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1. Introduction

Consider the linear regression model Y = Xβ + ε, where Y is a random n-

vector of responses, X is a known n× p matrix with linearly independent columns,

β is an unknown parameter p-vector and ε ∼ N(0, σ2In) where σ2 is an unknown

positive parameter. Let β̂ denote the least squares estimator of β. Also, define

σ̂2 = (Y −Xβ̂)T (Y −Xβ̂)/(n− p).

Suppose that the parameter of interest is θ = aTβ where a is a given p-vector

(a 6= 0). We seek a 1− α confidence interval for θ. Define the quantile t(m) by the

requirement that P
(
− t(m) ≤ T ≤ t(m)

)
= 1 − α for T ∼ tm. Let Θ̂ denote aT β̂,

i.e. the least squares estimator of θ. Also let v11 denote the variance of Θ̂ divided

by σ2. The usual 1− α confidence interval for θ is

I =
[
Θ̂− t(m)

√
v11σ̂, Θ̂ + t(m)

√
v11σ̂

]

where m = n − p. Is this confidence interval admissible? The admissibility of a

confidence interval is a much more difficult concept than the admissibility of a point

estimator, since confidence intervals must satisfy a coverage probability constraint.

Also, admissibility of confidence intervals can be defined in either weak or strong

forms (Joshi, 1969, 1982).

Kabaila & Giri (2009, Section 3) describe a broad class D of confidence intervals

that includes I. The main result of the present paper, presented in Section 3, is that

I is strongly admissible within the class D. An attractive feature of the proof of this

result is that, although lengthy, this proof is quite straightforward and elementary.

Section 2 provides a brief description of this class D. For completeness, in Section 4

we describe a strong admissibility result, that follows from the results of Joshi (1969),

for the usual 1−α confidence interval for θ in the somewhat artificial situation that

the error variance σ2 is assumed to be known.

2. Description of the class D

Define the parameter τ = cTβ− t where the vector c and the number t are given

and a and c are linearly independent. Let τ̂ denote cT β̂ − t i.e. the least squares

estimator of τ . Define the matrix V to be the covariance matrix of (Θ̂, τ̂) divided
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by σ2. Let vij denote the (i, j) th element of V . We use the notation [a± b] for the

interval [a− b, a + b] (b > 0). Define the following confidence interval for θ

J(b, s) =

[
Θ̂−√

v11σ̂ b

(
τ̂

σ̂
√
v22

)
± √

v11σ̂ s

( |τ̂ |
σ̂
√
v22

)]
(1)

where the functions b and s are required to satisfy the following restrictions. The

function b : R → R is an odd function and s : [0,∞) → (0,∞). Both b and s are

bounded. These functions are also continuous except, possibly, at a finite number

of values. Also, b(x) = 0 for all |x| ≥ d and s(x) = t(m) for all x ≥ d where d is

a given positive number. Let F(d) denote the class of pairs of functions (b, s) that

satisfy these restrictions, for given d (d > 0).

Define D to be the class of all confidence intervals for θ of the form (1), where

c, t, d, b and s satisfy the stated restrictions. Each member of this class is specified

by (c, t, d, b, s). Apart from the usual 1− α confidence interval I for θ, the class D
of confidence intervals for θ includes the following:

(a) Suppose that we carry out a preliminary hypothesis test of the null hypothesis

τ = 0 against the alternative hypothesis τ 6= 0. Also suppose that we construct

a confidence interval for θ with nominal coverage 1−α based on the assumption

that the selected model had been given to us a priori (as the true model). The

resulting confidence interval, called the naive 1−α confidence interval, belongs

to the class D (Kabaila & Giri, 2009, Section 2).

(b) Confidence intervals for θ that are constructed to utilize (in the particular

manner described by Kabaila & Giri, 2009) uncertain prior information that

τ = 0.

Let K denote the usual 1−α confidence interval for θ based on the assumption that

τ = 0. The naive 1 − α confidence interval, described in (a), may be expressed in

the following form:

h

( |τ̂ |
σ̂
√
v22

)
I +

(
1− h

( |τ̂ |
σ̂
√
v22

))
K (2)

where h : [0,∞) → [0, 1] is the unit step function defined by h(x) = 0 for all x ∈ [0, q]

and h(x) = 1 for all x > q. Now suppose that we replace h by a continuous increasing

function satisfying h(0) = 0 and h(x) → 1 as x → ∞ (a similar construction is

extensively used in the context of point estimation by Saleh, 2006). The confidence

interval (2) is also a member of the class D.
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3. Main result

As noted in Section 2, each member of the class D is specified by (c, t, d, b, s).

The following result states that the usual 1− α confidence interval for θ is strongly

admissible within the class D.

Theorem 1. There does not exist (c, t, d, b, s) ∈ D such that the following three

conditions hold:

(a) Eβ,σ2

(
length of J(b, s)

)
≤ Eβ,σ2

(
length of I

)
for all (β, σ2). (3)

(b) Pβ,σ2

(
θ ∈ J(b, s)

)
≥ Pβ,σ2

(
θ ∈ I

)
for all (β, σ2). (4)

(c) Strict inequality holds in either (3) or (4) for at least one (β, σ2).

The proof of this result is presented in Appendix A.

An illustration of this result is provided by Figure 3 of Kabaila & Giri (2009).

Define γ = τ/(σ
√
v22). Also define

e(γ; s) =
expected length of J(b, s)

expected length of I
.

We call this the scaled expected length of J(b, s). Theorem 1 tells us that for any

confidence interval J(b, s), with minimum coverage probability 1 − α, it cannot be

the case that e(γ; s) ≤ 1 for all γ, with strict inequality for at least one γ. This fact

is illustrated by the bottom panel of Figure 3 of Kabaila & Giri (2009).

Define the class D̃ to be the subset of D in which both b and s are continuous

functions. Strong admissibility of the confidence interval I within the class D implies

weak admissibility of this confidence interval within the class D̃, as the following

result shows. Since (β̂, σ̂2) is a sufficient statistic for (β, σ), we reduce the data to

(β̂, σ̂2).

Corollary 1. There does not exist (c, t, d, b, s) ∈ D̃ such that the following three

conditions hold:

(a′)
(
length of J(b, s)

)
≤

(
length of I

)
for all (β̂, σ̂2). (5)

(b′) Pβ,σ2

(
θ ∈ J(b, s)

)
≥ Pβ,σ2

(
θ ∈ I

)
for all (β, σ2). (6)

(c′) Strict inequality holds in either (5) or (13) for at least one (β, σ2).

This corollary is proved in Appendix B.
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4. Admissibility result for known error variance

In this section, we suppose that σ2 is known. Without loss of generality, we

assume that σ2 = 1. As before, let β̂ denote the least squares estimator of β.

Since β̂ is a sufficient statistic for β, we reduce the data to β̂. Assume that the

parameter of interest is θ = β1/

√
Var(β̂1). Thus the least squares estimator of θ is

Θ̂ = β̂1/

√
Var(β̂1). Define

∆̂ =



β̂2 − ℓ2β̂1

...

β̂p − ℓpβ̂1




where ℓ2, . . . , ℓp have been chosen such that Cov(β̂j − ℓjβ̂1, β̂1) = 0 for j = 2, . . . , p.

Now define

δ =



β2 − ℓ2β1

...
βp − ℓpβ1


 .

Note that (Θ̂, ∆̂) is obtained by a one-to-one transformation from β̂. So, we reduce

the data to (Θ̂, ∆̂). Note that Θ̂ and ∆̂ are independent, with Θ̂ ∼ N(θ, 1) and ∆̂

with a multivariate normal distribution with mean δ and known covariance matrix.

Define the number z by the requirement that P (−z ≤ Z ≤ z) = 1 − α for Z ∼
N(0, 1). Let I =

[
Θ̂− z, Θ̂ + z

]
. Define

ϕ(θ̂, θ) =

{
1 if θ ∈

[
θ̂ − z, θ̂ + z

]

0 otherwise

This is the probability that θ is included in the confidence interval I, when θ̂ is the

observed value of Θ̂. The length of the confidence interval I is
∫∞

−∞
ϕ(θ̂, θ) dθ = 2z.

Let pθ(·) denote the probability density function of Θ̂ for given θ. The coverage

probability of I is
∫∞

−∞
ϕ(θ̂, θ) pθ(θ̂) dθ̂ = 1− α.

Now let C(Θ̂, ∆̂) denote a confidence set for θ. Define

ϕδ(θ̂, θ) = Pθ,δ

(
θ ∈ C(θ̂, ∆̂)

)
,

where θ̂ denotes the observed value of Θ̂. For each given δ ∈ R
p−1, the expected

Lebesgue measure of C(Θ̂, ∆̂) is Eθ,δ

( ∫∞

−∞
ϕδ(Θ̂, θ) dθ

)
. For each given δ ∈ R

p−1, the

coverage probability of C(Θ̂, ∆̂) is
∫∞

−∞
ϕδ(θ̂, θ) pθ(θ̂) dθ̂. Theorem 5.1 of Joshi (1969)

implies the following strong admissibility result. Suppose that ϕδ(θ̂, θ) satisfies the

following conditions
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(i) Eθ,δ

( ∫∞

−∞
ϕδ(θ̂, θ) dθ

)
≤ Eθ,δ

( ∫∞

−∞
ϕ(θ̂, θ) dθ

)
for all θ ∈ R.

(ii)
∫∞

−∞
ϕδ(θ̂, θ) pθ(θ̂) dθ̂ ≥

∫∞

−∞
ϕ(θ̂, θ) pθ(θ̂) dθ̂ for all θ ∈ R.

Then ϕδ(θ̂, θ) = ϕ(θ̂, θ) for almost all (θ̂, θ) ∈ R
2. This result is true for each

δ ∈ R
p−1. Using standard arguemnts, this entails that I \ C(Θ̂, ∆̂) and C(Θ̂, ∆̂) \ I

are Lebesgue-null sets, for (Lebesgue-) almost all values of (Θ̂, ∆̂).

Appendix A: Proof of Theorem 1

Suppose that c is a given vector (such that c and a are linearly independent), t

is a given number and d is a given positive number. The proof of Theorem 1 now

proceeds as follows. We present a few definitions and a lemma. We then apply this

lemma to prove this theorem.

Define W = σ̂/σ. Note that W has the same distribution as
√

Q/m where

Q ∼ χ2

m. Let fW denote the probability density function of W . Also let φ denote

the N(0, 1) probability density function. Now define

R1(b, s; γ) =
expected length of J(b, s)

expected length of I
− 1.

It follows from (7) of Kabaila & Giri (2009) that

R1(b, s; γ) =
1

t(m)E(W )

∫ ∞

0

∫ d

−d

(s(|x|)− t(m))φ(wx− γ) dxw2 fW (w) dw. (7)

Thus, for each (b, s) ∈ F(d), R1(b, s; γ) is a continuous function of γ.

Also define R2(b, s; γ) = P
(
θ /∈ J(b, s)

)
− α. We make the following definitions,

also used by Kabaila & Giri (2009). Define ρ = v12/
√
v11v22 and Ψ(x, y;µ, v) =

P (x ≤ Z ≤ y), for Z ∼ N(µ, v). Now define the functions

k†(h, w, γ, ρ) = Ψ
(
− t(m)w, t(m)w; ρ(h− γ), 1− ρ2

)

k(h, w, γ, ρ) = Ψ
(
b(h/w)w − s(|h|/w)w, b(h/w)w+ s(|h|/w)w; ρ(h− γ), 1− ρ2

)
.

It follows from (6) of Kabaila & Giri (2009), that

R2(b, s; γ) = −
∫ ∞

0

∫ d

−d

(
k(wx,w, γ, ρ)− k†(wx,w, γ, ρ)

)
φ(wx− γ) dxw fW (w) dw.

(8)

Thus, for each (b, s) ∈ F(d), R2(b, s; γ) is a continuous function of γ.
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Now E(W 2) = 1 and so

∫ ∞

0

w2 fW (w) dw = 1.

It follows from (7) that

∫ ∞

−∞

R1(b, s; γ) dγ =
2

t(m)E(W )

∫ d

0

(
s(x)− t(m)

)
dx. (9)

Thus
∫∞

−∞
R1(b, s; γ) dγ exists for all (b, s) ∈ F(d).

Since k(wx,w, γ, ρ) and k†(wx,w, γ, ρ) are probabilities,

|R2(b, s; γ)| ≤
∫ ∞

0

∫ d

−d

φ(wx− γ)dxwfW (w) dw,

so that ∫ ∞

−∞

|R2(b, s; γ)| dγ ≤ 2d

∫ ∞

0

wfW (w) dw = 2dE(W ) < ∞.

Thus
∫∞

−∞
R2(b, s; γ) dγ exists for all (b, s) ∈ F(d).

Thus, we may define

g(b, s;λ) = λ

∫ ∞

−∞

R1(b, s; γ) dγ + (1− λ)

∫ ∞

−∞

R2(b, s; γ) dγ,

for each (b, s) ∈ F(d), where 0 < λ < 1. Kempthorne (1983, 1987, 1988) presents

results on what he calls compromise decision theory. Initially, these results were

applied only to the solution of some problems of point estimation. Kabaila & Tuck

(2008) develop new results in compromise decision theory and apply these to a

problem of interval estimation. The following lemma, which will be used in the

proof of Theorem 1, is in the style of these compromise decision theory results.

Lemma 1. Suppose that c is a given vector (such that c and a are linearly indepen-

dent), t is a given number and d is a given positive number. Also suppose that λ is

given and that (b∗, s∗) minimizes g(b, s;λ) with respect to (b, s) ∈ F(d). Then there

does not exist (b, s) ∈ F(d) such that

(a) R1(b, s; γ) ≤ R1(b
∗, s∗; γ) for all γ.

(b) R2(b, s; γ) ≤ R2(b
∗, s∗; γ) for all γ.

(c) Strict inequality holds in either (a) or (b) for at least one γ.
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Proof. Suppose that c is a given vector (such that c and a are linearly independent),

t is a given number and d is a given positive number. The proof is by contradiction.

Suppose that there exist (b, s) ∈ F(d) such that (a), (b) and (c) hold. Now,

g(b∗, s∗;λ)− g(b, s;λ) = λ

∫ ∞

−∞

(
R1(b

∗, s∗; γ)− R1(b, s; γ)
)
dγ

+ (1− λ)

∫ ∞

−∞

(
R2(b

∗, s∗; γ)− R2(b, s; γ)
)
dγ

By hypothesis, one of the following 2 cases holds.

Case 1 (a) and (b) hold and R1(b
∗, s∗; γ)− R1(b, s; γ) > 0 for at least one γ. Since

R1(b
∗, s∗; γ)−R1(b, s; γ) is a continuous function of γ,

∫ ∞

−∞

(
R1(b

∗, s∗; γ)− R1(b, s; γ)
)
dγ > 0.

Thus g(b∗, s∗;λ) > g(b, s;λ) and we have established a contradiction.

Case 2 (a) and (b) hold and R2(b
∗, s∗; γ)− R2(b, s; γ) > 0 for at least one γ. Since

R2(b
∗, s∗; γ)−R2(b, s; γ) is a continuous function of γ,

∫ ∞

−∞

(
R2(b

∗, s∗; γ)− R2(b, s; γ)
)
dγ > 0.

Thus g(b∗, s∗;λ) > g(b, s;λ) and we have established a contradiction.

Lemma 1 follows from the fact that this argument holds for every given vector c

(such that c and a are linearly independent), every given number t and every given

positive number d.

We will first find the (b∗, s∗) that minimizes g(b, s;λ) with respect to (b, s) ∈
F(d), for given λ. We will then choose λ such that J(b∗, s∗) = I, the usual 1 − α

confidence interval for θ. Theorem 1 is then a consequence of Lemma 1.

By changing the variable of integration in the inner integral in (8), it can be

shown that R2(b, s; γ) is equal to

−
∫ ∞

0

∫ d

0

((
k(wx,w, γ, ρ)− k†(wx,w, γ, ρ)

)
φ(wx− γ)+

(
k(−wx,w, γ, ρ)− k†(−wx,w, γ, ρ)

)
φ(wx+ γ)

)
dxw fW (w) dw

8



Using this expression and the restriction that b is an odd function, we find that
∫∞

−∞
R2(b, s; γ) dγ is equal to

−
∫ d

0

∫ ∞

0

∫ ∞

−∞

(
Ψ
(
b(x)w − s(x)w, b(x)w + s(x)w; ρy, 1− ρ2

)

−Ψ
(
− t(m)w, t(m)w; ρy, 1− ρ2

)

+Ψ
(
− b(x)w − s(x)w,−b(x)w + s(x)w;−ρy, 1− ρ2

)

−Ψ
(
− t(m)w, t(m)w;−ρy, 1− ρ2

))
φ(y) dy w fW (w) dw dx.

Hence, to within an additive constant that does not depend on (b, s),
∫∞

−∞
R2(b, s; γ) dγ

is equal to

−
∫ d

0

∫ ∞

0

∫ ∞

−∞

(
Ψ
(
b(x)w − s(x)w, b(x)w + s(x)w; ρy, 1− ρ2

)

+Ψ
(
− b(x)w − s(x)w,−b(x)w + s(x)w;−ρy, 1− ρ2

))
φ(y) dy w fW (w) dw dx.

Thus, to within an additive constant that does not depend on (b, s),

g(b, s;λ) =

∫ d

0

q(b, s; x) dx,

where q(b, s; x) is equal to

2λ

t(m)E(W )
s(x)

− (1− λ)

∫ ∞

0

∫ ∞

−∞

(
Ψ(b(x)w − s(x)w, b(x)w + s(x)w; ρy, 1− ρ2)

+ Ψ(−b(x)w − s(x)w,−b(x)w + s(x)w;−ρy, 1− ρ2)
)
φ(y) dy w fW (w) dw.

Note that x enters into the expression for q(b, s; x) only through b(x) and s(x). To

minimize g(b, s;λ) with respect to (b, s) ∈ F(d), it is therefore sufficient to minimize

q(b, s; x) with respect to (b(x), s(x)) for each x ∈ [0, d]. The situation here is similar

to the computation of Bayes rules, see e.g. Casella & Berger (2002, pp. 352–353).

Therefore, to minimize g(b, s;λ) with respect to (b, s) ∈ F(d), we simply minimize

q̃(b, s) =
2λ

t(m)E(W )
s

− (1− λ)

∫ ∞

0

∫ ∞

−∞

(
Ψ(bw − sw, bw + sw; ρy, 1− ρ2)

+ Ψ(−bw − sw,−bw + sw;−ρy, 1− ρ2)
)
φ(y) dyw fW (w) dw

with respect to (b, s) ∈ R × (0,∞), to obtain (b′, s′) and then set b(x) = b′ and

s(x) = s′ for all x ∈ [0, d].
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Let the random variables A and B have the following distribution

[
A
B

]
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
.

Note that the distribution of A, conditional on B = y, is N(ρy, 1− ρ2). Thus

Ψ(bw − sw, bw + sw; ρy, 1− ρ2) = P
(
bw − sw ≤ A ≤ bw + sw

∣∣B = y
)

Hence

∫ ∞

0

∫ ∞

−∞

Ψ(bw − sw, bw + sw; ρy, 1− ρ2)φ(y) dyw fW (w) dw

=

∫ ∞

0

P (bw − sw ≤ A ≤ bw + sw)w fW (w) dw. (10)

Let Φ denote the N(0, 1) cumulative distribution function. For every fixed w > 0

and s > 0,

P (bw − sw ≤ A ≤ bw + sw) = Φ(bw + sw)− Φ(bw − sw)

is maximized by setting b = 0. Thus, for each fixed s > 0, (10) is maximized with

respect to b ∈ R by setting b = 0.

Now let the random variables Ã and B̃ have the following distribution

[
Ã

B̃

]
∼ N

([
0
0

]
,

[
1 − ρ
−ρ 1

])
.

Note that the distribution of Ã, conditional on B̃ = y, is N(−ρy, 1− ρ2). Thus

Ψ(−bw − sw,−bw + sw;−ρy, 1− ρ2) = P
(
− bw − sw ≤ Ã ≤ −bw + sw

∣∣ B̃ = y
)

Hence

∫ ∞

0

∫ ∞

−∞

Ψ(−bw − sw,−bw + sw;−ρy, 1− ρ2)φ(y) dyw fW (w) dw

=

∫ ∞

0

P (−bw − sw ≤ Ã ≤ −bw + sw)w fW (w) dw. (11)

For every fixed w > 0 and s > 0,

P
(
− bw − sw ≤ Ã ≤ −bw + sw

)
= Φ(−bw + sw)− Φ(−bw − sw)

is maximized by setting b = 0. Thus, for each fixed s > 0, (11) is maximized with

respect to b ∈ R by setting b = 0.
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Therefore, q̃(b, s) is, for each fixed s > 0, minimized with respect to b by setting

b = 0. Thus b′ = 0 and so b∗(x) = 0 for all x ∈ R. Hence, to find s′ we need to

minimize
λ

t(m)E(W )
s− (1− λ)

∫ ∞

0

(
2Φ(sw)− 1

)
wfW (w) dw

with respect to s > 0. Therefore, to find s′ we may minimize

r(s) = ℓ(λ) s− 2

∫ ∞

0

Φ(sw)wfW (w) dw

with respect to s > 0, where

ℓ(λ) =
λ

(1− λ)t(m)E(W )
.

Note that ℓ(λ) is an increasing function of λ, such that ℓ(λ) ↓ 0 as λ ↓ 0 and

ℓ(λ) ↑ ∞ as λ ↑ 1. Choose λ = λ∗, where

ℓ(λ∗) = 2

∫ ∞

0

φ
(
t(m)w

)
w2 fW (w) dw.

Note that 0 < ℓ(λ∗) <
√
2/π. Now

dr(s)

ds
= ℓ(λ∗)− 2

∫ ∞

0

φ(sw)w2fW (w) dw.

Since
∫∞

0
φ(sw)w2fW (w) dw is a decreasing function of s > 0, dr(s)/ds is an in-

creasing function of s > 0. Also, for s = 0,
∫∞

0
φ(sw)w2fW (w) dw = 1/

√
2π. Thus,

to minimize r(s) with respect to s > 0, we need to solve

ℓ(λ∗)− 2

∫ ∞

0

φ(sw)w2 fW (w) dw = 0

for s > 0. Obviously, this solution in s = t(m). Thus s∗(x) = t(m) for all x ≥ 0.

In other words, J(b∗, s∗) = I. By Lemma 1, there does not exist (b, s) ∈ F(d) such

that

(a) Eβ,σ2

(
length of J(b, s)

)
≤ Eβ,σ2

(
length of I

)
for all (β, σ2). (12)

(b) Pβ,σ2

(
θ ∈ J(b, s)

)
≥ Pβ,σ2

(
θ ∈ I

)
for all (β, σ2). (13)

(c) Strict inequality holds in either (12) or (13) for at least one (β, σ2).

Theorem 1 follows from the fact that this argument holds for every given vector c

(such that c and a are linearly independent), every given number t and every given

positive number d.
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Appendix B: Proof of Corollary 1

The proof of Corollary 1 is by contradiction. Suppose that c is a given vector

(such that c and a are linearly independent), t is a given number and d is a given

positive number. Also suppose that there exists (b, s) ∈ F(d) such that both b and

s are continuous and (a′), (b′) and (c′), in the statement of Corollary 1, hold. Now

(a′) implies that

Eβ,σ2

(
length of J(b, s)

)
≤ Eβ,σ2

(
length of I

)
for all (β, σ2),

so that (a) holds. By hypothesis, one of the following two cases holds.

Case 1
(
length of J(b, s)

)
<

(
length of I

)
for at least one (β̂, σ̂2). Now

(
length of J(b, s)

)
= 2

√
v11σ̂ s

( |τ̂ |
σ̂
√
v22

)
,

which is a continuous function of (β̂, σ̂2). Hence
(
length of I

)
− (length of J(b, s)

)

is a continuous function of (β̂, σ̂2). Thus

Eβ,σ2

(
length of J(b, s)

)
< Eβ,σ2

(
length of I

)
for at least one (β, σ2).

Thus there exists (b, s) ∈ F(d) such that (a), (b) and (c), in the statement of

Theorem 1, hold. We have established a contradiction.

Case 2 There is strict inequality in (b′) for at least one (β, σ2). Thus there exists

(b, s) ∈ F(d) such that (a), (b) and (c), in the statement of Theorem 1, hold. We

have established a contradiction.

Corollary 1 follows from the fact that this argument holds for every given vector c

(such that c and a are linearly independent), every given number t and every given

positive number d.
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