
ar
X

iv
:1

00
1.

38
59

v1
 [

st
at

.M
E

]
 2

1
Ja

n
20

10

Strict Monotonicity and Convergence Rate of Titterington’s

Algorithm for Computing D-optimal Designs

Yaming Yu

Department of Statistics

University of California

Irvine, CA 92697, USA

yamingy@uci.edu

Abstract

We study a class of multiplicative algorithms introduced by Silvey et al. (1978) for com-

puting D-optimal designs. Strict monotonicity is established for a variant considered by

Titterington (1978). A formula for the rate of convergence is also derived. This is used to

explain why modifications considered by Titterington (1978) and Dette et al. (2008) usually

converge faster.

Keywords: D-optimality; experimental design; multiplicative algorithm.

1 Introduction

Let X = {x1, . . . , xn} ⊂ Rm be a design space of n points (n ≥ m). We consider computational

aspects of D-optimal design (approximate theory) for linear models (Kiefer 1974; Silvey, 1980;

Pázman, 1986; Pukelsheim, 1993). The D-criterion seeks to maximize the determinant of the

m×m matrix

M(w) =

n
∑

i=1

wixix
⊤
i

with respect to w = (w1, . . . , wn)
⊤ ∈ Ω̄, where Ω̄ denotes the closure of Ω = {w :

∑n
i=1wi =

1, wi > 0}. As usual, M(w) represents the Fisher information for the m× 1 parameter θ in the

linear model

y|(x, θ) ∼ N(x⊤θ, σ2)

1

http://arxiv.org/abs/1001.3859v1

when the number of units assigned to xi is proportional to wi. An iterative procedure to solve

this problem (Silvey et al. 1978) is as follows.

Algorithm I

1. Set w(0) = (w
(0)
1 , . . . , w

(0)
n)⊤ ∈ Ω.

2. For t = 1, 2, . . ., compute

w
(t)
i = w

(t−1)
i

x⊤i M
−1(w(t−1))xi
m

, i = 1, . . . , n. (1)

Iterate until convergence.

Algorithm II (Titterington 1978), a variant of Algorithm I, can be applied when the design

points include an intercept, i.e., xi = (1, z⊤i)
⊤, where zi ∈ Rm−1.

Algorithm II

1. The same as Step 1 of Algorithm I.

2. For t = 1, 2 . . ., compute

z̄ =

n
∑

i=1

w
(t−1)
i zi; Mc(w

(t−1)) =

n
∑

i=1

w
(t−1)
i (zi − z̄)(zi − z̄)⊤;

w
(t)
i = w

(t−1)
i

(zi − z̄)⊤M−1
c (w(t−1))(zi − z̄)

m− 1
, i = 1, . . . , n. (2)

Iterate until convergence.

In a form that resembles (1) even more closely, (2) reads

w
(t)
i = w

(t−1)
i

x⊤i M
−1(w(t−1))xi − α

m− α
, i = 1, . . . , n, (3)

with α = 1. Note that (3) does not require that the design points include an intercept, and

therefore can be more broadly applicable than (2). In what follows xi need not include an

intercept when we refer to (3).

Algorithms I and II have generated considerable interest; see, for example, Titterington

(1976, 1978), Silvey et al. (1978), Pázman (1986), Torsney and Mandal (2006), Harman and

Pronzato (2007), Dette et al. (2008), and Yu (2010). Algorithm I is known to be monotonic

(Titterington 1976), i.e., detM(w(t)) never decreases in t. Monotonicity of Algorithm II has

been resolved recently (Titterington 1978; Yu, 2010). Part of this work aims to extend this to

2

strict monotonicity, thereby showing that Algorithm II converges monotonically for m ≥ 3, and

fully resolving Titterington’s (1978) conjecture.

It has been observed that Algorithm II usually converges faster than Algorithm I; see, e.g.,

Dette et al. (2008). Another goal of this work is to give an explanation of this by a theoretical

analysis of the convergence rates. Our investigation is partly inspired by Dette et al. (2008),

who propose an iteration of the form of (3) with a dynamic choice of α = α(t). These authors

provide an upper bound on α(t) which ensures the monotonicity of (3), and also observe that

their algorithm converges faster than Algorithm I in numerical examples. We shall also discuss

the convergence rate of this dynamic algorithm.

Section 2 establishes the strict monotonicity of Algorithm II. The argument extends that of

Yu (2010). In Section 3, we analyze iteration (3) for fixed α in terms of both the matrix rate

and the global rate. For Algorithm I (i.e., α = 0), it is shown that the matrix rate has only

nonnegative eigenvalues. Combined with a simple relation between the convergence rates of (3)

for different α, this shows that, with some exceptions, iteration (3) with α > 0 will converge

faster than Algorithm I. Section 4 concludes with a small numerical illustration.

2 Strict Monotonicity of Algorithm II

Theorem 1 of Yu (2010) implies the monotonicity, but not strict monotonicity, of iteration

(2). In Proposition 1 below, we establish strict monotonicity for m ≥ 3. We include the

proof of monotonicity for completeness, but our emphasis is on the equality condition. Strict

monotonicity plays a key role in the proof of the convergence theorem (Theorem 1).

Let us denote Ω+ = {w ∈ Ω̄ : M(w) > 0 (positive definite)}. In this section we assume

xi = (1, z⊤i)
⊤, and write X ≡ (x1, . . . , xn)

⊤.

Proposition 1. Assume m ≥ 3 and X has full rank m. Then iteration (2) is strictly monotonic.

That is, if w(t−1), w(t) ∈ Ω+ satisfy (2), then detM(w(t−1)) ≤ detM(w(t)), with equality only if

w(t) = w(t−1).

Proof. Let K = (0m−1, Im−1) where 0r denotes the r × 1 vector of zeros, and Ir denotes the

r × r identity matrix. Define ψ(M) = log det(KMK⊤) for any positive definite m×m matrix

M . Consider the function

h(Σ, w,Q) = ψ(Σ) + tr(ψ′(Σ)(Q∆−1
w Q⊤ −Σ))

3

where Σ (m×m) is positive definite, w ∈ Ω, ∆w = Diag(w), and Q (m×n) is full-rank. Because

ψ(M) is concave in M , and strictly concave when restricted to KMK⊤, we have

h(Σ, w,Q) ≥ ψ(Q∆−1
w Q⊤) (4)

with equality only when K(Q∆−1
w Q⊤ − Σ)K⊤ = 0.

On the other hand, suppose QX = Im, then we have

ψ(Q∆−1
w Q⊤) ≥ ψ(M−1(w)). (5)

This holds because QY is an unbiased estimator of θ in the linear model

Y ∼ N(Xθ, ∆−1
w).

Hence its variance matrix Q∆−1
w Q⊤ is at least as large (in the positive definite ordering) as

(X⊤∆wX)−1 = M−1(w), which corresponds to the weighted least squares estimator QWLS =

(X⊤∆wX)−1X⊤∆w. Moreover, equality in (5) holds only when K(Q − QWLS) = 0, i.e., when

QY agrees with QWLSY in all coordinates except the first.

Let w(t−1), w(t) ∈ Ω be related by (2). Consider Q(t−1) = (X⊤∆w(t−1)X)−1X⊤∆w(t−1) and

define Q(t) similarly. We have

ψ(M−1(w(t−1))) = h(M−1(w(t−1)), w(t−1), Q(t−1))

= h(M−1(w(t−1)), w(t), Q(t−1)) (6)

≥ ψ(Q(t−1)∆−1
w(t)Q

(t−1)⊤) (7)

≥ ψ(M−1(w(t))). (8)

The key is the equality in (6), which follows from (2) after some algebra. The inequality (7)

follows from (4). The inequality (8) follows from (5). We also have the easily verified identity

ψ(M−1(w)) = − log detM(w). Thus the monotonicity statement holds.

To prove strict monotonicity, let us check the equality conditions in (7) and (8). The equality

in (7) entails

K(M−1(w(t−1))−Q(t−1)∆−1
w(t)Q

(t−1)⊤)K⊤ = 0. (9)

The equality in (8) entails

K(Q(t−1) −Q(t)) = 0, (10)

4

which implies

KQ(t−1)∆−1
w(t)Q

(t−1)⊤K⊤ = KQ(t)∆−1
w(t)Q

(t)⊤K⊤ = KM−1(w(t))K⊤.

We obtain

K(M−1(w(t))−M−1(w(t−1)))K⊤ = 0 (11)

in view of (9). After some calculation, we can show that (10) and (11) imply

X⊤(∆w(t−1) −w(t−1)w(t−1)⊤) = X⊤(∆w(t) − w(t)w(t)⊤).

Equivalently,

w
(t−1)
i (xi − x̄(t−1)) = w

(t)
i (xi − x̄(t)), i = 1, . . . , n, (12)

where x̄(t) =
∑n

i=1w
(t)
i xi, and x̄(t−1) is defined similarly. If w

(t−1)
i = w

(t)
i for any i, then

x̄(t−1) = x̄(t) ≡ x̄, and (w
(t−1)
j − w

(t)
j)(xj − x̄) = 0 for all j. That is, either xj − x̄ = 0, or

w
(t−1)
j = w

(t)
j . If xj − x̄ = 0, then w

(t)
j = 0 by the form of (2), which contradicts the assumption

that w(t) ∈ Ω. Hence, if w
(t−1)
i = w

(t)
i for any i, then it holds for all i. Let us assume w

(t−1)
i 6= w

(t)
i

for all i. Rewriting (12) we get

(∆w(t−1) −∆w(t))X = (w(t−1), −w(t))(x̄(t−1), x̄(t))⊤. (13)

We obtain a contradiction because the left-hand side of (13) has rank m ≥ 3, whereas the

right-hand side has rank at most two. It follows that w(t) = w(t−1).

Although the above argument assumes w(t−1), w(t) ∈ Ω, i.e., they have all positive coordi-

nates, the conclusion still holds if we only assume w(t−1), w(t) ∈ Ω+. First, we can restrict our

analysis to the positive coordinates of w(t−1). If w(t−1) ∈ Ω, but w(t) has some zero coordinates,

then we can show detM(w(t−1)) < detM(w(t)) by a limiting argument, upon close inspection

of (6).

Remark. When m = 2, Algorithm II is still monotonic, but may not be strictly monotonic;

see Pronzato et al. (2000), Chapter 7, and Section 3 below.

Strict monotonicity leads to the following convergence theorem, which fully resolves Titter-

ington’s (1978) conjecture.

Theorem 1. Assume m ≥ 3 and X has full rank. Let w(t) be a sequence generated by Algo-

rithm II, starting with w(0) ∈ Ω. Then all limit points of w(t) are global maxima of detM(w)

on w ∈ Ω+ and, as t increases to ∞, detM(w(t)) increases to supw∈Ω+
detM(w).

5

Yu (2010, Theorem 2) presents a convergence theorem for a general class of multiplicative

algorithms. However, we cannot directly appeal to Theorem 2 in Yu (2010) because certain

technical conditions are not satisfied. For example, w(t) need not have all positive coordinates

even if w
(t−1)
i > 0 for all i. However, inspection of (2) shows that w

(t)
i is set to zero only when

zi = z̄, in which case it can be shown that an optimal design need not include xi as a support

point, i.e., xi is safely eliminated. Theorem 1 can then be proved by following the proof of

Theorem 2 in Yu (2010) step by step (details omitted).

3 Rate of Convergence

In this section we analyze the convergence rate of iteration (3). Assume the matrix X =

(x1, . . . , xn)
⊤ has full rank m ≥ 2. Let w∗ ∈ Ω be a global maximizer of detM(w). We

assume that w∗ has all positive components. (A slightly weaker assumption is that the starting

value w(0) has the same zero pattern as w∗.) Though unrealistic in a practical situation, such

an assumption makes our analysis tractable. It seems to be a challenging problem to analyze

the convergence rate when the algorithm tends to a boundary limit. In Section 4, we present

numerical examples to corroborate our rather idealized analysis.

The notions of the matrix rate and the global rate are often used in analyzing fixed point

algorithms in statistical contexts (Dempster et al. 1977; Meng, 1994). Assume 0 ≤ α < m, and

denote the mapping (3) by T . The matrix rate of convergence of T is defined as

R(α) =
∂T (w)

∂w

∣

∣

∣

∣

w=w∗

,

because we have

T (w)− w∗ ≈ R(α)(w − w∗) (14)

for w near w∗. The global rate of convergence, r(α), is defined as the spectral radius (the

maximum modulus of the eigenvalues) of R(α) when restricted as a linear mapping on the space

Γ = {γ ∈ Rm : 1mγ = 0}

where 1m denotes the 1 × m vector of ones. Restricting R(α) to Γ is possible because of the

implication γ ∈ Γ ⇒ R(α)γ ∈ Γ. This restriction is imposed because we have the constraints
∑

iw
∗
i =

∑

i wi = 1, and hence w − w∗ ∈ Γ in (14). Also note that such notions of convergence

6

rates merely reflect how the iterations of T behave near w∗; whether the algorithm converges

from an arbitrary starting value is a different issue.

Let us define dij = x⊤i M
−1(w∗)xj , 1 ≤ i, j ≤ n. The matrix rate R(α) admits a simple

formula.

Proposition 2. The (i, j)th entry of R(α) is

Rij(α) =

−w∗
i d

2
ij/(m− α), i 6= j,

(dii − w∗
i d

2
ii − α)/(m− α), i = j.

(15)

Proof. By differentiating Im =M−1(w)M(w) with respect to wj and rearranging, we obtain

∂M−1(w)

∂wj
= −M−1(w)

∂M(w)

∂wj
M−1(w) = −M−1(w)xjx

⊤
j M

−1(w),

which yields, for i 6= j,

∂Ti(w)

∂wj
=

wi

m− α
x⊤i

∂M−1(w)

∂wj
xi = −

wid
2
ij

m− α
.

The case of i = j is similar.

Theorem 2 investigates the properties of R(α). Its proof uses a lemma concerning the

Hadamard product (see, e.g., Pukelsheim (1993), p. 199).

Lemma 1. If A = (Aij) and B = (Bij) are symmetric nonnegative definite matrices of the

same dimension, then their entry-wise product C = ((AijBij)) is also nonnegative definite.

Theorem 2. The matrix R(α) is diagonalizable, and all of its eigenvalues lie in the interval

[−α/(m− α), 1].

Proof. We have dii = m for all i by the general equivalence theorem (Kiefer and Wolfowitz,

1960). (Note the assumption that w∗ has all positive components.) Thus

R(α) = Im −
∆w∗D∗

m− α
, (16)

where ∆w∗ = Diag(w∗) as before, and D∗ = (d2ij)n×n. Define D = (dij)n×n. The formula

D = XM−1(w∗)X⊤ shows that D is nonnegative definite, and so is D∗ by Lemma 1, since D∗ is

the entry-wise product of D with itself. By (16), Im −R(α) is similar to ∆
1/2
w∗ D∗∆

1/2
w∗ /(m− α),

which is nonnegative definite because D∗ is. Hence Im−R(α) is diagonalizable, with nonnegative

7

eigenvalues. That is, R(α) is diagonalizable, and its eigenvalues do not exceed one. On the other

hand, ∆w∗D∗ satisfies (i) each entry is nonnegative, and (ii) each column sums to
∑

iw
∗
i d

2
ij =

djj = m. By the Frobenius-Perron theorem (see Horn and Johnson (1990), Chapter 8), any

eigenvalue of ∆w∗D∗ cannot exceed m. It follows from (16) that any eigenvalue of R(α) is at

least 1−m/(m− α) = −α/(m− α).

For Algorithm I, Theorem 2 leads to an eigenvalue bound similar to that for the EM algo-

rithm; see Yu (2009) for another similar situation in the context of Shannon theory.

Corollary 1. All eigenvalues of R(0) lie in the interval [0, 1].

Because Algorithm I converges, it is not surprising that eigenvalues of R(0) do not exceed

one. However, that these eigenvalues are nonnegative shows that the iterations of Algorithm I

are conservative, and may be improved by some form of overrelaxation, e.g., by using α > 0 in

(3). To make this intuition precise, we compare convergence rates of iteration (3) for different

α (with respect to the same w∗). Equation (16) yields

Im −R(α) =
m

m− α
(Im −R(0)). (17)

If we define Im − R(α) as the matrix speed of convergence, then (17) has an appealing inter-

pretation: iteration (3) is precisely m/(m − α) times as fast as Algorithm I. Nevertheless, one

should be cautious toward such an interpretation. First, we need to assume that (3) converges,

which is not always guaranteed. Secondly, when some of the eigenvalues of R(α) are negative,

iteration (3) can actually be slower than Algorithm I, as the following example illustrates. Let

n = m = 2 and consider the design space X = {x1 = (1,−1)⊤, x2 = (1, 1)⊤}. Iteration (3)

maps any w(t−1) = (w1, w2)
⊤ ∈ Ω to

w(t) =
1

2− α
(1− αw1, 1− αw2)

⊤.

We have R(α) = −αI2/(2 − α). The algorithm reaches w∗ = (1/2, 1/2)⊤ in one iteration if

α = 0, but becomes slower and slower as α increases from 0 to 1. When α = 1 it alternates

between two points (w1, w2)
⊤ and (w2, w1)

⊤ (assuming w1 6= w2) and does not even converge.

(Non-convergence of Algorithm II when m = 2 has been noted by Pronzato et al. (2000).)

What (17) does imply is that, if α is not too large, and if Algorithm I itself is slow, then

iteration (3) will converge faster than Algorithm I. Intuitively, an α too large would overshoot

8

and slow the algorithm down. Proposition 3 makes this explicit by comparing the global rate

r(α).

Proposition 3. Assume r(0) ≥ 2α/m. Then

1− r(α) =
m

m− α
(1− r(0)), (18)

and hence r(α) ≤ r(0).

Proof. Let r+(α) (resp. r−(α)) denote the largest (resp. smallest) eigenvalues of R(α) when

restricted as a linear mapping on Γ. Then r(α) = max{|r+(α)|, |r−(α)|}. Corollary 1 implies

r(0) = r+(0). By (17),

1− r+(α) =
m

m− α
(1− r(0)) ≤

m− 2α

m− α
.

That is, r+(α) ≥ α/(m − α). On the other hand, Theorem 2 implies r−(α) ≥ −α/(m − α).

Hence r+(α) ≥ |r−(α)|, and r(α) = r+(α), thus proving (18).

Corollary 2. If r(0) ≥ 2/m, then the global rate of Algorithm II is no worse than that of

Algorithm I.

Corollary 2 suggests that Algorithm II is likely to converge faster than Algorithm I, as long as

m ≥ 3 and r(0) is reasonably large. Note that in a practical situation, Algorithm I can be quite

slow, i.e., r(0) is close to one. This explains the observed improvement of using Algorithm II in

numerical examples.

Dette et al. (2008) consider a version of (3) where α = α(t) is set at each iteration. It is

shown that by choosing

α(t) =
1

2
min
i
x⊤i M

−1(w(t−1))xi (19)

the resulting algorithm is monotonic, and usually converges faster than Algorithm I. Although

this algorithm is dynamic, we can still discuss its asymptotic rate of convergence, because if

t→ ∞ and w(t) → w∗, then α(t) also tends to a limit:

α̂ ≡ lim
t→∞

α(t) =
1

2
min
i
x⊤i M

−1(w∗)xi.

It follows that, for large t, each iteration of this dynamic algorithm behaves as if α is fixed at

α̂. If w∗ has all positive components, then α̂ = m/2 by the general equivalence theorem; in

general 0 ≤ α̂ ≤ m/2. If α̂ = m/2, and if (18) holds, then we can loosely say that the dynamic

9

algorithm is twice (m/(m− α̂) = 2) as fast as Algorithm I. In a practical situation, however, it

is more likely that α̂ < m/2, hence we may expect a less pronounced improvement; see Section 4

for a numerical example.

4 Numerical Example

The formula (18) is derived under the assumption that all coordinates of w∗ are positive. As

mentioned earlier, in realistic problems this is usually not true. It is therefore reasonable to ask

whether (18) holds in any practical sense. To study this, we employ an empirical measure of the

convergence rate, defined as

r̂ = lim
t→∞

|w(t+1) − w(t)|

|w(t) − w(t−1)|
, (20)

where |v| = (
∑

i v
2
i)

1/2. We compare the r̂ for iteration (3) with different values of α for a few

regression models. Define si = i/20, i = 1, . . . , 20. Similar to Dette et al. (2008), we consider

design spaces

X1 = {xi = (1, e−si , sie
−si)⊤, i = 1, . . . , 20};

X2 = {xi = (1, si/(κ+ si), si/(κ + si)
2)⊤, i = 1, . . . , 20}, κ = 0.5;

X3 = {xi = (1, si, s
2
i , s

3
i)

⊤, i = 1, . . . , 20}.

Note that a D-optimal design on X2 is equivalently a locally D-optimal design for the parameter

(β0, β1, κ) in the nonlinear model,

y = β0 +
β1s

κ+ s
+ ǫ, ǫ ∼ N(0, σ2), (21)

where the design space for s is {si = i/20, i = 1, . . . , 20}, and the prior guess for κ is κ∗ = 0.5.

Mathematically, (21) with β0 = 0 corresponds to the Michaelis-Menten model often employed

to describe enzyme kinetics.

Table 1 records the estimates of 1 − r̂ for iteration (3) with various choices of α (fixed or

dynamic). Each algorithm is started from the uniform design (wi = 1/20, i = 1, . . . , 20), and r̂ is

estimated by the ratio on the right hand side of (20) when it stabilizes. The first three columns of

Table 1 deal with fixed α, in which case we write r̂ = r̂(α). If we interpret 1− r̂ as the empirical

speed of convergence, then evidently larger values of α improve the speed. For X1 and X2, the

ratio of improvement, (1 − r̂(α))/(1 − r̂(0)), is approximately equal to m/(m − α), α = 0.5, 1.

10

Table 1: Values of 1 − r̂ (the empirical speed) for iteration (3) with several design spaces and

choices of α. Dynamic α refers to the algorithm of Dette et al. (2008).

α = 0 α = 0.5 α = 1 dynamic α

X1 0.0168 0.0202 0.0252 0.0245

X2 0.0177 0.0212 0.0264 0.0256

X3 0.0062 0.0068 0.0076 0.0082

For X3, this ratio is below the value suggested by (18) for either α = 0.5 or α = 1. However, it is

possible that accurate estimation of the ratio of improvement becomes more difficult because the

algorithms are much slower for X3 than for X1 or X2. The last column concerns the algorithm

of Dette et al. (2008) where α is set dynamically as in (19). The limiting value limt→∞ α(t) is

estimated at α̂1 = 0.939 for X1, α̂2 = 0.935 for X2, and α̂3 = 1.303 for X3. We observe that these

agree well with what (18) suggests. For example, the ratios of improvement for the dynamic

algorithm are
0.0245

0.0168
≈

3

3− α̂1
and

0.0256

0.0177
≈

3

3− α̂2

for X1 and X2 respectively. Overall, we believe that (18) remains suggestive of how much

iteration (3) can improve upon Algorithm I in realistic situations.

Acknowledgments

The author would like to thank Don Rubin, Xiao-Li Meng, and David van Dyk for introducing

him to the field of statistical computing. He is also grateful to the editor, the associate editor,

and the referees for their valuable comments.

References

[1] A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data

via the EM algorithm (with discussion), J. Roy. Statist. Soc. B 39 (1977) pp. 1–38.

11

[2] H. Dette, A. Pepelyshev and A. Zhigljavsky, Improving updating rules in multiplicative

algorithms for computing D-optimal designs, Computational Statistics & Data Analysis 53

(2008) pp. 312–320.

[3] R. Harman and L. Pronzato, Improvements on removing nonoptimal support points in

D-optimum design algorithms, Statist. Probab. Lett. 77 (2007) pp. 90-94.

[4] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 1990.

[5] J. Kiefer, General equivalence theory for optimum designs (approximate theory), Ann.

Statist. 2 (1974) pp. 849–879.

[6] J. Kiefer and J. Wolfowitz, The equivalence of two extremum problems, Canad. J. Math.

12 (1960) pp. 363–366.

[7] X. L. Meng, On the rate of convergence of the ECM algorithm, Ann. Statist. 22 (1994) pp.

326–339.

[8] A. Pázman, Foundations of Optimum Experimental Design, Reidel, Dordrecht (1986).

[9] L. Pronzato, H. Wynn and A. Zhigljavsky, Dynamical Search: Applications of Dynamical

Systems in Search and Optimization, Chapman & Hall/CRC, Boca Raton (2000).

[10] F. Pukelsheim, Optimal Design of Experiments, John Wiley & Sons Inc, New York (1993).

[11] S.D. Silvey, Optimal Design, Chapman & Hall, London (1980).

[12] S.D. Silvey, D.M. Titterington and B. Torsney, An algorithm for optimal designs on a finite

design space, Commun. Stat. Theory Methods 14 (1978) pp. 1379-1389.

[13] D.M. Titterington, Algorithms for computing D-optimal design on finite design spaces. In

Proc. of the 1976 Conf. on Information Science and Systems, John Hopkins University, 3

(1976) pp. 213-216.

[14] D.M. Titterington, Estimation of correlation coefficients by ellipsoidal trimming, Appl. Stat.

27 (1978) pp. 227-234.

[15] B. Torsney and S. Mandal, Two classes of multiplicative algorithms for constructing opti-

mizing distributions, Computational Statistics & Data Analysis 51 (2006) pp. 1591–1601.

12

[16] Y. Yu, Squeezing the Arimoto-Blahut algorithm for faster convergence, Technical Report

(2009) arXiv:0906.3849

[17] Y. Yu, Monotonic convergence of a general algorithm for computing optimal designs, Tech-

nical Report (2010) arXiv:0905.2646v3

13

http://arxiv.org/abs/0906.3849
http://arxiv.org/abs/0905.2646

	1 Introduction
	2 Strict Monotonicity of Algorithm II
	3 Rate of Convergence
	4 Numerical Example

