reduced by replacing the likeli-

hoods with heavy tailed ones.

In contrast with the majority of literature focusing on Gaussian QMLE for infer-

ence, there is rather limited attention on inference using non-Gaussian QMLE. This

may be partly due to the fact that the Gaussian QMLE is robust against misspec-

ification of error distribution, while directly using non-Gaussian QMLE is not. In

general a non-Gaussian QMLE does not yield consistent estimation when true error

distribution deviates from the likelihood. Moreover, this inconsistency could not be

4



corrected even as we allow to estimate a shape parameter indexing the non-Gaussian

likelihood family together with model parameters unless the true innovation den-

sity is a member of this likelihood family. Otherwise, estimating shape along with

model parameters simply picks one likelihood that is “least” biased, however the

bias persists. Newey and Steigerwald (1997) have considered the identification of

the non-Gaussian QMLE for heteroscedastic parameters in general conditional het-

eroscedastic models. They have also pointed out that the scale parameter may not

be identified as its true value since it is no longer a natural scale parameter for

non-Gaussian densities.

A valid remedy served for non-Gaussian QMLE would be manipulating model

assumptions in order to maintain consistent estimation. For example, the true in-

novation density is sometimes taken to be Student’s t or generalized Gaussian for

granted. Alternatively, Berkes and Horváth (2004) has shown that with a different

moment condition on the true innovations instead of the original E(ε2) = 1, a corre-

sponding non-Gaussian QMLE would obtain consistency and asymptotic normality.

However, this moment condition E(ε2) = 1 is an essential assumption which en-

ables vt to bear the natural interpretation of the conditional standard deviation, the

notion of volatility. More importantly, moment condition is part of model specifica-

tion, and it should be prior to and independent of the choice of likelihood. Changing

the moment condition would not solve the robustness issue of non-Gaussian QMLE;

it simply renders consistency to the correct combination of moment condition and

non-Gaussian likelihood, which cannot be determined without knowing the true in-

novation.
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Therefore, we prefer a non-Gaussian QMLE method which is robust against error

misspecification, more efficient than Gaussian QMLE, independent of model assump-

tions, and yet practical. Such method can also well extend the usage of non-Gaussian

QMLE in GARCH software packages. Current packages do include choice of likeli-

hood as an option, for example, Student’s t and generalized Gaussian. In addition

the shape parameter can be specified or estimated. But as discussed before, such

method is not robust against error misspecification. When running estimation, one

chooses a particular likelihood family with the hope that true innovation distribution

falls into such family, but typically it does not.

The main contribution of this paper is that we propose a novel two step non-

Gaussian QMLEmethod, 2SNG-QMLE for short, which meets the desired properties.

The key is the estimation of a scale adjustment parameter, denoted as ηf , for non-

Gaussian likelihood to ensure the consistency of non-Gaussian QMLE under any

error distributions. ηf is estimated through Gaussian QMLE in the first step; then

we feed the estimated ηf into non-Gaussian QMLE in the second step. In Gaussian

QMLE ηf is held constant at unity, and partly because of that this quantity has been

overlooked; but in non-Gaussian QMLE ηf is no longer constant, and how much it

deviates from unity measures how much asymptotic bias would incur by simply using

non-Gaussian QMLE without such adjustment.

The second contribution is that we adopt a re-parameterized GARCH model

(see also Newey and Steigerwald (1997) and Drost et al. (1997)) which separates

the volatility scale parameter from heteroscedastic parameters. Under this new

parametrization, we derive asymptotic behaviors for 2SNG-QMLE. The results show

6



that 2SNG-QMLE is more efficient than Gaussian-QMLE under various innovation

settings, and furthermore there is a clear cut on asymptotic behaviors under the new

parametrization. The heteroscedastic parameters we can always achieve T
1

2 asymp-

totic normality, whereas Gaussian QMLE has slower convergence rate when error

does not have fourth moment.

The outline of the paper is as follows. Section 2 introduces the model and as-

sumptions. Section 3 discusses the estimation procedure and derives the asymptotic

results for 2SNG-QMLE. Section 4 proposes two extensions to further improve ef-

ficiency. Section 5 employs Monte Carlo simulations to verify the theoretic results.

Section 6 conducts real data analysis on stock returns. Section 7 concludes. The

appendix provides all the mathematical proofs.

2 The Model and Assumptions

The re-parameterized GARCH(p, q) model takes on the following parametric form:

xt = σvtεt (3)

v2t = 1 +

p
∑

i=1

aix
2
t−i +

q
∑

j=1

bjv
2
t−j (4)

The model parameters are summarized in θ = {σ,γ ′}′, where σ is the scale parameter

and γ = (a′, b′)′ is the autoregression parameter. The true parameter θ0 is in the

interior of Θ, which is a compact subset of the R1+p+q
+ , satisfying σ > 0, ai ≥ 0,

bj ≥ 0. We use subscript 0 to denote the value under the true model throughout the

paper. The innovation {εt}t=1,...,T are i.i.d random variables with mean 0, variance 1
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and unknown density g(·). In addition, we assume that the GARCH process {xt} is

strictly stationary and ergodic. The elementary conditions for the stationarity and

ergodicity of GARCH models have been discussed in Bougerol and Picard (1992).

We consider a parametric family of quasi likelihood {η : 1
η
f( ·

η
)} indexed by η > 0,

for any given likelihood function f . Unlike a shape parameter that is often included in

a Student’s t likelihood function, η is a scale parameter selected to reflect the penalty

of model misspecification. More precisely, a specific quasi likelihood scaled by ηf will

be used in the estimation procedure. The parameter ηf minimizes the discrepancy

between the true innovation density g and an unscaled misspecified quasi likelihood

in the sense of Kullback Leibler Information Distance, see e.g. White(1982). Or

equivalently,

ηf = argmaxη>0E
{

− log η + log f(
ε

η
)
}

(5)

where the expectation is taken under the true model g.

Note that ηf here only depends on the divergence of the two densities under

consideration, rendering it a universal measure of closeness irrelevant of the GARCH

model. Once ηf is given, the QMLE θ̂ is defined by maximizing the following quasi

likelihood with this model parameter ηf :

LT (θ) =
1

T

T
∑

t=1

lt(θ) =
1

T

T
∑

t=1

(

− log(σvt) + log f(
xt

ηfσvt
)
)

(6)

Apparently, the likelihood function differs from a regular one with the additional

model parameter ηf . In fact, our approach is a generalization of the Gaussian QMLE
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and the MLE as illustrated in the next proposition.

Proposition 1. If f ∝ exp(−x2/2) or f = g, then ηf = 1.

Moreover, it can be implied from Newey and Steigerwald (1997) that in general,

an unscaled non-Gaussian likelihood function applied in this new re-parametrization

of GARCH(p, q) setting fails to identify the volatility scale parameter σ, resulting in

inconsistent estimates. We show in the next section that incorporating ηf into the

likelihood function facilitates the identification of the volatility scale parameter.

For convenience, we assume the following regularity conditions are always satis-

fied: f is twice continuously differentiable, and for any η > 0, we have supθ∈ΘE|lt(θ)| <

∞, E supθ∈N |∇lt(θ)| < ∞, and E supθ∈N |∇2lt(θ)| < ∞, for some neighborhood N

of θ0.

3 Main Results

3.1 Identification

Identification is a critical condition for consistency. It requires that the expected

quasi likelihood L̄T (θ) = E(LT (θ)) has a unique maximum at the true parameter

value θ0. To show that θ can be identified in the presence of ηf , we make the

following assumptions:

Assumption 1. A quasi likelihood of the GARCH (p, q) model is selected such that

1. vt(γ0) > 0, and vt(γ)/vt(γ0) is not a constant if γ 6= γ0.
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2. The function Q(η) = − log η + E(log f( ε
η
)) has a unique maximizer ηf > 0.

Note that the first point is the usual identification condition for the autoregression

parameter γ0, and that the second requirement is the key to the identification of σ0.

Lemma 1. Given Assumption 1, L̄T (θ) has a unique maximum at the true value

θ = θ0.

The next lemma provides a few primitive sufficient conditions for the last state-

ment of Assumption 1. The conditions given below provide a general guideline of

choosing an appropriate quasi likelihood f .

Lemma 2. Assume that f is continuously differentiable up to the second order and

h(x) = x ḟ(x)
f(x)

. Suppose that {εt} ∼ ε is i.i.d. with mean 0, variance 1 and a finite

pth moment. If, in addition,

1. h(x) ≤ 0.

2. xḣ(x) ≤ 0 and the equality holds if and only if x = 0.

3. |h(x)| ≤ C|x|p, and |xḣ(x)| ≤ C|x|p, for some constant C > 0, and p ≥ 0.

4. lim sup
x→∞

h(x) < −1

then Q(η) has a unique maximum at some point ηf > 0. Furthermore, ηf > 1 if and

only if Eh(ε) < −1.

The last three assumptions are more general than the concavity of the function

Q(η). For some commonly used likelihood such as the family of Student’s t likelihood,

the concavity assumption of Q is violated. However, it still satisfies the above lemma.

A few examples of families of likelihood that satisfy Lemma 2 are given below.
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Remark 1. If f = 1√
2π
e−

x2

2 , then h(x) = −x2. If f is the standardized tν-distribution

with ν > 2, that is f ∝ (1 + x2

ν−2
)−

ν+1

2 , then h(x) = − (ν+1)x2

ν−2+x2 . Both cases satisfy

Lemma 2 with p = 2. In addition, if log f(x) = −|x|β(Γ(
3

β
)

Γ( 1

β
)
)
β
2 + const, the generalized

Gaussian likelihood, then h(x) = −β(
Γ( 3

β
)

Γ( 1

β
)
)
β
2 |x|β. In this case, by choosing p = β,

Lemma 2 is satisfied.

3.2 The Distinction Between Gaussian and Non-Gaussian

QMLE

First of all, consider the case in which ηf is given, or more directly, the true error dis-

tribution is known. The following asymptotic analysis reveals the difference between

the Gaussian QMLE and the non-Gaussian one.

Theorem 1. Assume that ηf is known. Under Assumptions 1, θ̂T
P−→ θ0, where

θ̂T is the quasi likelihood estimator obtained by maximizing (6).

Next, we discuss the asymptotic normality of the QMLE. As usual, additional

moment conditions are needed.

Assumption 2. Let k = ( 1
σ
, 1
vt

∂vt
∂γ

′
)′, and k0 be its value at θ = θ0.

1. 0 < E(h2( ε
ηf
)) < ∞, 0 < E|εḣ( ε

ηf
)| < ∞.

2. M = E(k0k0
′) < ∞.

Theorem 2. Under Assumptions 1 and 2, we have

T
1

2 (θ̂T − θ0) L−→ N
(

0,Σ1

)

(7)
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where Σ1 =M−1 Eh2
1

(Eh2)2
, h1(ε) = 1 + h( ε

ηf
), and h2(ε) =

ε
ηf
ḣ( ε

ηf
).

The moment conditions given by the first point of Assumption 2 only depend on

the tail of the innovation density g and quasi likelihood f . A striking advantage of

non Gaussian QMLE over its Gaussian alternative is that the former may require

weaker conditions on the tail of the innovation. It is well known that the asymptotic

normality of Gaussian likelihood requires a finite fourth moment. By contrast, it

implies from Remark 1 that any Student’s t likelihood with degree of freedom larger

than 2 has a bounded moment, so that no additional moment conditions are needed

other than those assumed in any GARCH model.

Moreover, it turns out that model parameter ηf has another interpretation as a

bias correction for a simple non-Gaussian QMLE of the scale parameter in that σ0ηf

would be reported instead of σ0. Therefore, the unscaled QMLE can consistently

estimate σ0 if and only if ηf = 1. Proposition 1 hence reveals the distinction in

consistency between the MLE, Gaussian QMLE and the other alternatives.

In general, for an arbitrary likelihood, ηf would not equal to 1, thereby creating

the popularity of the Gaussian QMLE, whose ηf is exactly 1. It is therefore necessary

to incorporate this bias-correction factor ηf into non-Gaussian QMLE, which may

potentially obtain a better efficiency than the Gaussian QMLE. However, as we have

no prior information concerning the true innovation density, ηf is unknown. As a

result, this estimator is infeasible. A promising way to resolve this issue would be to

estimate ηf in the first step.

12



3.3 Two-Step Estimation Procedure

In order to estimate ηf , a sample on the true innovation is required. According to

Proposition 1, without knowing ηf , the residuals from the Gaussian QMLE may po-

tentially provide substitution for the true innovation sample. A two-step estimation

procedure is proposed in the following. In the first step, η̂f is obtained by maximizing

(5) with estimated residuals from Gaussian quasi likelihood estimation:

η̂f = argmaxη
1

T

T
∑

t=1

l2(xt, θ̃T , η) = argmaxη
1

T

T
∑

t=1

(

− log(η) + log f(
ε̃t
η
)
)

(8)

where

θ̃T = argmaxθ
1

T

T
∑

t=1

l1(xt, θ) = argmaxθ
1

T

T
∑

t=1

(

− log(σvt)−
x2
t

2σ2v2t

)

(9)

and ε̃t = xt/(σ̃vt(γ̃)). Next, we maximize non-Gaussian quasi likelihood with plug-in

η̂f and obtain θ̂T :

θ̂T = argmaxθ
1

T

T
∑

t=1

l3(xt, η̂f , θ) = argmaxθ
1

T

T
∑

t=1

(

− log(σvt)+log f(
xt

η̂fσvt
)
)

(10)

We call θ̂T the two step non-Gaussian QMLE, 2SNG-QMLE for short. Alter-

natively, this two-step procedure can be viewed as a one-step generalized meth-

ods of moments (GMM) procedure, by considering the score functions. Denote
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s̃(x, θ, η,φ) = (s1(x, θ), s2(x, θ, η), s3(x, η,φ))
′, where

s1(xt, θ) =
∂

∂θ
l1(xt, θ) = k

(

− 1 +
x2
t

σ2v2t

)

(11)

s2(xt, θ, η) =
∂

∂η
l2(xt, θ, η) = −1

η

(

1 + h(
xt

ησvt
)
)

(12)

s3(xt, η,φ) =
∂

∂φ
l3(xt, η,φ) = −k

(

1 + h(
xt

ησvt
)
)

(13)

then the estimators are obtained using GMM with identity weighting matrix:

(θ̃T , η̂f , φ̂T ) = argminθ,η,φ

1

T

T
∑

t=1

s̃′(xt, θ, η,φ)s̃(xt, θ, η,φ) (14)

so our proposed estimator is simply θ̂T = φ̂T .

3.4 Asymptotic Theory

Identification for the parameters θ and η is straightforward. As in Theorem 1, the

consistency thereby holds:

Theorem 3. Given Assumption 1, (θ̃T , η̂f , θ̂T )
P−→ (θ0, ηf , θ0), in particular the

2SNG-QMLE θ̂T is consistent.

In order to obtain the asymptotic normality, we realize that a finite fourth mo-

ment for the innovation is essential in that the first step employs the Gaussian QMLE.

Although alternative rate efficient estimators may be adopted to avoid moment con-

ditions required in the first step, we prefer the Gaussian QMLE for its simplicity and

popularity in practice.
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Theorem 4. Assume that E(ε4) < ∞, that Assumptions 1 and 2 are satisfied. Then

(θ̃T , η̂f , θ̂T ) are jointly normal asymptotically. That is,













T
1

2 (θ̃T − θ0)

T
1

2 (η̂f − ηf)

T
1

2 (θ̂T − θ0)













L−→ N
(













0

0

0













,













ΣG Π′ Ξ

Π Σηf Π

Ξ Π′ Σ2













)

where

ΣG =
E(ε2 − 1)2

4
M−1 (15)

Σ2 =
Eh1(ε)

2

(Eh2(ε))2
M−1 + σ2

0

(E(ε2 − 1)2

4
− Eh1(ε)

2

(Eh2(ε))2

)

e1e1
′ (16)

Σηf = η2fE
(ε2 − 1

2
− h1(ε)

Eh2(ε)

)2

(17)

Π =
ηfσ0

2
E
(

(ε2 − 1)(
h1(ε)

Eh2(ε)
− ε2 − 1

2
)
)

e′
1

(18)

Ξ =
E(h1(ε) · (ε2 − 1))

2E(h2(ε))
M−1 − σ2

0

2
E
(

(ε2 − 1)(
h1(ε)

Eh2(ε)
− ε2 − 1

2
)
)

e1e
′

1
(19)

where e1 is a unit column vector that has the same length as θ, with the first

entry one and all the rest zeros.

Before a thorough efficiency analysis of the non-Gaussian QMLE θ̂T , we first

discuss the asymptotic property of η̂f . Although η̂f is obtained using fitted residuals

ε̃t in (8), the asymptotic variance of η̂f is not necessarily worse than that using

the actual innovations εt. In fact, with true innovation the asymptotic variance of

the ηf estimator is η2fEh2
1/(Eh2)

2. Comparing it with (17), we can find that using

fitted residual improves the efficiency as long as the |h1/Eh2 − (ε2 − 1)/2| is smaller
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than |h1/Eh2|. This occurs when the non-Gaussian likelihood is close to Gaussian

likelihood. One extreme case is choosing the same Gaussian likelihood in the second

step. Then ηf exactly equals one and the asymptotic variance of η̂f vanishes.

ηf also reveals the issue of asymptotic bias incurred by using unscaled non-

Gaussian QMLE. From 10, while 2SNG-QMLE θ̂T = (σ̂T , γ̂T ) maximizes the log-

likelihood, unscaled non-Gaussian QMLE would choose estimator (η̂f σ̂T , γ̂T ) to max-

imize log-likelihood without ηf in it. So for the volatility scale parameter σ it is biased

exactly according to the η̂f . Such bias will propagate if using the popular original

parametrization. Recall

xt = σtεt

σ2
t = c̃+

p
∑

i=1

ãix
2
t−i +

q
∑

j=1

b̃jσ
2
t−j

Clearly, we have σ2ai = ãi, bj = b̃j and σ2 = c. Therefore, potential model misspeci-

fication would result in systematic biases in the all estimates of ai and c if unscaled

non-Gaussian MLE, such as Student’s t-likelihood, is applied without introducing

ηf .

3.5 Efficiency Gain over Gaussian QMLE

We compare the efficiency of three estimators of θ using two step non-Gaussian

QMLE, one step (infeasible) non-Gaussian QMLE with known ηf , and Gaussian

QMLE. Their asymptotic variances are Σ2, Σ1 and ΣG respectively. The difference
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in asymptotic variances between the first two estimators is

Σ2 −Σ1 =
( µσ2

0 0

0 0

)

(20)

where

µ =
E(ε2 − 1)2

4
− Eh2

1

(Eh2)2
(21)

Effectively, the sign and magnitude of µ summarize the advantage of knowing ηf . µ

is usually positive when the true error has heavy tails while non-Gaussian QMLE is

selected to be a heavy-tailed likelihood, illustrating the loss from not knowing ηf .

However, it could also be negative when the true innovation has thin tail, indicating

that not knowing ηf is actually better when a heavy tail density is selected. Intu-

itively, this is because the two-step estimator incorporates a more efficient Gaussian

QMLE into the estimation procedure. More importantly, the asymptotic variance

of γ and the covariance between σ and γ are not affected by the estimation of ηf .

In other words, we achieve the adaptivity property for γ: with an appropriate non-

Gaussian QMLE, γ could be estimated without knowing ηf equally well as if ηf were

known before.

We next compare the efficiency between Gaussian QMLE and 2SNG-QMLE. By

(7) with f replaced by the Gaussian likelihood, we have

ΣG =
E(ε2 − 1)2

4
M−1
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It follows from Lemma 3 in the appendix that,

ΣG −Σ2 = µ
( σ2

0ȳ
′
0
V ȳ

0
−σ0ȳ

′
0
V

−σ0V ȳ0
V

)

(22)

where y0 = vt(γ0)
∂vt(γ0)

∂γ
, ȳ

0
= E(y0), V = Var(y0)

−1 and hereby the last matrix in

(22) is positive definite. Therefore as long as µ is positive, non-Gaussian QMLE is

more efficient for both σ and γ.

It is well known that the financial data sets such as stock prices and exchange

rates exhibit heavy tails. Therefore, if a selected likelihood has heavier tails than

Gaussian density, then µ is positive, and the efficiency of the QMLE is thereby

improved over Gaussian QMLE.

3.6 Efficiency Gap from the MLE

Denote the asymptotic variance of the MLE as ΣM . By (7) with f replaced by the

true likelihood g, we have

ΣM =M−1(

∫ +∞

−∞
x2 ġ

2

g
dx− 1)−1 =M−1(E(h2

g − 1))−1

where hg = x
˙g(x)

g(x)
. The gap in asymptotic variance between 2SNG-QMLE and MLE

is given by

Σ2 −ΣM =
( Eh2

1

(Eh2)2
− (E(h2

g − 1))−1
)

M−1 + σ0

2
(E(ε2 − 1)2

4
− Eh2

1

(Eh2)2

)

e1e1
′
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An extreme case is that the selected likelihood f happens to be the true inno-

vation density. Being unaware of it, we still apply a two-step procedure and uses

the estimated ηf . Therefore, the first term in (23) vanishes, but the second term

remains. Consequently, γ̂ reach the efficiency bounds, while the volatility scale σ̂

fails, reflecting the penalty of ignorance of the true model. This example also sheds

light on the fact that θ̂T cannot obtain the efficiency bounds for all parameters unless

the true underlying density and the selected likelihood are both Gaussian. This ob-

servation agrees with the comparison study in the Gonzlez-Rivera and Drost (1999)

concerning the MLE and their semiparametric estimator.

3.7 The Effect of the First Step Estimation

We would like to further explore the oracle property of the estimator for heteroscedas-

tic parameters by considering a general first step estimator. We have shown in The-

orem 4 that the efficiency of the estimator for γ is not affected by the first step

estimation of ηf using Gaussian QMLE, as if ηf were known. Therefore, we may re-

lax the finite fourth moment requirement on the innovation error by applying another

efficient estimator in the first step. On the other hand, even if the first step estima-

tor suffers from a lower rate, it may not affect the efficiency of the heteroscedastic

parameters γ, which is always T
1

2 consistent and asymptotically normal.

Theorem 5. Suppose that the first step estimator θ̃ has an influence function rep-

resentation:

Tλ−1
T (θ̃ − θ0) = λ−1

T

T
∑

t=1

Ψt(εt) + oP (1)
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with the right hand side converging to a non-degenerate distribution, and λT ∼ T 1/α

for some α ∈ [1, 2]. Then the convergence rate for σ is also Tλ−1
T , while the same

central limit theorem for γ as in Theorem 3 remains, that is,

T
1

2 (γ − γ0) L−→ N(0,
Eh2

1

(Eh2)2
V )

where V =
(

Var( 1
ν(γ0)

∂ν
∂γ
|γ=γ0

)
)−1

.

Theorem 5 applies to several estimators that have been discussed in the literature.

For example, Hall and Yao (2003) have discussed the Gaussian QMLE with ultra

heavy-tailed innovations that violate a finite fourth moment. In their analysis, λT

is regularly varying at infinity with exponent α ∈ [1, 2). The resulting Gaussian

QMLE θ̃ suffers lower convergence rates. By contrast, Drost and Klaassen (1997)

have suggested an M-estimator based on the score function for logistic distribution

to avoid moment conditions on the innovations. Both estimators, if applied in the

first step, would not affect the efficiency of γ̂T .

4 Extensions

We discuss two ways to further improve the efficiency of 2SNG-QMLE. One is choos-

ing the non-Gaussian likelihood from a pool of candidate likelihoods to adapt to data,

the other is an affine combination of 2SNG-QMLE and Gaussian QMLE according

their covariance matrix in Theorem 4 to minimize resulting estimator’s asymptotic

variance.
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4.1 Optimal Choice of Likelihood

There are two distinctive edges of choosing a heavy tailed quasi likelihood over Gaus-

sian likelihood. First, the T
1

2 -consistency of 2SNG-QMLE of γ no longer depends on

finite fourth moment condition, but instead finite Eh2
1/(Eh2)

2. This can be easily

met by, for example, choosing generalized Gaussian likelihood with β ≤ 1. Second,

even under finite fourth moment, heavy tailed 2SNG-QMLE has lower variance than

Gaussian QMLE if true innovation is heavy tailed. A pre-specified heavy tailed like-

lihood can have these two advantages. However, we can adaptively choose this quasi

likelihood to further improve its efficiency. This is done by minimizing the efficiency

loss from MLE, which is equivalent by minimizing Eh2
1/(Eh2)

2 over certain families

of heavy tailed likelihoods. We propose optimal choice of non-Gaussian likelihoods,

where candidate likelihoods are from Student’s t family with degree of freedom ν > 2

and generalized Gaussian family with β ≤ 1. Formally, for true innovation distribu-

tion g and candidate likelihood f , define

A(f, g) =
Egh

2
1

Eg(h2)2
, where h1 = 1 + h(

ε

ηf
), and h2 =

ε

ηf
ḣ(

ε

ηf
) (23)

Then the optimal likelihood is chosen from t-family and generalized Gaussian family

(gg):

f ∗ = argminν,β

{

{A(f t
ν , ĝ)}ν>2, {A(f gg

β , ĝ)}β≤1

}

(24)

where ĝ denotes the empirical distribution of estimated residuals from Gaussian

QMLE, the first step. Because this procedure of choosing likelihood is adaptive

to data, it is expected that the chosen quasi likelihood results in a more efficient
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2SNG-QMLE than a pre-specified one. We justify this point in simulation studies.

A 2SNG-QMLE with choosing optimal likelihood runs the following four steps:

(a) Run Gaussian QMLE and obtain the estimated residuals; (b) Run optimization

(24) and obtain the optimal likelihood f ∗; (c) Obtain η̂f using f ∗ and estimated

residuals; (d) Run 2SNG-QMLE with f ∗ and η̂f .

4.2 Aggregating 2SNG-QMLE and Gaussian QMLE

Another way to further improve the efficiency of 2SNG-QMLE is through aggrega-

tion. Since both Gaussian QMLE and 2SNG-QMLE are consistent, an affine combi-

nation of the two, with weights chosen according to their joint asymptotic variance,

yields a consistent estimator and is more efficient than both. Define the aggregation

estimator

θ̂
W

T =Wθ̂ + (I −W )θ̃ (25)

where W is a diagonal matrix with weights (w1, w2, . . . , w1+p+q) on the diagonal.

From Theorem 4, the optimal weights are chosen from minimizing the asymptotic

variance of each component of the aggregation estimator:

w∗
i = argminww

2(Σ2)i,i + (1− w)2(ΣG)i,i + 2w(1− w)Ξi,i (26)

=
(ΣG)i,i − Ξi,i

(Σ2)i,i + (ΣG)i,i − 2Ξi,i
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It turns out that all optimal aggregation weights w∗
i are the same, which is

w∗ =
E
(

1−ε2

2
(1−ε2

2
+ h1

Eh2
)
)

E
(

1−ε2

2
+ h1

Eh2

)2 . (27)

Proposition 2. The aggregated estimator θ̂
∗
T uses optimal aggregation weightsW ∗ =

w∗I. Its asymptotic variance has diagonal terms

Σ∗
i,i =

(Σ2)i,i(ΣG)i,i −Ξ2
i,i

(Σ2)i,i + (ΣG)i,i − 2Ξi,i
, i = 1, . . . , 1 + p+ q. (28)

Although estimators for σ and γ have different asymptotic properties, the op-

timal aggregation weights are the same: w∗
i = w∗. Also the weight depends only

on non-Gaussian likelihood and innovation distribution, but not on GARCH model

specification. The aggregated estimator θ̂
∗
T always have smaller asymptotic variance

than both 2SNG-QMLE and Gaussian QMLE. If data is heavy tailed, e.g., Eε4 is

large or equal to ∞, from (27) it simply assigns weights approximately 1 for 2SNG-

QMLE and 0 for Gaussian QMLE. In practice, after running 2SNG-QMLE with

optimal choice of likelihood, we can estimate the optimal aggregation weight w∗ by

plugging into (27) the estimated residuals.
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5 Simulation Studies

5.1 Model Free Characteristics

The scale tuning parameter ηf and the efficiency difference µ are generic characteris-

tics of non-Gaussian likelihoods and of the true innovations, and they do not change

when using another conditional heteroscedastic model. We numerically evaluate how

they vary according to the non-Gaussian likelihoods and innovations.

Table 1: ηf for generalized Gaussian QMLEs (gg,row) and innovation distributions
(column)

gg0.2 gg0.6 gg1 gg1.4 gg1.8 gg2 t3 t5 t7 t11
gg0.2 1.000 6.237 8.901 10.299 11.125 11.416 8.128 9.963 10.483 10.885
gg0.6 0.271 1.000 1.291 1.434 1.515 1.544 1.159 1.384 1.443 1.487
gg1.0 0.354 0.844 1.000 1.073 1.114 1.128 0.900 1.040 1.074 1.098
gg1.4 0.537 0.873 0.962 1.000 1.022 1.029 0.883 0.977 0.998 1.012
gg1.8 0.811 0.952 0.981 0.993 1.000 1.002 0.946 0.985 0.991 0.997

Table 2: ηf for Student’s t QMLEs (row) and innovation distributions (column)

t2.5 t3 t4 t5 t7 t11 gg0.5 gg1 gg1.5 gg2
t2.5 1.000 1.231 1.425 1.506 1.584 1.641 0.900 1.414 1.614 1.716
t3 0.815 1.000 1.151 1.216 1.275 1.318 0.756 1.150 1.301 1.375
t4 0.715 0.874 1.000 1.054 1.100 1.133 0.697 1.011 1.122 1.174
t5 0.690 0.836 0.953 1.000 1.043 1.071 0.691 0.966 1.061 1.107
t7 0.679 0.816 0.922 0.964 1.000 1.024 0.708 0.945 1.018 1.053
t11 0.690 0.823 0.916 0.953 0.980 1.000 0.749 0.941 0.998 1.021
t20 0.720 0.845 0.928 0.958 0.981 0.992 0.811 0.954 0.992 1.007
t30 0.742 0.862 0.939 0.965 0.981 0.992 0.846 0.966 0.993 1.004

Table 1 and 2 show how ηf varies over generalized Gaussian likelihoods and

24



Student’s t likelihoods with different parameters respectively. For each row, which

amounts to fixing a quasi likelihood, the lighter the tails of innovation errors are,

the larger ηf . Furthermore ηf > 1 for innovation errors that are lighter than the

likelihood, and ηf < 1 for innovations that are heavier than the likelihood. Therefore

if the non-Gaussian likelihood have heavier tails than true innovation, we should

shrink the data in order for consistent estimation. On the other hand if the quasi

likelihood is lighter than true innovation, we should magnify the data.

For each column (fix an innovation distribution), in most cases the heavier the

tails of likelihoods are, the larger ηf , but the monotone relationship is not true for

some ultra heavy tail innovations, in which cases ηf shows a “smile” dynamic. The

non-monotonicity in the likelihood dimension indicates that to determine ηf one

needs more information about the likelihood than just the asymptotic behavior of

its tails.

Table 3 and 4 show the dependence of µ on the true innovation (column) and non-

Gaussian likelihood (row). From the table we see that in most cases µ is positive,

which means that non-Gaussian QMLE shows an improvement. But when heavy

tailed likelihoods are applied on true innovations with moderate or thin tails, µ

turns negative, which means that Gaussian QMLE performs better.

Looking at each column, by fixing the innovation distribution, non-Gaussian

QMLE performs the best over Gaussian QMLE when the non-Gaussian likelihood

coincides with the innovation distribution (MLE). Looking at each row, by fixing a

non-Gaussian likelihood, its relative performance increases when the true innovation

distributions become more heavy tailed, even after passing the MLE point where
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true innovation and likelihood are the same. This is because µ is a relative measure

of non-Gaussian over Gaussian, not an absolute measure for asymptotic variance.

When the true innovation is heavier than the non-Gaussian likelihood, non-Gaussian

QMLE does not perform as well as MLE, but Gaussian QMLE does even worse than

as if the true innovation coincides with non-Gaussian likelihood. Therefore, even the

absolute efficiency in terms of asymptotic variance drops for non-Gaussian QMLE,

its relative performance over Gaussian QMLE actually increases.

To summarize the variation of µ, one can draw a line for distributions according

to their asymptotic behavior of tails, in other words, according to how heavy their

tails are, with thin tails on the left and heavy tails on the right. Then we place

non-Gaussian likelihood, Gaussian likelihood and true innovation distribution onto

this line. The sign and value of µ depends on where true innovation distribution is

placed. (a) It is placed on the right side of non-Gaussian likelihood, then µ is positive

and large. (b) Error is on the left side of Gaussian, then µ is negative and large in

absolute value. (c) Error is between non-Gaussian and Gaussian, then, to which

likelihood is innovation closer determines µ. This seems like a symmetric argument

for Gaussian and non-Gaussian likelihood. But in financial applications we know

true innovations are heavy tailed. Even the non-Gaussian likelihood may not be

the innovation distribution, we still can guarantee either (a) happens or (c) happens

with innovation closer to non-Gaussian likelihood. In both cases we have µ > 0 and

non-Gaussian QMLE is a more efficient procedure than Gaussian QMLE.
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Table 3: µ for generalized Gaussian QMLEs (gg,row) and innovation distributions
(column)

gg0.2 gg0.6 gg1 gg1.4 gg1.8 gg2 t4.5 t5 t7 t11
gg0.2 484 1.773 -0.062 -0.335 -0.416 -0.436 2.411 0.929 -0.026 -0.274
gg0.6 482 1.978 0.195 -0.075 -0.157 -0.178 2.608 1.138 0.206 -0.030
gg1.0 474 1.839 0.250 0.017 -0.053 -0.071 2.590 1.149 0.267 0.054
gg1.4 443 1.424 0.209 0.040 -0.010 -0.022 2.369 1.008 0.234 0.068
gg1.8 328 0.589 0.089 0.022 0.003 -0.002 1.588 0.596 0.114 0.032

Table 4: µ for Student’s t QMLEs (row) and innovation distributions (column)

t4.5 t5 t7 t9 t15 t30 gg0.5 gg1 gg1.5 gg2
t2.5 2.534 1.045 0.071 -0.114 -0.263 -0.324 3.848 0.004 -0.296 -0.375
t3 2.626 1.145 0.189 0.011 -0.124 -0.183 3.871 0.124 -0.158 -0.223
t4 2.663 1.194 0.258 0.086 -0.038 -0.090 3.816 0.191 -0.067 -0.124
t5 2.664 1.200 0.277 0.114 -0.004 -0.054 3.770 0.211 -0.031 -0.084
t7 2.642 1.190 0.287 0.131 0.020 -0.022 3.667 0.222 -0.001 -0.051
t11 2.591 1.150 0.277 0.132 0.035 -0.004 3.500 0.212 0.016 -0.025

5.2 Verification of the Asymptotic Theory

Now we verify the asymptotic formula (16)-(17). We run N = 20000 simulations,

each generating a sample of size T = 7000 from a GARCH(1, 1) model. The model

parameters are σ0 = 0.5, a10 = 0.35, b10 = 0.3. The innovation errors are stan-

dardized skewed Student’s t distribution with degree of freedom ν0 = 7 and degree

of skewness λ0 = 0.5, so that the left tail is heavier than the right tail. We use

Student’s t likelihood with degree of freedom ν = 4 in non-Gaussian QMLE. We run

two-step procedure to obtain the estimates η̂f and non-Gaussian QMLE estimates θ̂.

Figure 1 reports the standardized estimates of (σ0, a10, b10, ηf) compared to N(0, 1).
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Standardization is done by first subtracting the estimates by the true value, and then

dividing by the theoretical asymptotic standard deviation according to Theorem 4.

All plots confirm the validity of asymptotic variance formula (16)-(17).
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Figure 1: Histogram of standardized 2SNG-QMLE and standard normal pdf (solid line).
Normalization is done by first subtracting the estimates by the true value, and then dividing
by the theoretical asymptotic standard deviation suggested by our theory.

5.3 Comparison with Gaussian QMLE and MLE

We compare the efficiency of 2SNG-QMLE, Gaussian QMLE and MLE under various

innovation error distributions. We don’t perform optimal choice of quasi likelihood

in 2SNG-QMLE, instead fix the quasi likelihood to be Student’s t distribution with
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degree of freedom 4. The simulation is conducted on a GARCH(1, 1) model with true

parameters (σ0, a1,0, b1,0) = (0.5, 0.35, 0.3). For innovation errors we use Student’s

t and generalized Gaussian distributions of various degrees of freedoms to generate

data. For each type of innovation distribution, we run N = 1000 simulations each

with T = 3000 samples. Tables 5 and 6 reports the relative efficiencies of these

three estimators in terms of ratios of sample variances and MSEs. The first ratio,

Gaussian/2SNG, indicates how 2SNG-QMLE outperforms (underperforms) Gaus-

sian QMLE. The second ratio 2SNG/MLE indicates how far 2SNG-QMLE is from

efficiency bound.

In Table 5 the innovation distributions range from thin-tailed t20 (approximately

Gaussian) to heavy-tailed t2.5. Biases are small so standard deviations and RMSEs

are nearly the same. For the first two thin-tailed cases, t20 and t15, Gaussian QMLE

outperforms 2SNG-QMLE by a small margin. For all other cases 2SNG-QMLE out-

performs Gaussian QMLE. In heavy tailed cases t6 and t5, 2SNG-QMLE performs

nearly as well as MLE, and reduces standard deviations by 15% to 60% from Gaus-

sian QMLE. In ultra-heavy tail cases (t4, t3 and t2.5), since fourth moment no longer

exists, Gaussian QMLE is not T
1

2 -consistent, and its estimation precision quickly

deteriorates, sometimes to an intolerable level. In contrast 2SNQ-QMLE using t4

likelihood does not require finite fourth moment for T
1

2 -consistent a1,0 and b1,0, so

standard deviations for a1,0 and b1,0 are still nearly equal to MLE. Standard devia-

tions of σ0 are now larger than MLE, but still significantly smaller than Gaussian

QMLE.

In Table 6, the innovations innovations range from thin tailed gg4 to heavy tailed
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Table 5: Student’s t innovations simulation
Innov. Comparing Ratio of variances Ratio of MSEs
dist. methods σ0 a1,0 b1,0 σ0 a1,0 b1,0
t20 G./2SNG 0.929 0.901 0.936 0.929 0.898 0.936

2SNG/MLE 1.092 1.122 1.089 1.091 1.126 1.089

t15 G./2SNG 0.942 0.960 0.961 0.939 0.948 0.960
2SNG/MLE 1.112 1.121 1.087 1.114 1.131 1.087

t9 G./2SNG 1.115 1.186 1.108 1.118 1.185 1.109

2SNG/MLE 1.109 1.022 1.020 1.019 1.023 1.020

t7 G./2SNG 1.216 1.260 1.186 1.217 1.266 1.186
2SNG/MLE 1.036 1.024 1.031 1.037 1.026 1.031

t6 G./2SNG 1.355 1.528 1.302 1.355 1.552 1.303
2SNG/MLE 1. 1.022 1. 1. 1.022 1.

t5 G./2SNG 1.526 2.495 1.405 1.547 2.530 1.409
2SNG/MLE 1.025 1.001 1.015 1.027 1.001 1.015

t4 G./2SNG 2.074 7.244 1.847 2.125 7.478 1.858
2SNG/MLE 1.065 1. 1. 1.071 1. 1.

t3 G./2SNG 2.687 31.40 2.535 2.850 33.26 2.580
2SNG/MLE 1.235 1. 1. 1.264 1. 1.

t2.5 G./2SNG 1.960 93.91 2.649 2.051 101.5 2.664
2SNG/MLE 2.371 1.037 1.062 2.625 1.037 1.062

gg0.4. For innovation with gg1.2 and heavier, 2SNG-QMLE starts to outperform

Gaussian QMLE. In all cases, the Student t4 2SNG-QMLE performs very close to

MLE as indicated by standard deviations. In comparison, Gaussian QMLE’s perfor-

mance deteriorates as tails grow heavier, particulary in gg0.6 and gg0.4, although in

these cases the fourth moments are finite.
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Table 6: generalized Gaussian innovations simulation

Innov. Comparing Ratio of variances Ratio of MSEs
dist. methods σ0 a1,0 b1,0 σ0 a1,0 b1,0
gg4 G./2SNG 0.743 0.742 0.769 0.748 0.736 0.771

2SNG/MLE 1.705 1.843 1.571 1.696 1.886 1.566

Gauss. G./2SNG 0.811 0.717 0.850 0.808 0.706 0.850
2SNG/MLE 1.233 1.395 1.176 1.238 1.416 1.176

gg1.2 G./2SNG 1.045 1.007 1.019 1.047 1.006 1.016

2SNG/MLE 1.076 1.113 1.070 1.076 1.117 1.071

gg1 G./2SNG 1.091 1.210 1.073 1.090 1.201 1.073
2SNG/MLE 1.084 1.120 1.074 1.086 1.130 1.074

gg0.8 G./2SNG 1.258 1.736 1.237 1.239 1.689 1.229
2SNG/MLE 1.082. 1.022 1.044 1.096 1.068 1.048

gg0.6 G./2SNG 1.653 2.623 1.526 1.663 2.650 1.527
2SNG/MLE 1.089 1.135 1.061 1.100 1.144 1.061

gg0.4 G./2SNG 1.951 4.619 1.772 1.958 4.760 1.764
2SNG/MLE 1.170 1.204 1.095 1.191 1.210 1.098

5.4 Ultra-Heavy Tail Case

Here we compare the efficiency when innovation are transformations from stable-α

distributions. Index α ranges from 1.9 down to 1.1, and the distributions are trans-

formed such that they do not have fourth moments but have 2nd moment to be unity.

Furthermore they are asymmetric and not unimodal. Since distribution functions are

not explicit, MLE is difficult to obtain. Table 7 compares the performance between

2SNG-QMLE with optimally chosen quasi likelihood and Gaussian QMLE. We still

use the GARCH(1,1) model with true parameters (σ0, a1,0, b1,0) = (0.5, 0.35, 0.3), and

run N = 2000 simulation with T = 3000. The candidate quasi likelihoods are Stu-

dent’s t distributions with DoF from 20 to 2.5, and generalized Gaussian distributions
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with DoF from 4 to 0.4.

Table 7: Stable innovations simulation
Innov. Comparing Ratio of variances Ratio of MSEs
dist. methods σ0 a1,0 b1,0 σ0 a1,0 b1,0

α = 1.9 G./NG-opt 1.266 1.446 1.205 1.285 1.470 1.215

α = 1.7 G./NG-opt 2.502 5.072 2.175 2.551 5.301 2.178

α = 1.5 G./NG-opt 5.381 148.9 4.004 5.605 154.8 3.954

α = 1.3 G./NG-opt 9.774 499.1 6.911 10.10 524.5 6.868

α = 1.1 G./NG-opt 16.08 1313 10.19 16.94 1445 9.960

Gaussian QMLE deteriorates as tails grow heavier (smaller α). In particular

for a1,0, it produces many large estimates, making substantial biases upward and

intolerable standard deviation levels. In contrast, 2SNG-QMLE shows little sample

bias and small standard deviations. It also shows that as innovations grows heavier,

2SNG-QMLE delivers smaller standard deviations.

For α = 1.9 case, among 2000 simulations, the algorithm chooses Student’s t quasi

likelihoods for 1977 times, and Gaussian likelihoods 23 times. Among the chosen

Student’s t likelihoods, the degrees of freedom spread out from 5 to 20, and mostly

concentrate on 6, 7, 9 and 12. For the rest four cases, all chosen quasi likelihoods

are Student’s t likelihoods. In case α = 1.7, the degrees of freedom concentrate on

3 and 4, with a small fraction of 5. In α = 1.5, around 1650 simulations choose t2.5,

the rest choose t3. In α = 1.3 and α = 1.1, all chosen quasi likelihoods are t2.5, the

most heavy tailed candidate.
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6 Empirical Work

Work run a simple GARCH(1, 1) model on Citigroup stock daily return from Jan-

uary 03, 2008 to Jan 15, 2010. There are 514 trading days in the data. We report

the estimated parameters using old parametrization. The Gaussian QMLE estimates

for (c, ã, b̃) is (0.6522, 0.2205, 0.7793). Clearly data shows high degree of persistence

in that ã + b̃ ≈ 1. The 2SNG-QMLE chooses gg1.2 as optimal likelihood, and the

estimates for model parameters and ηf are (0.7689, 0.2075, 0.7728) and 1.0458, re-

spectively. Since η̂f deviates from 1 about 4.6%, there would be a significant bias if

we run gg1.2 QMLE without scale adjustment.

On the other hand, even a non-Gaussian QMLE allowing to estimate shape of

quasi likelihood cannot guarantee consistency. In fact, such method only picks one

likelihood in some distribution family that is ‘̀least” biased for the data, but bias

due to misspecification of innovation distribution remains. We perform unscaled

generalized Gaussian QMLE with shape estimation. The estimated shape is β̂ =

1.305, which is close to the 1.2, the shape of optimal likelihood in 2SNG-QMLE.

We fix shape 1.305 and run 2SNG-QMLE again, η̂f is still 1.033. This means even

allowing to estimate the shape in quasi-likelihood, unscaled non-Gaussian QMLE

still incurs a 3.3% bias.

7 Conclusion

This paper regards on GARCH model estimation when innovation distribution is

unknown, and it questions the efficiency issue of Gaussian QMLE and consistency
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issue of currently used non-Gaussian QMLE. It proposed the 2SNG-QMLE to tackle

both issues. The first step runs a Gaussian QMLE whose purpose is to identify

the scale tuning parameter, ηf . The second step runs a non-Gaussian QMLE to

estimate model parameters. The quasi likelihood f used in second step can be a

pre-specified heavy tailed likelihoods, properly scaled by ηf . It can also be chosen

from a pool of candidate distributions in order to adapt different characteristics of

unknown innovation distribution.

The asymptotic theory of 2SNG-QMLE does not depend on any symmetric or uni-

modal assumptions of innovations. By adopting a different parametrization proposed

by Newey and Steigerwald (1997), and incorporating ηf , 2SNG-QMLE improves the

estimation efficiency from Gaussian QMLE. We and show that the asymptotic behav-

ior of 2SNG-QMLE can be broken down to two parts. For the heteroscedastic param-

eters γ, 2SNG-QMLE is always T
1

2 -consistent and asymptotically normal, whereas

T
1

2 consistency of Gaussian QMLE relies on finite fourth moment assumption. When

Eε4t < ∞, 2SNG-QMLE outperforms Gaussian QMLE in term of smaller asymptotic

variance, provided that innovation distribution is reasonably heavy tailed, which is

common for financial data. For the scale part σ, 2SNG-QMLE is not always T
1

2 -

consistent, but simulation shows that the estimation for σ is usually equally well as

heteroscedastic parameters, γ. We also run simulation to compare the performance

of Gaussian QMLE, 2SNG-QMLE and MLE. In most cases 2SNG-QMLE shows an

edge and is close to MLE.

One possible generalization of 2SNG-QMLE is to linearly combine candidate

quasi likelihoods in the second step. Instead of choosing a single likelihood, the
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log-likelihood objective in the second step is a weighted average of candidate log-

likelihoods. The weights are chosen adaptively to optimize the asymptotic variance.

By such combination efficiency, it will cover more dimensions of innovation distribu-

tions, and the efficiency will be further improved.

A Appendix section

A.1 Proof of Lemma 1

Proof.

Et(lt(θ)) = Q(
ηfσvt(γ)

σ0vt(γ0)
)− log σ0vt(γ0) + log ηf

≤ Q(ηf )− log σ0vt(γ0) + log ηf

= Et(lt(θ0))

By Assumption 1, the inequality holds with positive probability. Therefore, by iter-

ated expectations, L̄T (θ) < L̄T (θ0).

A.2 Proof of Lemma 2

Proof. Given regularity conditions, we have Q̇(η) = − 1
η
E(1+h( ε

η
)). Denote H(η) =

E(1 + h( ε
η
)). Q̈(η) = 1

η2
H(η)− 1

η
Ḣ(η), where Ḣ(η) = − 1

η2
E(εḣ( ε

η
)), for any η > 0.

Because E(εḣ( ε
η
)) < 0, so Ḣ(η) > 0. Next, limη→+∞ H(η) = 1, since

lim
η→+∞

|H(η)− 1| = lim
η→+∞

|E(h(
ε

η
))| ≤ lim

η→+∞
E|ε|p
ηp

→ 0
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On the other hand, by Fatou’s lemma along with 1 and 4, we have

lim sup
η→0+

H(η) = lim sup
η→0+

E(1 + h(
ε

η
)) ≤ 1 + E(lim sup

η→0+
h(

ε

η
)) < 0

then limη→+∞H(η) = 1, lim supη→0+ H(η) < 0, and Ḣ(η) > 0. Hence, there exists a

unique constant ηf ∈ (0,∞) such that H(ηf) = 0, hence Q̇(ηf) = 0, and Q̈(ηf ) < 0.

This concludes the proof.

A.3 Proof of Theorem 1

Proof. The proof is similar to Elie and Jeantheau (1995) by verifying the conditions

given in Pfanzagl (1969).

A.4 Proof of Theorem 2

Proof. Let ρt(θ) = (σvt)
−2k and σt(θ) = σvt(γ). Define the vector-valued function

ψ as

ψ(ω, θ) =
∂LT

∂θ
= − 1

T

T
∑

t=1

(1 +
ḟ( xt

ηfσt
)

f( xt

ηfσt
)

xt

ηfσt
)k

For convenience, we consider the parameters ranging within a local neighborhood of

the true values as in Hall and Yao (2003). This simplification may not be critical,

given that the estimator is proved to be consistent. By Taylor expansion,
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σt(θ)
2 = σt(θ0)

2 +At(θ0)
′(θ − θ0)+ ‖ θ − θ0 ‖2 R1t(θ)σt(θ0)

2 (29)

ρt(θ) = ρt(θ0) +Bt(θ0)(θ − θ0)+ ‖ θ − θ0 ‖2 R2t(θ)σt(θ0)
−2 (30)

where R1t(θ) and R2t(θ) are an r-vector and r × r matrix, and r = 1 + p+ q.

On the other hand,

h(
xt

ηfσt

) = h(
εtσt(θ0)

ηfσt(θ)
)

= h(
εt
ηf

)− εt
ηf

ḣ(
εt
ηf

)σt(θ0)
2ρt(θ0)

′(θ − θ0)+ ‖ θ − θ0 ‖2 R3t(θ) (31)

where R3t(θ) is an r-vector.

It has been shown in Hall and Yao (2003) that for Rt(θ) = R1t(θ), R2t(θ) and

R3t(θ), component-wise,

P (T−1
T
∑

t=1

sup
|θ−θ0|≤ξ

|Rt(θ)| ≤ C) −→ 1 (32)

with ξ sufficiently small. Therefore, we can rewrite the equation (29) as

0 =

T
∑

t=1

(1 + h(
εt
ηf

))σt(θ0)
2ρt(θ0) +

T
∑

t=1

(

− εt
ηf

ḣ(
εt
ηf

)σt(θ0)
4ρt(θ0)

′ρt(θ0)

+(1 + h(
εt
ηf

))(At(θ0)
′ρt(θ0) + σt(θ0)

2Bt(θ0))
)

(θ − θ0)+ ‖ θ − θ0 ‖2 TR(θ)
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where

P ( sup
|θ−θ0|≤ξ

|R(θ)| ≤ C) −→ 1 (33)

Note that

E
(

(1 + h(
εt
ηf

))(At(θ0)
′ρt(θ0) + σt(θ0)

2Bt(θ0))
)

= E
(

(At(θ0)
′ρt(θ0) + σt(θ0)

2Bt(θ0))Et

(

1 + h(
εt
ηf

)
))

= E
(

(At(θ0)
′ρt(θ0) + σt(θ0)

2Bt(θ0))
)

E
(

1 + h(
εt
ηf

)
)

= 0 (34)

Therefore, it may be proved from the ergodic theorem that

T−1
T
∑

t=1

(1 + h(
εt
ηf

)(At(θ0)
′ρt(θ0) + σt(θ0)

2Bt(θ0)) −→ 0 (35)

T−1
T
∑

t=1

εt
ηf

ḣ(
εt
ηf

)σt(θ0)
4ρt(θ0)

′ρt(θ0) −→ME
( εt
ηf

ḣ(
εt
ηf

)
)

(36)

Hence, we have

(ME
( εt
ηf

ḣ(
εt
ηf

)
)

+ oP (1))(θ − θ0)+ ‖ θ − θ0 ‖2 R(θ)

= T−1

T
∑

t=1

(1 + h(
εt
ηf

))k0 (37)

where op(1) does not depend on θ. It may be proved from martingale central limit
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theorem that

T−1/2

T
∑

t=1

(1 + h(
εt
ηf

))k0)
L−→ N

(

0,ME(1 + h(
εt
ηf

))2
)

(38)

then it follows from the same argument as in Hall and Yao (2003) that

θ̂T − θ0 = Op(T
−1/2) (39)

and

(ME
( εt
ηf

ḣ(
εt
ηf

)
)

+ oP (1))(θ − θ0) = T−1
T
∑

t=1

(1 + h(
εt
ηf

))k0 (40)

Thus,

T 1/2(θ̂T − θ0) L−→ N
(

0,M−1
E
(

(1 + h( εt
ηf
))2

)

(

E
(

εt
ηf
ḣ( εt

ηf
)
))2

)

(41)
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A.5 Proof of Proposition 1

Proof. Define the likelihood ratio function G(η) = E(log(
1

η
f( ε

η
)

f(ε)
)). Suppose G(η) has

no local extremal values. And since log(x) ≤ 2(
√
x− 1),

E(log(

1
η
f( ε

η
)

f(ε)
)) ≤ 2E(

√

1
η
f( ε

η
)

f(ε)
− 1) = 2

∫ +∞

−∞

√

1

η
f(

x

η
)f(x)dx− 2

≤ −
∫ +∞

−∞
(

√

1

η
f(

x

η
)−

√

f(x))2dx

≤ 0

The equality holds if and only if η = 1. Therefore, η = 1 is the unique maximum of

Q(η).

A.6 Proof of Theorem 4

In order to show the asymptotic normality, we first list some notations and derive

a lemma. For convenience, we denote y0 = 1
vt(γ0)

∂vt(γ0)
∂γ

and ȳ
0
= E(y0), so k0 =

( 1
σ0
,y0

′)′ and k̄0 = Ek0 = ( 1
σ0
, ȳ′

0
)′. Also, let M = E(k0k0

′), N = k̄0k̄
′
0
and

V = Var(y0)
−1. All the expectations above are taken under the true density g.

Lemma 3. The following claims hold:

1. The inverse of M in block expression is

M−1 =







σ2
0(1 + ȳ

′
0
V ȳ

0
) −σ0ȳ

′
0
V

−σ0V ȳ0
V






; (42)
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2. k̄
′
0
M−1 = σ0e1

′, k̄
′
0
M−1k0 = k̄

′
0
M−1k̄0 = 1;

3. M−1NM−1 = M−1NM−1NM−1 = σ2
0e1e1

′, where e1 is a unit column

vector that has the same length as θ, with the first entry one and all the rest

zeros.

Proof. The proof uses Moore-Penrose pseudo inverse described in Ben-Israel and Greville

(2003). Observe that

M =







0 0

0 Var(y0)






+ k̄0k̄

′
0
. (43)

Use the technique of Moore-Penrose pseudo inverse,

M−1 =







0 0

0 Var(y0)







+

+H =







0 0

0 V






+H (44)

where H is formed by the elements below:

β = 1 + ȳ′
0
V ȳ

0

w = (σ−1
0 , 0)′

m = w

v = (0, ȳ′
0
V )′

n = v
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H = − 1

‖w‖2vw
′ − 1

‖m‖2mn
′ +

β

‖w‖2‖m‖2mw
′

= σ2
0







1 + ȳ′
0
V ȳ

0
−σ−1

0 ȳ
′
0
V

−σ−1
0 V ȳ0

0







So (42) is obtained by plugging H into (44). The rest two points of the lemma can

be obtained by simple matrix manipulation.

Next we return to the proof of Theorem 4.

Proof. According to Theorem 3.4 in Newey and McFadden (1986), (θ̃T , η̂, θ̂T ) are

jointly T
1

2 -consistent and asymptotic normal. The asymptotic variance matrix is

G−1E(s̃(θ0, ηf , θ0)s̃(θ0, ηf , θ0)
′)G′−1. (45)

where G = E(∇s̃(xt, θ0, ηf , θ0)). View this matrix as 3× 3 blocks, with asymptotic

variances of (θ̃T , η̂, θ̂T ) on the first, second and third diagonal blocks. We now

calculate the second and the third diagonal blocks. The expect Jacobian matrix G

can be decomposed into

G = E













∇θs1(xt, θ0) 0 0

∇θs2(xt, θ0, ηf) ∇ηs2(θ0, ηf) 0

0 ∇ηs3(xt, ηf , θ0) ∇φs3(xt, ηf , θ0)












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Denote the corresponding blocks as Gij, i, j = 1, 2, 3. Direct calculation yields

G11 = −2M

G21 =
1

ηf
E
(

ḣ(
ε

ηf
)
ε

ηf

)

k̄
′
0

G22 =
1

η2f
E
(

ḣ(
ε

ηf
)
ε

ηf

)

G32 = G21

′

G33 = E
(

ḣ(
ε

ηf
)
ε

ηf

)

M

The second diagonal block depends on the second row of G−1 and s̃(xt, θ0, ηf , θ0).

The second row of G−1 is

(−G−1
22G21G11

−1 G−1
22 0)

So the asymptotic variance of η̂ is G−1
22 E(q2q

′
2
)G′−1

22 , where

q2 = −G21G11

−1s1(xt, θ0) + s2(xt, θ0, ηf)

=
1

2ηf
E
(

ḣ(
ε

ηf
)
ε

ηf

)

k̄
′
0
k0k0

′−1
(ε2 − 1)k0 −

1

ηf

(

1 + h(
ε

ηf
)
)

=
1

ηf

(1

2
Eh2(ε

2 − 1)− h1

)

The last step uses the second point of Lemma 3. So (17) is obtained by plugging in

the expressions for G22 and q2. Similarly, the third row of G−1 is

G33

−1(G32G
−1
22G21G11

−1 −G32G
−1
22 I)
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The asymptotic variance for θ̂ is G33

−1E(q3q
′
3
)G33

′−1, where

q3 = G32G
−1
22 (G21G11

−1s1(xt, θ0)− s2(xt, θ0, ηf)) + s3(xt, ηf , θ0)

= −(1 + h(
ε

ηf
))(k0 − k̄0)−

1

2
E(ḣ(

ε

ηf
)
ε

ηf
)k̄0k̄

′
0
(k0k0

′)−1k0(ε
2 − 1)

= −h1(k0 − k̄0)−
1

2
(Eh2)(ε

2 − 1)k̄0

The last step uses the second point of Lemma 3. Then

Eq3q3
′ = Eh2

1(M −N) +
1

4
(Eh2)

2E(ε2 − 1)N

= Eh2
1M +

(1

4
E(ε2 − 1)2 −Eh2

1

)

N

Therefore, (16) is obtained by plugging in the expressions forG33, Eq3q3
′, and apply

the third point of Lemma 3.

The asymptotic covariance between θ̂ and η̂f is G33

−1E(q3q2)G
′−1
22 , then direct

calculation using the second point of Lemma 3 yields

Π =
ηfσ0

2
E
(

(ε2 − 1)(
h1

Eh2

− ε2 − 1

2
)
)

e′
1

The same formula recurs in the asymptotic covariance between θ̃ and η̂f , which is

G11

−1E(q1q2)G
′−1
22 .

Finally, the asymptotic covariance between θ̃ and θ̂ is G11

−1E(q1q
′
3
)G33

′−1,

denoted as Ξ. If implies from the third point of Lemma 3 that

Ξ =
E(h1(ε

2 − 1))

2E(h2)
M−1 − σ2

0

2
E
(

(ε2 − 1)(
h1

Eh2
− ε2 − 1

2
)
)

e1e
′

1
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which concludes the proof.

A.7 Proof of Theorem 5

Proof. Following the similar idea to GMM, we may prove:













I 0 0

λTT
− 1

2G21 G22 0

0 G32 G33

























Tλ−1
T (θ̃ − θ0)

T
1

2 (η̂f − ηf)

T
1

2 (θ̂ − θ0)













=













1
λT

∑T
t=1Ψt(εt) + oP (1)

− 1√
T

∑T
t=1

1
ηf
(1 + h( εt

ηf
)) + oP (1)

1√
T

∑T
t=1(1 + h( εt

ηf
))k0 + oP (1)













Clearly, the corresponding weighting vector for
√
T (θ̂T − θ0) is

(

G33

−1G32G
−1
22 λTT

− 1

2G21 −G33

−1G32G
−1
22 G33

−1

)

Note that

G33

−1G32G
−1
22 λTT

− 1

2G21 = λTT
− 1

2M−1k̄0k̄
′
0
= λTT

− 1

2σ0e1k̄
′
0

−G33

−1G32G
−1
22 = −σ0ηf (E

(

ḣ(
ε

ηf
)
ε

ηf

)

)−1e1

thus the sub-matrices corresponding to γ parameter are 0s. Therefore, the first step

has no effect on the central limit theorem of γ̂T . The result follows from Lemma 3.

In terms of σ̂T , its convergence rate becomes Tλ−1
T .
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A.8 Proof of Proposition 2

Proof. Denote random variables κG = (1 − ε2)/2, and κ2 = h1(ε/ηf)/E(h2(ε/ηf)).

We show the optimal weights for σ and γ are the same. From Lemma 3, Theorem 4

and (27), for σ, the numerator in w∗
1 is

(ΣG)1,1 − Ξ1,1 = σ2
0(1 + ȳ

′
0V ȳ0)Eκ2

G − σ2
0Eκ2

G + σ2
0ȳ

′
0V ȳ0E(κGκ2)

= σ2
0ȳ

′
0V ȳ0E(κG(κG + κ2))

The denominator in w∗
1 is

(ΣG)1,1 + (Σ2)1,1 − 2Ξ1,1 = σ2
0(1 + ȳ

′
0V ȳ0)(Eκ2

G + Eκ2
2) + σ2

0(Eκ2
G −Eκ2

2)

−2σ2
0Eκ2

G + 2σ2
0ȳ

′
0V ȳ0E(κGκ2)

= σ2
0ȳ

′
0V ȳ0E(κ2

G + κ2
2 + 2κGκ2)

Therefore we obtain w∗
1 = E(κG(κG+κ2))/E(κG+κ2)

2. Now we compute the weights

corresponding to γ. For i = 2, . . . , 1 + p+ q, let j = i− 1, also from (27),

w∗
i =

V j,jEκ2
G + V j,jE(κGκ2)

V j,jEκ2
G + V j,jEκ2

22V j,jE(κGκ2)
=

E(κG(κG + κ2))

E(κG + κ2)2

Therefore all the optimal aggregation weights are the same.
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