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SCALABLE BAYESIAN REDUCED-ORDER MODELS FOR
SIMULATING HIGH-DIMENSIONAL MULTISCALE DYNAMICAL

SYSTEMS ∗

PHAEDON-STELIOS KOUTSOURELAKIS † AND ELIAS BILIONIS ‡

Abstract. While existing mathematical descriptions can accurately account for phenomena at
microscopic scales (e.g. molecular dynamics), these are often high-dimensional, stochastic and their
applicability over macroscopic time scales of physical interest is computationally infeasible or imprac-
tical. In complex systems, with limited physical insight on the coherent behavior of their constituents,
the only available information is data obtained from simulations of the trajectories of huge numbers
of degrees of freedom over microscopic time scales. This paper discusses a Bayesian approach to
deriving probabilistic coarse-grained models that simultaneously address the problems of identifying
appropriate reduced coordinates and the effective dynamics in this lower-dimensional representa-
tion. At the core of the models proposed lie simple, low-dimensional dynamical systems which serve
as the building blocks of the global model. These approximate the latent, generating sources and
parameterize the reduced-order dynamics. We discuss parallelizable, online inference and learning
algorithms that employ Sequential Monte Carlo samplers and scale linearly with the dimensionality
of the observed dynamics. We propose a Bayesian adaptive time-integration scheme that utilizes
probabilistic predictive estimates and enables rigorous concurrent s imulation over macroscopic time
scales. The data-driven perspective advocated assimilates computational and experimental data and
thus can materialize data-model fusion. It can deal with applications that lack a mathematical de-
scription and where only observational data is available. Furthermore, it makes non-intrusive use of
existing computational models.
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1. Introduction. The present paper is concerned with the development of prob-
abilistic coarse-grained models for high-dimensional dynamical systems with a view of
enabling multiscale simulation. We describe a unified treatment of complex problems
described by large systems of deterministic or stochastic ODEs and/or large number
of data streams. Such systems arise frequently in modern multi-physics applications
either due to the discrete nature of the system (e.g. molecular dynamics) or due to
discretization of spatiotemporal models (e.g. PDEs):

dyt

dt
= f(yt), y ∈ Y (1.1)

where dim(Y) >> 1 (e.g. R
d, d >> 1). Stochastic versions are also frequently

encountered:

dyt

dt
= f(yt;ut) (1.2)

where ut is a driving stochastic process (i.e. Wiener process). Uncertainties could
also appear in the initial conditions that accompany the aforementioned systems of
equations.
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Even though the numerical solution of (stochastic) ODEs is a well-studied sub-
ject and pertinent computational libraries are quite mature, traditional schemes are
impractical or infeasible for systems which are high-dimensional and exhibit a large
disparity in scales. This is because most numerical integrators must use time-steps
of the order of the fastest scales which precludes solutions over long time ranges that
are of interest for physical and engineering purposes. In the context of atomistic
simulations, practically relevant time scales exceed typical integration steps of ∼ 1fs
by several orders of magnitude [3]. Furthermore, when numerical solutions of tran-
sient PDEs are sought, resolution and accuracy requirements give rise to systems with
more than 109 degrees of freedom [102, 22, 128, 73] where the integration time steps
are slaved by fast reaction rates or high oscillation frequencies. This impedes their
solution and frequently constitutes computationally infeasible other important tasks
such as stability analysis, sensitivity, design and control.

Multiscale dynamical systems exist independently of the availability of mathe-
matical models. Large numbers of time series appear in financial applications, meteo-
rology, remote sensing where the phenomena of interest unfold also over a large range
of time scales [139, 80]. A wealth of time series data is also available in experimental
physics and engineering which by themselves or in combination with mathematical
models can be useful in analyzing underlying phenomena [106, 88, 108] by deriving
reduced, predictive descriptions.

Quite frequently the time evolution of all the observables is irrelevant for physical
and practical purposes and the analysis is focused on a reduced set of variables or
reaction coordinates ŷt = P(yt) obtained by an appropriate mapping P : Y → Ŷ.
The goal is then to identify a closed, deterministic or stochastic system of equations
with respect to ŷt, e.g. :

dŷt

dt
= f̂ (ŷt), ŷt ∈ Ŷ (1.3)

In the context of equilibrium theormodynamics where enmsemble averages with re-
spect to the invariant distribution of ŷt are of interest, coarse-graining amounts to
free-energy computations [25]. In the nonequilibrium case and when an invariant
distribution exists, a general approach for deriving effective dynamics is based on
Mori-Zwanzig projections [146, 68, 27, 28, 29, 34]. Other powerful numerical ap-
proaches to identify the dynamical behavior with respect to the reduced coordinates
include transition path sampling, the transfer operator approach, the nudged elas-
tic band, the string method, Perron cluster analysis and spectral decompositions
[39, 42, 43, 49, 40, 105]. Marked efforts in chemical kinetics have led to an array of
computational tools such as computational singular perturbation [98, 99], the intrinsic
low-dimensional manifold approach [104, 144] and others [120, 113, 90]. Notable suc-
cesses in overcoming the timescale dilemma have also been achieved in the context of
MD simulations [97, 134, 135, 132] (or Hamiltonian systems in general [112, 100, 127]).

In several problems, physical or mathematical arguments have led analysts to
identify a few, salient features and their inter-dependencies that macroscopically de-
scribe the behavior of very complex systems consisting of a huge number of indi-
viduals/agents/components/degrees of freedom. These variables parameterize a low-
dimensional, attracting, invariant, “slow” manifold characterizing the long-term pro-
cess dynamics [71]. Hence the apparent complexity exhibited in the high-dimensionality
and the multiscale character of the original model is a pretext of a much simpler, latent
structure that, if revealed, could make the aforementioned analysis tasks much more
tractable. The emergence of macroscopic, coherent behavior has been the foundation
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of coarse-grained dynamic models that have been successful in a wide range of ap-
plications. The coarse-grained parameterization and associated model depend on the
analysis objectives and particularly on the time scale one wishes to make predictions.
Modern approaches with general applicability such as the Equation-free method [92]
or Heterogeneous Multiscale Method (HeMM,[47]) are also based on the availability
of reduced coordinates and in the case of HeMM of a macroscopic model which is
informed and used in conjunction with the microscale model.

Largely independently of the developments in the fields of computational physics
and engineering, the problem of deriving, predictive reduced-order models for a large
number of time series that potentially exhibit multiple scales has also been addressed
in statistics and machine learning communities [140, 53] with applications in network
analysis [33], environmetrics [141], sensor network monitoring [142, 117], moving ob-
ject tracking [4], financial data analysis [5], computer model emulation [103]. Signifi-
cant advances have been achieved in modeling [131], forecasting [143] and developing
online, scalable algorithms [51, 126, 91, 94, 89, 145]. that are frequently based on
the discovery of hidden variables that provide insight to the intrinsic structure of
streaming data [54, 35, 110, 109, 85].

The present paper proposes a data-driven alternative that is able to automat-
ically coarse-grain high-dimensional systems without the need of preprocessing and
availability of physical insight. The data is most commonly obtained by simulations
of the most reliable, finest-scale (microscopic) model available. This is used to infer a
lower-dimensional description that captures the dynamic evolution of the system at a
coarser scale (i.e. a macroscopic model). The majority of available techniques address
separately the problems of identifying appropriate reduced coordinates and the effec-
tive dynamics in this lower-dimensional representation. It is easily understood that
the solution of one affects the other. We propose a general framework where these
two problems are simultaneously solved and coarse-grained models are built from the
ground up. We propose procedures that concurrently infer the macroscopic dynamics
and their mapping the high-dimensional, fine-scale description. As a result no errors
or ambiguity are introduced when the fine-scale model needs to be reinitialized in
order to obtain additional simulation data. To that end, we advocate a largely unex-
plored in computational physics perspective based on the Bayesian paradigm which
provides a rigorous foundation for learning from data. It is capable of quantifying
inferrential uncertainties and, more importantly, uncertainty due to information loss
in the coarse-graining process.

We present a Bayesian state-space model where the reduced, coarse-grained dy-
namics are parametrized by tractable, low-dimensional dynamical models. These can
be viewed as experts offering opinions on the evolution of the high-dimensional ob-
servables. Each of these modules could represent a single latent regime and would
therefore be insufficient by itself to explain the whole system. As is often the case
with real experts, their opinions are valid under very specific regimes. We propose
therefore a framework for dynamically synthesizing such models in order to obtain
an accurate global representation that retains its interpretability and computational
tractability.

An important contribution of the paper, particularly in view of enabling simula-
tions of multiscale systems, is online inference algorithms based on Sequential Monte
Carlo that scale linearly with the dimensionality of the observables d (Equation (1.1)).
These allow the recursive assimilation of data and re-calibration of the coarse-grained
dynamics. The Bayesian framework adopted provides probabilistic predictive esti-
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mates that can be employed in the context of adaptive time-integration. Rather than
determining integration time steps based on traditional accuracy and stability met-
rics, we propose using measures of the predictive uncertainty in order to decide how
long into the future the coarse-grained model can be used. When the uncertainty
associated with the predicitve estimates exceeds the analyst’s tolerance, the fine-scale
dynamics can be consistently re-initialized in order to obtain additional data that
sequentially update the coarse-grained model.

In agreement with some recently proposed methodologies [92, 93], the data-driven
strategy can seamlessly interact with existing numerical integrators that are well-
understood and reliably implemented in several legacy codes. In addition, it is suitable
for problems where observational/experimental data must be fused with mathematical
descriptions in a rigorous fashion and lead to improved analysis and prediction tools.

The structure of the rest of the paper is as follows. In Section 2 we describe the
proposed framework in relation with the state-of-the-art in dimensionality reduction.
We provide details of the probabilistic model proposed in the context of Bayesian
State-Space models in Section 2.2. Section 2.3 is devoted to inference and learning
tasks which involve a locally-optimal Sequential Monte Carlo sampler and an online
Expectation-Maximization scheme. The utilization of the coarse-grained dynamics in
the context of a Bayesian (adaptive) time-integration scheme is discussed in 2.4 and
numerical examples are provided in Section 3.

2. Proposed Approach.

2.1. From static-linear to dynamic-nonlinear dimensionality reduction.
The inherent assumption of all multiscale analysis methods is the existence of a lower-
dimensional parameterization of the original system with respect to which the dy-
namical evolution is more tractable at the scales of interest. In some cases these slow
variables can be identified a priori and the problem reduces to finding the necessary
closures that will give rise to a consistent dynamical model. In general however one
must identify the reduced space Ŷ as well as the dynamics within it.

A prominent role in these efforts has been held by Principal Component Analysis
(PCA) -based methods. With small differences and depending on the community
other terms such as Proper Orthogonal Decomposition (POD) or Karhunen-Loève
expansion (KL), Empirical Orthogonal Functions (EOF) have also been used. PCA
finds its roots in the early papers by Pearson [111] and Hotelling [84] and was originally
developed as a static dimensionality reduction technique. It is based on projections
on a reduced basis identified by the leading eigenvectors of the covariance matrix
C. In the dynamic case and in the absence of closed form expressions for the actual
covariance matrix, samples of the process yt ∈ R

d at N distinct time instants ti are
used in order to obtain an estimate of the covariance matrix:

C ≈ CN =
1

N − 1

N∑

i=1

(yti − µ)(yti − µ)T (2.1)

where µ = 1
N

∑N
i=1 yti is the empirical mean. If there is a spectral gap after the

first k eigenvalues and V K is the d × K matrix whose columns are the K leading
normalized eigenvectors of CN then the reduced-order model is defined with respect
to ŷt = V Kyt. The reduced dynamics can be identified by a Galerkin projection (or
a Petrov-Galerkin projection) of the original ODEs in Equation (1.1):

dŷt

dt
= V T

Kf(V T
K ŷt) (2.2)
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Fig. 2.1. The phase space is assumed two-dimensional for illustration purposes i.e. yt =

(y
(1)
t , y

(2)
t ). Each black circle corresponds to a realization yti

. P : Y → Ŷ is the projection operator

from the original high-dimensional space Y to the reduced-space Ŷ.

Hence the reduced space Ŷ is approximated by a hyperplane in Y and the projection
mapping P linear (Figure 2.1(a)). While it can be readily shown that the projection
adopted is optimal in the mean square sense for stationary Gaussian processes, it is
generally not so in cases where non-Gaussian processes or other distortion metrics are
examined. The application of PCA-based techniques, to high-dimensional, multiscale
dynamical systems poses several modeling limitations. Firstly, the reduced space
Ŷ might not be sufficiently approximated by a hyperplane of dimension K << d.
Even though this assumption might hold locally, it is unlikely that this will be a
good global approximation. Alternatively, the dynamics of the original process might
be adequately approximated on K-dimensional hyperplane but this hyperplane might
change in time. Secondly, despite the fact that the projection on the subspace spanned
by the leading eigenvectors captures most of the variance of the original process, in
cases where this variability is due to the fast modes, there is no guarantee that ŷt will
account for the long-range, slow dynamics which is of primary interest in multiscale
systems. Thirdly, the basic assumption in the estimation of the covariance matrix, is
that the samples yti are drawn from the same distribution, i.e. that the process yt

is stationary. A lot of multiscale problems however involve non-stationary dynamics
(e.g. non-equilibrium MD [78, 30]). Hence even if a stationary reduced-order process
provides a good, local, approximation to yt, it might need to be updated in time.
Apart from the aforementioned modeling issues, significant computational difficulties
are encountered for high-dimensional systems (d = dim(Y) >> 1) and large datasets
(N >> 1) as the K leading eigenvectors of large matrices (of dimension proportional
to d or N) need to be evaluated. This effort must be repeated, if more samples become
available (i.e. N increases) and an update of the reduced-order model is desirable.
Recent efforts have concentrated on developing online versions [137] that circumvent
this problem.

The obvious extension to the linear projections of PCA is nonlinear dimensionality
reduction techniques. These have been the subject of intense research in statistics and
machine learning in recent years ([121, 115, 130, 44, 123, 10, 9]) and fairly recently
have found their way to computational physics and multiscale dynamical systems (e.g.
[32, 96, 107, 59]). They are generally based on calculating eigenvectors of an affinity
matrix of a weighted graph. While they circumvent the limiting, linearity assumption
of standard PCA, they still assume that the underlying process is stationary (Figure
2.1(b)). Even though the system’s dynamics might be appropriately tracked on a
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lower-dimensional subspace for a certain time period, this might not be invariant
across the whole time range of interest. The identification of the dynamics on the
reduced-space Ŷ is not as straightforward as in standard PCA and in most cases,
a deterministic or stochastic model is fit directly to the projected data points [31,
50, 58]. More importantly since the inverse mapping P−1 from the manifold Ŷ to
Y is not available analytically, approximations have to be made in order to find pre-
images in the data-space [11, 50]. From a computational point of view, the cost of
identifying the projection mapping is comparable to standard PCA as an eigenvalue
problem on a N × N matrix has to be solved. Updating those eigenvalues and the
nonlinear projection operator in cases where additional data become available implies
a significant computational overhead although recent efforts [122] attempt to overcome
this limitation.

A common characteristic of the aforementioned techniques is that even though
the reduced coordinates are learned from a finite amount of simulation data, there is
no quantification of the uncertainty associated with these inferences. This is a critical
component not only in cases where multiple sets of reduced parameters and coarse-
grained models are consistent with the data, but also for assessing errors associated
with the analysis and prediction estimates. It is one of the main motivations for
adopting a probabilistic approach in this project. Statistical models can naturally
deal with stochastic systems that frequently arise in a lot of applications. Most
importantly perhaps, even in cases where the fine-scale model is deterministic (e.g.
Equation (1.1)), a stochastic reduced model provides a better approximation that can
simultaneously quantify the uncertainty arising from the information loss that takes
place during the coarse-graining process [52, 95].

A more general perspective is offered by latent variable models where the observed
data (experimental or computationally generated) is augmented by a set of hidden
variables [13]. In the case of high-dimensional, multiscale dynamical systems, the la-
tent model corresponds to a reduced-order process that evolves at scales of practical
relevance. Complex distributions over the observables can be expressed in terms of
simpler and tractable joint distributions over the expanded variable space. Further-
more, structural characteristics of the original, high-dimensional process yt can be
revealed by interpreting the latent variables as generators of the observables.

In that respect, a general setting is offered by Hidden Markov Models (HMM,
[64]) or more generally State-Space Models (SSM) [18, 65, 80]. These assume the
existence of an unobserved (latent) process ŷt ∈ R

K described by a (stochastic) ODE:

dŷt

dt
= f̂ (ŷt;wt) (transition equation) (2.3)

which gives rise to the observables yt ∈ R
d as:

yt = h(ŷt,vt) (emission equation) (2.4)

where wt and vt are unknown stochastic processes (to be inferred from data) and
f̂ : RK → R

K , h : RK → R
d are unknown measurable functions. The transition

equation defines a prior distribution on the coarse-grained dynamics whereas the
emission equation, the mapping that connects the reduced-order representation with
the observable dynamics. The object of Bayesian inference is to learn the unobserved
(unknown) model parameters from the observed data. Hence the coarse-grainedmodel
and its relation to the observable dynamics are inferred from the data.
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The form of Equations (2.3) and (2.4) affords general representations. Linear and
nonlinear PCA models arise as special cases by appropriate selection of the functions
and random processes appearing in the transition and emission equations. Note for
example that the transition equation (Equation (2.3)) for ŷt in the case of the PCA-
based models reviewed earlier is given by Equation (2.2) and the emission equation
(Equation (2.4)) that relates latent and observed processes is linear, deterministic and
specified by the matrix of K leading eigenvectors V K .

An extension to HMM is offerered by switching-state models [74, 24, 72, 124]
which can be thought of as dynamical mixture models [23, 66]. The latent dynamics
consist of a discrete process that takes M values, each corresponding to a distinct
dynamical behavior. This can be represented by an M -dimensional vector zt whose
entries are zero except for a single one m which is equal to one and represents the
active mode/cluster. Most commonly, the time-evolution of zt is modeled by a first-
order stationary Markov process:

zt+1 = Tzt (2.5)

where T = [Tm,n] is the transition matrix and Tm,n = Pr[zm,t+1 = 1 | zn,t = 1]. In

addition to zt, M processes x
(m)
t ∈ R

K , m = 1, . . . ,M parameterize the reduced-
order dynamics (see also discussion in section 2.2). Each is activated when zm,t = 1.
In the linear version (Switching Linear Dynamic System, SLDS 1) and conditioned

on zm,t = 1, the observables yt arise by a projection from the active x
(m)
t as follows:

yt = P (m)x
(m)
t + vt, vt ∼ N(0,Σ) (i.i.d) (2.6)

where P (m) are d ×K matrices (K << d) and Σ is a positive definite d× d matrix.
Such models provide a natural, physical interpretation according to which the behavior
of the original process yt is segmented into M regimes or clusters, the dynamics of
which can be low-dimensional and tractable. From a modeling point of view, the idea
of utilizing a mixture of simple models provides great flexibility [16, 14, 125, 70] as it
can be theorized that given a large enough number of such components, any type of
dynamics can be sufficiently approximated. In practice however, a large number might
be needed, resulting in complex models containing a large number of parameters.

Such mixture models have gained prominence in recent years in the machine
learning community. In [15] for example, a dynamic mixture model was used to
analyze a huge number of time series, each corresponding to a word in the English
vocabulary as they appear in papers in the journal Science. The latent discrete
variables represented topics and each topic implied a distribution on the space of
words. As a result, not only a predictive summary (dimensionality reduction) of the
high-dimensional observables was achieved but also an insightful deconstruction of the
original time series was made possible. In fact current research in statistics has focused
on infinite mixture models where the number of components can be automatically
inferred from the data ([129, 21, 12, 56, 57]). In the context of computer simulations
of high-dimensional systems, such models have been employed by [55, 82, 80, 79, 81]
where maximum likelihood techniques were used to learn the model parameters.

In the next sections we present a novel model that generalizes SLDS. Unlike
mixture models which assume that yt is the result of a single reduced-order pro-
cess at a time, we propose a partial-membership model (referred to henceforth as

1sometimes referred to as jump-linear or conditional Gaussian models
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Partial-Membership Linear Dynamic System, PMLDS) which allows observables to
have fractional memberships in multiple clusters. The latent, building blocks are ex-
perts [86, 87, 77, 75] which, on their own, provide an incomplete, biased prediction
but when their “opinions” are appropriately synthesized, they can give rise to a highly
accurate aggregate model.

From a modeling perspective such an approach has several appealing properties.
The integrated coarse-grained model can be interpretable and low-dimensional even
for large, multiscale systems as its expressive ability does not hinge upon the complex-
ity of the individual components but rather is a result of its factorial character ([67]).
Intricate dynamical behavior can be captured and decomposed in terms of simple
building blocks. It is highly-suited for problems that lack scale separation and where
the evolution of the system is the result of phenomena at a cascade of scales. Each
of these scales can be described by a latent process and the resulting coarse-grained
model will account not only for the slow dynamics but also quantify the predictive
uncertainty due to the condensed, fast-varying features.

From an algorithmic point of view we present parallelizable, online inference/learning
schemes, which can recursively update the estimates produced as more data become
available i.e. if the time horizon t of the observables y1:t increases. Unlike some
statistical applications where long time series are readily available, in the majority
of problems involving computational simulations of high-dimensional, multiscale sys-
tems, data is expensive (at least over large time horizons) as they imply calls to the
microscopic solvers. The algorithms presented are capable of producing predictive
estimates “on the fly” and if additional data is incorporated, they can readily update
the model parameters. In addition, such schemes can take advantage of the natural
tempering effect of introducing the data sequentially which can further facilitate the
solution of the global estimation problem. More importantly perhaps, the updating
schemes discussed have linear complexity with respect to the dimensionality d of the
original process yt.

2.2. Partial-Membership Linear Dynamic System. We present a hierar-
chical Bayesian framework which promotes sparsity, interpretability and efficiency.
The framework described can integrate heterogeneous building blocks and allows for
physical insight to be introduced on a case-by-case basis. When dealing with high-
dimensional molecular ensembles for example, each of these building blocks might
be an (overdamped) Langevin equation with a harmonic potential [17, 80, 83]. It is
obvious that such a simplified model would perhaps provide a good approximation
under specific, limiting conditions (e.g. at a persistent metastable state) but definitely
not across the whole time range of interest. Due to its simple parameterization and
computational tractability, it can easily be trained to represent one of the “experts”
in the integrated reduced-model. It is known that these models work well under spe-
cific regimes but none of them gives an accurate global description. In the framework
proposed, they can however be utilized in a way that combines their strengths, but
also probabilistically quantifies their limitations.

A transient, nonlinear PDE can be resolved into several linear PDEs whose simpler
form and parameterization makes them computational tractable over macroscopic
time scales and permits a coarser spatial discretization. Their combination with
time-varying characteristics can give rise to an accurate global approximation. Their
simplicity and limited range of applicability would preclude their individual use. In
the framework proposed however, these simple models would only serve as good local
approximants and their inaccurate predictions would be synthesized into an accurate,
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(M = 2) one-dimensional (K = 1) Ornstein-

Uhlenbeck processes were used dx
(m)
t =

−b(m)(x
(m)
t −q

(m)
x )dt+(Σ(m))1/2dW t with

(b(1), q
(1)
x ,Σ(1)) = (1., 3., 2.) (fast) and

(b(2), q
(2)
x ,Σ(2)) = (0.01,−3., 0.02) (slow)

global model.

2.2.1. Representations with simple building blocks. We describe a proba-
bilistic, dynamic, continuous-time, generative model which relates a sequence the ob-
servations yt ∈ R

d at discrete time instants t = 1, 2, . . . τ with a number of hidden pro-

cesses. The proposed model consists ofM hidden processes x
(m)
t ∈ R

K , m = 1, . . . ,M
(K << d) which are assumed to evolve independently of each other and are described
by a set of (stochastic) ODEs:

dx
(m)
t

dt
= gm(x

(m)
t ; θ(m)

x ), m = 1, . . . ,M (2.7)

This equation essentially implies a prior distribution on the space of hidden pro-
cesses parameterized by a set of (unknown a priori) parameters θ(m)

x . It should be
noted that while the proposed framework allows for any type of process in Equation
(2.7), it is desirable that these are simple, in the sense that the parameters θ(m)

x are
low-dimensional and can be learned swiftly and efficiently. We list some desirable
properties of the prior models [125]:

• Stationarity: Unless specific prior information is available, it would be unrea-
sonable to impose a time bias on the evolution of any of the reduced dynamics
processes. Hence it is important that the models adopted are a priori station-
ary. Note that the posterior distributions might still exhibit non-stationarity.
• Correlation Decay: It is easily understood that for any m and t1, t2, the

correlation x
(m)
t1 and x

(m)
t2 should decay monotonically as | t2 − t1 | goes

to +∞. This precludes models that do not explicitly account for the time
evolution of the latent processes and assume that hidden states are not time-
dependent (e.g. static PCA models).
• Other: Although this is not necessary, we adopt a continuous time model in
the sense of [136] with an analytically available transition density which allows
inference to be carried out seamlessly even in cases where the observables are
obtained at non-equidistant times. As a result the proposed framework can
adapt to the granularity of the observables and also provide exact probabilistic
predictions at any time resolution.

Although more complex models can be adopted we assume here that independent,
isotropic Ornstein-Uhlenbeck (OU) processes are used to model the hidden dynam-

ics x
(m)
t . The OU processes used comply with the aforementioned desiderata. In

particular, the following parameterization is employed:

dx
(m)
t = −b(m)

x (xt − q(m)
x )dt+ (S(m)

x )1/2dW
(m)
t (2.8)

where W
(m)
t are Wiener processes (independent for each m), b

(m)
x > 0, q

(m)
x ∈ R

K

and S(m)
x are positive definite matrices of dimension K × K. The aforementioned
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Fig. 2.3. The logistic normal distribution was used to model the weights associated with each of
the hidden processes depicted in Figure 2.2. In particular, an isotropic Ornstein-Uhlenbeck process

dzt = −bz(zt−qz)dt+Σ
1/2
z dW t with bz = 0.001, qz = [0, 0]T and Σz. Graphs depict the resulting

observable time history (left column) and its histogram (right column) arising from the unobserved
processes in Figure 2.2 and for three values of ρ. It is noted that time histories exhibit fast and slow
scales of the processes in Figure 2.2. Furthermore, by changing a single parameter (i.e. ρ) one can
obtain two, three or a single metastable state (right column - peaks of the histogram).

model has a Gaussian invariant (stationary) distribution N (q
(m)
x , 1

2b
(m)
x

S(m)
x ). The

transition density denoted by p(x
(m)
t | x

(m)
t−1) for time separation δt is also a Gaussian

N (µt,δt,Sδt) where:

µt,δt = x
(m)
t−1 − (1− e−b(m)

x δt)(x
(m)
t−1 − q

(m)
x )

Sδt =
1−e−2b

(m)
x δt

2b
(m)
x

S(m)
x

(2.9)

It is not expected that simple processes on their own will provide good approxima-
tions to the essential dynamics exhibited in the data yt. In order to combine the dy-
namics implied by the M processes in Equation (2.7), we consider an M−dimensional

process zt such that
∑M

m=1 zm,t = 1 and zm,t > 0, ∀t and define an appropriate
prior. The coefficients zm,t express the weight or fractional membership to each pro-

cess/expert x
(m)
t at time t [76]. We use the logistic-normal model [15] as a prior for

zt. It is based on a Gaussian process, ẑt whose dynamics are also prescribed by an
isotropic OU process:

dẑt = −bz(ẑt − qz)dt+ S1/2
z dW t (2.10)

and the transformation:

zm,t =
eẑm,t + 1/M

∑M
m=1 e

ẑm,t + 1
, ∀m, t (2.11)
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The invariant and transition densities of ẑt are obviously identical to the ones for x
(m)
t

with appropriate substitution of the parameters. The hidden processes {x
(m)
t }Mm=1

and associated weights zt give rise to the observables yt as follows (compare with
Equation (2.6)):

yt =

M∑

m=1

zm,t P
(m)x

(m)
t + vt, vt ∼ N(0,Σ) (i.i.d) (2.12)

where P (m) are d ×K matrices (K << d) and Σ is a positive definite d× d matrix.
The aforementioned equation implies a series of linear projections on hyperplanes of
dimension K. The dynamics along those hyperplanes are dictated by a priori inde-

pendent process x
(m)
t . It is noted however the reduced dynamics are simultaneously

described by all the hidden processes (Figure 2.4). This is in contrast to PCA meth-
ods where a single such projection is considered and mixture PCA models where even
though several hidden processes are used, at each time instant it is assumed that a
single one is active. Due to the factorial nature of the proposed model, multiple dy-
namic regimes can be captured by appropriately combining a few latent states. While
mixture models (Figure 2.1(c)) provide a flexible framework, the number of hidden
states might be impractically large. As it is pointed out in [67], in order to encode
for example a time sequence with 30bits of information one would need k = 230 dis-
tinct states. It is noted that even though linear projections are implied by Equation
(2.12) and Gaussian noise vt is used, the resulting model for yt is nonlinear and non-

Gaussian as it involves the factorial combination of M processes {x
(m)
t }Mm=1 with zt

which are a posteriori non-Gaussian.

The parameters zm,t express the relative importance of the various reduced models
or equivalently the degree to which each data point yt is associated with each of the

M reduced dynamics x
(m)
t . It is important to note that the proposed model allows for

time varying weights zm,t and can therefore account for the possibility of switching
between different regimes of dynamics. Figure 2.3 depicts a simple example (d = 1)
which illustrates the flexibility of the proposed approach.

The unknown parameters of the coarse-grained model consist of:

• dynamic variables denoted for notational economy by Θt (i.e. {x
(m)
t }Mm=1, zt

, for t = 1, 2, . . .).

• static variables denoted by Θ (i.e. θ(m)
x = (b

(m)
x , q

(m)
x ,S(m)

x ) in Equation

(2.8), θz = (bz, qz,Sz) in Equation (2.10) and {P (m)}Mm=1,Σ in Equation
(2.12)).

2.3. Inference and learning. Inference in the probabilistic graphical model
described involves determining the probability distributions associated with the un-
observed (hidden) static Θ and dynamic parametersΘt of the model. In the Bayesian
setting adopted this is the posterior distribution of the unknown parameters of the
coarse-grained model. Given the observations (computational or experimental) of
the original, high-dimensional process y1:τ = {yt}

τ
t=1, we denote the posterior by

π(Θ,Θ1:τ ):

π(Θ,Θ1:τ ) = p(Θ,Θ1:τ | y1:τ ) =

likelihood
︷ ︸︸ ︷

p(y1:τ | Θ,Θ1:τ )

prior
︷ ︸︸ ︷

p(Θt,Θ)

p(y1:τ )
(2.13)
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(a) SLDS with two clusters
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(b) proposed Partial-Membership LDS

Fig. 2.4. Comparison of SLDS (a) with two mixture components and the proposed model
partial-membership model (b)

The normalization constant p(y1:τ ) is not of interest when sampling for Θ or Θ1:τ

but can be quite useful for model validation purposes.
A telescopic decomposition holds for the likelihood which according to Equation

(2.12) is given by:

p(y1:τ | Θ,Θ1:τ ) =

τ∏

t=1

p(yt | Θ,Θt) (2.14)

where the densities in the product are described in Equation (2.17). Equation (2.12)
defines the likelihood p(yt | Θ,Θt) which is basically the weighted product of the

likelihoods under each of the hidden processes/experts x
(m)
t :

p(yt | Θ,Θt) =
1

c(Θ,Θt)

M∏

m=1

pzm,t
m (yt | Θ,Θt) (2.15)

where the normalizing constant c(Θ,Θt) ensures that the density intergrates to one
with respect to yt. According to Equation (2.12):

pm(yt | Θ,Θt) ∝
1

| Σ |1/2
exp

{

−
1

2
(yt − P (m)x

(m)
t )TΣ−1(yt − P (m)x

(m)
t )

}

(2.16)

The likelihood can be written in a more compact form as:

p(yt | Θ,Θt) ∝
1

| Σ |1/2
exp

{

−
1

2
(yt −W tXt)

TΣ−1(yt −W tXt)

}

(2.17)

where:

XT
t

︸︷︷︸

MK×1

=
[

(x
(1)
t )T , (x

(2)
t )T , . . . (x

(M)
t )T

]T

(2.18)

and:

W t
︸︷︷︸

d×MK

=
[

z1,t P (1) z2,t P (2) . . . zM,t P (M)
]

(2.19)

The first-orderMarkovian processes adopted for the prior modeling of the dynamic
parameters Θt (Equations (2.8), (2.10), 2.9) ) imply that:

p(Θ1:τ ,Θ) = p(Θ)

τ∏

t=1

p(Θt | Θt−1,Θ) (2.20)
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where p(Θ1 | Θ0,Θ) = p(Θ1 | Θ) = ν0(Θ1 | Θ) is the prior on the initial condition
which in this work is taken to be the stationary distribution of the underlying OU
processes (see discussion in Section 2.2.1) and denoted for notational economy by
ν0(. | Θ).

The posterior encapsulates uncertainties arising from the potentially stochastic
nature of the original process yt as well as due to the fact that a finite number of
observations were used. The difficulty of the problem is that both the dynamic (Θ1:τ )
and the static parameters (Θ) are unknown. We adopt a hybrid strategy whereby
we sample from the full posterior for the dynamic parameters Θt and provide point
estimates for the static parameters Θ. If uniform priors are used for Θ then the
procedure proposed reduces to a maximum likelihood estimation. Non-uniform priors
have a regularization effect which can promote the identification of particular features.

While the hybrid strategy proposed is common practice in pertinent models ([64]),
in the current framework it is also necessitated by the difficulty in sampling in the high-
dimensional state space of Θ (note that the projection matrices P (m) in particular are
of the dimension of the observables d and d >> 1) as well as the need for scalability
in the context of high-dimensional systems. The static parameters Θ are estimated
by maximizing the log-posterior.

L(Θ) = log π(Θ | y1:τ ) = log

∫

π(Θ,Θ1:τ | y1:τ )
︸ ︷︷ ︸

posterior Equation(2.13)

dΘ1:τ (2.21)

Maximization of L(Θ) is more complex than a standard optimization task as it
involves integration over the unobserved dynamic variablesΘ1:τ . While maximization
can be accelerated by using gradient-based techniques (e.g. gradient ascent), the di-
mensionality of Θ makes such an approach impractical as it can be extremely difficult
to scale the parameter increments. We propose therefore adopting an Expectation-
Maximization framework (EM) which is an iterative, robust scheme that is guaranteed
to increase the log-posterior at each iteration ([41, 64]). It is based on constructing
a series of increasing lower bounds of the log-posterior using auxiliary distributions
q(Θ1:τ ):

L(Θ) = log π(Θ | y1:τ ) = log
∫
π(Θ,Θ1:τ | y1:τ ) dΘ1:τ

= log
∫
q(Θ1:τ )

π(Θ,Θ1:τ |y1:τ )
q(Θ1:τ )

dΘ1:τ

≥
∫
q(Θ1:τ ) log

π(Θ,Θ1:τ |y1:τ )
q(Θ1:τ )

dΘ1:τ (Jensen’s inequality)

= F (q,Θ)
(2.22)

It is obvious that this inequality becomes an equality when in place of the auxiliary
distribution q(Θ1:τ ) the posterior π(Θ1:τ | Θ,y1:τ ) is selected. Given an estimate

Θ(s) at step s, this suggests iterating between an Expectation step (E-step) whereby

we average with respect to q(s)(Θ1:τ ) = π(Θ1:τ | Θ
(s),y1:τ ) to evaluate the lower

bound:

E-step: F (s)(q(s),Θ) =
∫
q(s)(Θ1:τ ) log π(Θ,Θ1:τ | y1:τ ) dΘ1:τ

−
∫
q(s)(Θ1:τ ) log q

(s)(Θ1:τ ) dΘ1:τ
(2.23)

and a Maximization step (M-step) with respect to F (s)(q(s),Θ) (and in particular the
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first part in Equation (2.23) since the second does no not depend on Θ):

M-step: Θ(s+1) = argmaxΘ F (s)(q(s),Θ)
= argmaxΘ Eq(s)(Θ1:τ ) [log π(Θ,Θ1:τ | y1:τ )]

= argmaxΘ Q(Θ(s),Θ)

(2.24)

As the optimal auxiliary distributions q(s)(Θ1:τ ) = π(Θ1:τ | Θ
(s),y1:τ ) are in-

tractable, we propose employing a Sequential Monte Carlo (SMC or particle filter,
[45, 37]) scheme for estimating the expectations in the M-Step, i.e. Equation (2.24).
SMC samplers provide a parallelizable framework for non-linear, non-Gaussian fil-
tering problems whereby the target distribution q(s)(Θ1:τ ) = π(Θ1:τ | Θ

(s),y1:τ ) is

represented with a population of N particles Θ
(s,i)
1:τ and weights W (s,i) such that the

expectation in Equation (2.24) can be approximated by:

Eq(s)(Θ1:τ ) [log π(Θ,Θ1:τ | y1:τ )] ≈
N∑

i=1

W (s,i) log π(Θ,Θ
(s,i)
1:τ ) | y1:τ ) (2.25)

In section 2.3.1 we discuss a particle filter that takes advantage of the particular
structure of the posterior and employs the locally optimal importance sampling dis-
tribution. Nevertheless, SMC samplers involve sequential importance sampling, and
their performance decays with increasing τ as the dimension of the state space Θ1:τ

increases even when resampling and rejuvenation mechanisms are employed ([7]). Re-
cent efforts based on exponential forgetting have shown that the accuracy of the
approximation can be improved (while keeping the number of particles N fixed) by
employing smoothing ([69]) over a fixed-lag in the past ([20]).

In this paper we make use of an approximate but highly efficient alternative pro-
posed in [6, 7, 8]. This is based on the so-called split-data likelihood (SDL) first
discussed in [116], which consists of splitting the observations into blocks (overlap-
ping or non-overlapping) of length L < τ and using the pseudo-likelihood which arises
by assuming that these blocks are independent. It is shown in [7] that this leads to an
alternative Kullback-Leibler divergence contrast function and under some regularity
conditions that the set of parameters optimizing this contrast function includes the
true parameter. Because the size of the blocks is fixed, the degeneracy of particle
filters can be averted and the quality of the approximations can be further improved
by applying a backward smoothing step over each block ([69]). Let k denote the index
of the block of length L considered and ȳk = y(k−1)L+1:kL and Θ̄k = Θ(k−1)L+1:kL.
If τ = r L. The likelihood is approximated by:

p(y1:τ | Θ,Θ1:τ ) ≈
r∏

k=1

p(ȳk | Θ, Θ̄k) (2.26)

When Θt has reached a stationary regime with invariant density ν0(. | Θ), then for
any k, (Θ, Θ̄k, ȳk) are identically distributed according to:

p̄(Θ, Θ̄k, ȳk) = π(Θ)ν0(Θ(k−1)L | Θ)p(y(k−1)L | Θ(k−1)L,Θ)
∏kL−1

t=(k−1)L+1 p(Θt | Θt−1,Θ)p(yt | Θt,Θ)
(2.27)

In a batch EM algorithm using the split-data likelihood and the kth block of
data, the M-step would involve maximization with respect to Θ of (see also Equation
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(2.24)):

Q̄(Θ(k−1),Θ) =

∫

p̄(Θ̄k | Θ
(k−1), ȳk) log p̄(Θ, Θ̄k, ȳk) dΘ̄k (2.28)

We utilize an online EM algorithm where the iteration numbers s coincide with the
block index k (i.e. s ≡ k ) which effectively implies that the estimates for Θ are
updated every time a new data block is considered. The expectation step (E-step) is
replaced by a stochastic approximation ([119, 19]) while the M-step is left unchanged.
In particular, at iteration k (≡ s):

online E-step Q̄(Θ(1:k−1),Θ) = (1− γk)Q̄(Θ(1:k−2),Θ)

+γk
∫
p̄(Θ̄k | Θ

(k−1), ȳk) log p̄(Θ̄k, ȳk) dΘ̄k

(2.29)
and update the value of the parameters Θ as:

online M-step Θ(k) = argmaxΘ Q̄(Θ(1:k−1),Θ) (2.30)

The algorithm relies on a non-increasing sequence of positive stepsizes {γk}k≥0 such
that

∑

k γk = +∞ and
∑

k γ
2
k < +∞. In this work we adopted γk = 1

ka with a = 0.51.
Naturally the integrals above over the hidden dynamic variables Θ̄k are estimated
using SMC-based, particulate approximations of p̄(Θ̄k | Θ

(k−1)ȳk). For small L the
convergence will in general be slow as the split-block likelihood assumption will be
further from the truth. For larger L, convergence is faster but the performance of
the filter decays. For that purpose we also employed a backward smoothing filter
over each block using the algorithm described in [69]. The computational cost of the
smoothing algorithm is O(N2L).

In practice, and in particular for the exponential distributions utilized in the
proposed model (e.g. Equation (2.17)), the EM iterations reduce to calculating a
set of (multivariate) sufficient statistics Φ. In particular, instead of the log-posterior

lower bound Q̄(Θ(1:k−1),Θ) in Equation (2.29) we update the sufficient statistics as
follows:

Φ(k) = (1− γk)Φ
(k−1)

+γk
∫
p̄(Θ̄k | Θ

(k−1), ȳk)φ(Θ̄k) dΘ̄k
(2.31)

where
∫
p̄(Θ̄k | Θ

(k−1), ȳk)φ(Θ̄k) dΘ̄k denotes the set of sufficient statistics associ-
ated with the block of data ȳ = y(k−1)L+1:kL. Specific details are provided in the
Appendix. It is finally noted, that learning tasks in the context of the probabilistic
model proposed, should also involve identifying the correct structure (e.g. the num-
ber of different experts M). While this problem poses some very challenging issues
which are currently the topic of active research in various contexts (e.g. nonpara-
metric methods), this paper is exclusively concerned with parameter learning. In
section 3, we discuss Bayesian validation techniques for assessing quantitatively the
correct model structure which are computationally feasible due to the efficiency of the
proposed algorithms.

2.3.1. Locally optimal Sequential Monte Carlo samplers. In this section
we discuss Monte Carlo approximations of the expectations appearing in Equation
(2.31) with respect to the density p̄(Θ̄k | Θ,y1:L) = p(Θ(k−1)L+1:kL | Θ,y(k−1)L+1:kL).
Note that in order to simplify the notation we consider an arbitrary block of length L
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(e.g. k = 1)and do not explicitly indicate the iteration number of the EM algorithm.
Hence the target density is:

p(Θ1:L | Θ,y1:L) =
1

p(y1:L | Θ)
ν0(Θ1 | Θ)p(y1 | Θ1,Θ)

L∏

t=2

p(Θt | Θt−1,Θ)p(yt | Θt,Θ)

(2.32)
where the dynamic variables are Θt = (Xt, zt) (Equation (2.18)). Based on earlier
discussions, the evolution dynamics of these variables are independent i.e.:

ν0(Θ1 | Θ) = ν0(X1 | Θ)v0(z1 | Θ) (2.33)

and:

p(Θt | Θt−1,Θ) = p(Xt |Xt−1,Θ)p(zt | zt−1,Θ) (2.34)

Since there is a deterministic relation between z̄t and zt (Equation (2.11)) we use
them interchangeably. In particular we use ẑt in the evolution equations since the
initial and transition densities are Gaussian (Equation (2.10)) and zt in the likelihood
densities as the expressions simplify in Equation (2.12)). The initial and transition

densities for Xt are also Gaussian. Given that x
(m)
t are a priori independent, we have

that:

p(Xt |Xt−1,Θ) =
∏M

m=1 p(x
(m)
t | x

(m)
t−1,Θ)

= N (Xt | µt,SX)
(2.35)

where the mean µt = µt(Xt−1) is given by Equation (2.9) and SX = diag(Sx,1, . . . ,Sx,M )
(from Equation (2.9) as well).

SMC samplers operate on a sequence of target densities p(Θ1:t | y1:t,Θ) which,

for any t, are approximated by a set of n random samples (or particles) {Θ
(i)
1:t}

n
i=1.

These are propagated forward in time using a combination of importance sampling,
resampling and MCMC-based rejuvenation mechanisms [38, 37, 138, 133]. Each of
these particles is associated with an importance weight W (i) (

∑n
i=1 W

(i) = 1) which is
updated sequentially along with the particle locations in order to provide a particulate
approximation:

p(Θ1:t | y1:t,Θ) ≈
n∑

i=1

W (i) δ
Θ

(i)
1:t
(Θ1:t) (2.36)

where δ
Θ

(i)
1:t
(.) is the Dirac function centered at Θ

(i)
1:t. Furthermore, for any measurable

φ(Θ1:t) (as in Equation (2.31)) and ∀t [36, 26, 20]:

n∑

i=1

W (i) g(Θ,Θ1:t)→

∫

φ(Θ1:t) p(Θ1:t | y1:t,Θ)dΘ1:t (almost surely) (2.37)

The particles are constructed recursively in time using a sequence of importance
sampling densities qt(Θt | Θt−1,yt,Θ). The importance weights are determined from
the fact that:

p(Θ1:t | y1:t,Θ) = p(Θ1:t−1 | y1:t−1,Θ)
p(Θt | Θt−1,Θ)p(yt | Θt,Θ)

p(yt | y1:t−1,Θ)
(2.38)

Let {W (i),Θ
(i)
1:t−1}

N
i=1 the particulate approximation of p(Θ1:t−1 | y1:t−1,Θ). Note

that for t = 1 and for the Gaussian initial densities ν0 of the proposed model, this
consists of exact draws and weights W (i) = 1

N . At time t we proceed as follows ([45]):
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1. Sample Θ
(i)
t ∼ qt(Θt | Θ

(i)
t−1,yt,Θ), ∀i and set Θ

(i)
1:t ← (Θ

(i)
1:t−1,Θ

(i)
t )

2. Compute incremental weights:

u
(i)
t =

p(Θ
(i)
t | Θ

(i)
t−1,Θ)p(yt | Θ

(i)
t ,Θ)

qt(Θ
(i)
t | Θ

(i)
t−1,yt,Θ)

(2.39)

and update the weights:

W (i) =
W (i)u

(i)
t

∑N
j=1 W

(i)u
(i)
t

(2.40)

3. Compute ESS = 1∑
N
i=1(W

(i))2
and if ESS < ESSmin perform multino-

mial resampling to obtain a new population with equally weighted particles
(ESSmin = N/2 was used in this study). Set t← t+ 1 and go to step 1.

It can be easily established ([46]) that the locally optimal importance sampling
density is:

qoptt (Θt | Θt−1,yt,Θ) =
p(Θt | Θt−1,Θ)p(yt | Θt,Θ)

∫
p(Θt | Θt−1,Θ)p(yt | Θt,Θ) dΘt

(2.41)

In practice, it is usually impossible to sample from qoptt and/or calculate the integral
in the denominator. As a result, approximations are used which nevertheless result in
non-zero variance in the estimators. In this paper we take advantage of the fact that
the transition density of Xt as well as the likelihood, conditioned on zt are Gaussians
and propose an importance sampling density of the form:

qt(Xt, ẑt |Xt−1, ẑt−1,yt,Θ) = p(ẑt | ẑt−1,Θ)
p(Xt |Xt−1,Θ)p(yt |Xt, zt,Θ)

∫
p(Xt |Xt−1,Θ)p(yt |Xt, zt,Θ) dXt

(2.42)
This implies using the prior to draw ẑt and the locally optimal distribution (condi-
tioned on ẑt or equivalently zt) for Xt. The latter will also be a Gaussian whose
mean µ̄t and covariance S̄X can be readily be established (e.g. using Kalman filter
formulas):

S̄X =
(

S−1
X +W T

t Σ
−1W t

)−1

µ̄t = S̄X

(

S−1
X µt +W T

t Σ
−1yt

) (2.43)

As a result the incremental weights ut are given by:

ut =| S̄X |
1/2 exp{

1

2
µ̄T

t S̄
−1
X µ̄t −

1

2
µT
t S

−1
X µt} (2.44)

2.4. Prediction and Bayesian adaptive time-integration. Bayesian infer-
ence results do not include just point estimates but rather samples from the posterior
density, at least with repsect to the time-varying parameters Θt. The inferred poste-
rior can be readily used to make probabilistic predictions about the future evolution of
the high-dimensional, multiscale process yt. Given observations y1:τ = {yt}

τ
t=1, the

predictive posterior for the future state of the system yτ+1:τ+T over a time horizon T
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can be expressed as:

p(yτ+1:τ+T | y1:τ ) =

∫

p(yτ+1:τ+T ,Θ,Θτ+1:τ+T | y1:τ ) dΘdΘτ+1:τ+T

=

∫

p(yτ+1:τ+T | Θ,Θτ+1:τ+T )
︸ ︷︷ ︸

likelihood Equation(2.14)

p(Θ,Θτ+1:τ+T | y1:τ )dΘ dΘτ+1:τ+T

=

∫

p(yτ+1:τ+T | Θ,Θτ+1:τ+T )

p(Θτ+1:τ+T | Θτ ,Θ)
︸ ︷︷ ︸

prior Equation(2.20)

p(Θ,Θτ | y1:τ )
︸ ︷︷ ︸

posterior Equation(2.13)

dΘ dΘτ :τ+T (2.45)

The integral above can be approximated using Monte Carlo. In particular given
the particulate approximation of the posterior p(Θ,Θ1:τ | y1:τ ) (which consists of
samples of the dynamic variables Θt and the MAP estimate of Θ), samples from
the prior p(Θτ+1:τ+T | Θτ ,Θ) and subsequently the likelihood p(Θτ+1:τ+T | Θτ ,Θ)
can readily be drawn. In fact, given that the latter is a multivariate Gaussian, the
predictive posterior will consist of a mixture of Gaussians, one for each sample of
Θτ+1:τ+T drawn.

The important consequence of the Bayesian framework advocated is that precitive
estimates are not restricted to point estimates but whole distributions which can read-
ily quantify the predicitve uncertainty. This naturally gives rise to Bayesian, adaptive,
time-integration scheme that allows bridging across timescales while providing quanti-
tative, probabilistic estimates of the accuracy of the coarse-grained dynamics (Figure
2.5). The distribution of Equation (2.45) is used to probabilistically predict the evo-
lution of the system. The time range over which the reduced model is employed does
not have to be specified a priori but can be automatically determined by the variance
of the predictive posterior (Figure 2.5). Once this exceeds the allowable tolerance
specified by the analyst, the fine-scale process is reinitialized and more data are ob-
tained, that can in turn be used to update the coarse-grained model. It is emphasized
that due to the generative character of the model proposed, the reinitialization can be
performed consistently based in general on the emission equations Equation (2.12).
In contrast to existing techniques such as projective and coarse-projective integration
[61, 63, 62, 60, 90, 114] as well as Heterogeneous Multiscale Methods [48, 101], there
is no need to prescribe lifting and restriction operators and no ambiguity exists with
regards to the appropriateness of the reinitialization scheme. Furthermore, the prob-
abilistic coarse-grained model provides quantitative estimates for its predictive ability
and automatically identifies the need for more information from the fine-scale model.

3. Numerical experiments. The first examples is intended to validate the
accuracy of the proposed online EM scheme and utilizes a synthetic dataset. The sec-
ond example uses actual data and illustrates the superiority of the proposed PMLDS
model over existing SLDS models. Finally the third example provides an application
in the context of multiscale simulations for the time-dependent diffusion equation.

3.1. Synthetic data. We generated data from the proposed model in order to
investigate the ability of the inference and learning algorithms discussed. In particular,
we considered a mixture of two M = 2, one-dimensional OU processes (K = 1) as in

Equation (2.8) with (b(1), q
(1)
x ,Σ(1)) = (0.1,−5.0, 0.2) (slow) and (b(2), q

(2)
x ,Σ(2)) =

(1.,+5.0, 2.0) (fast). The logistic normal distribution was used to model the weights
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Fig. 2.5. Bayesian adaptive time-integration and data-model fusion illustrated for a two-
dimensional flow. The data generated from computational simulations y1:τ and/or experiments
y1:τ ′ are sequentially incorporated in the Bayesian model and the posterior p(Θ,Θ1:τ | y1:τ ) over
dynamic and static parameters is updated. The predictive posterior p(yτ+1:τ+T | y1:τ ) is over
the time horizon T used to efficiently produce probabilistic predictions of the evolution of the high-
dimensional process yt in the future. When the uncertainty associated with those predictions exceeds
the analysts’ tolerance, the original system is consistently reinitialized and more data are generated.
These are used to update the (predictive) posterior and to produce additional predictive estimates.
It is noted that the tolerance in the predictive uncertainty can also be measured with respect to
(low-dimensional) observables which are usually of interest in practical applications.

associated with each of the hidden processes using an isotropic Ornstein-Uhlenbeck
process dzt = −bz(zt − qz)dt + Σ1/2

z dW t with bz = 1.0, qz = [0, 0]T and Σz =
[

10. 0
0 10.

]

. Two 10 × 1 projection vectors Pm,m = 1, 2 were generated from the

prior N (0, 100I) (see Appendix) and (d = 10) time series yt were produced based on
Equation (2.12) with idiosyncratic variances Σ = 0.12I and time step δt = 1. The
resulting time series exhibit multimodal, non-Gaussian densities as can be seen in
Figure 3.1(a) as well as two distinct time scales as it can be seen in the autocovariances
plotted in Figure 3.1(b).

Figure 3.2 depicts the convergence of the proposed online EM scheme to the

reference values of b
(m)
x ,m = 1, 2, for various block sizes L and particle populations

N . Figure 3.3 depicts the evolution of the log-likelihood per iteration of the EM
algorithm. Figure 3.4(a) depicts the normalized error in the identified P (m),m = 1, 2
and isiosyncratic variances Σ pre coordinate after 20,000 iterations. In all cases the
algorithm exhibits good convergence to the reference values.

3.2. Temperature Dataset. The goal of this numerical experiment is to illus-
trate the interpretability of the proposed model and compare with the switching-state
linear model discussed in section 2.1 (Equation (2.6)). For that purpose we utilized the
temperature data (in degrees Fahrenheit) of the capitals of the 50 states in the U.S.A
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yt,4 (blue) (solid lines). With (− ◦ −) the densities and autocovariances of the same times series
generated using the learned model parameters using the proposed online EM scheme with L = 200
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Fig. 3.2. Convergence of b
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x (black) and b
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x (red) using the online EM algorithm for three

different combinations of L and N . (− ◦ −) corresponds to L = 100, N = 100, (−♦−) to L = 200,
N = 200 and (−△−) to L = 20, N = 1000

(d = 50). The data was obtained from http://www.engr.udayton.edu/weather/citylistUS.htm
and it represents the average daily temperatures from 01/01/1996 until 01/13/2009
(i.e. 5, 127 daily observations).

Figure 3.5 depicts the posterior memberships corresponding to the SLDS and
PMLDS models based on a reduced model with two hidden states (M = 2) described
by one-dimensional OU processes (K = 1). The former assumes that at each time
instant the observables yt arises from a single hidden process. Hence a single entry
of zt = [z1,t, z2,t, . . . , zM, t] is equal to 1 and the rest are all equal to 0. The top
part of Figure 3.5 shows the posterior mean of zm,t,m = 1, 2. As one would expect
the two-states correspond to cold-winter (blue) and hot-summer (red) and alternate
periodically (roughly the cold-winter state is active between early November until
mid-April and the hot-summer state in the remainder of the calendar year). The top

part of Figure 3.7 depicts the correspondingP (m),m = 1, 2 where southern states have
higher values and northern states lower. Naturally, winter and summer represent the
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j , j = 1, . . . , d using the proposed online EM

scheme with L = 200 and N = 200

two extremes but several intermediate states are also present. The proposed partial-
membership model can account for those states without increasing the cardinality of
the reduced-order dynamics. As it can be seen in the bottom part of Figure 3.5 which
depicts the particulate approximation of the posterior of zm,t,m = 1, 2, the two hidden
states can also be attributed to the two extremes but the actual temperatures arise
by a weighted combination of these two. Naturally during spring-summer months the
weight of the “red” state is higher and during autumn-winter months the weight of

the “blue” state takes over. The posterior of the hidden processes x
(m)
t ,m = 1, 2 is

depicted in Figure 3.6.

In order to quantitatively compare the two models we calculated the average,
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Fig. 3.5. (Top) Posterior mean of zm,t,m = 1, 2 based on the SLDS and (Bottom) particulate
approximation of the posterior of zm,t, m = 1, 2 PMLDS. Both results were obtained using the
previously discussed online EM scheme with L = 200 and N = 100

M K SLDS PMLDS
2 1 −179.97± 37.31 −171.11± 37.20
2 2 −170.68± 36.95 −141.11± 27.82
4 1 −176.40± 34.36 −143.81± 25.56
4 2 −166.05± 30.57 −117.67± 21.15

Table 3.1
One-step-ahead predictive log-likelihood (Equation (3.1)) of SLDS and PMLDS models for var-

ious M , K. The table reports the average value plus/minus one standard deviation in bits. All
results were obtained using the previously discussed online EM scheme with L = 200 and N = 100

one-step-ahead, predictive log-likelihood log p(yt+1 | y1 : t), ∀t ∈ [0, T ):

p(yt+1 | y1:t) =

∫

log p(yt+1 | Θ,Θt+1y1:t) p(Θ,Θt+1 | y1:t)dΘdΘt+1

=

∫

log p(yt+1 | Θ,Θt+1y1:t)

p(Θt+1 | Θt,Θ)
︸ ︷︷ ︸

prior

p(Θ,Θt | y1:t)
︸ ︷︷ ︸

posterior

dΘ dΘt:t+1 (3.1)

The latter integral is approximated by Monte Carlo using the MAP estimate of Θ
and the particulate approximation of the posterior for the dynamic variables Θt. This
provides a measure of how well the model generalizes to a novel observation from the
same distribution as the training data and higher values imply a better model. Table
3.1 reports the average values (in bits) plus/minus the standard deviation (over t ∈
(100, T = 5127) ). Similar calculations were carried out for other model cardinalities
(i.e. M,K) and in all cases the proposed model exhibited superior performance. This
superiority becomes more pronounced as M and K increased which can be attributed
to the factorial character of PMLDS.
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Fig. 3.6. Particulate approximation of the posterior of x
(m)
t ,m = 1, 2. Results were obtained

using the previously discussed online EM scheme with L = 200 and N = 100
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Fig. 3.7. Maximum posterior estimates of P (m) ∈ R
50,m = 1, 2 based on the SLDS(top)

and PMLDS (bottom) models. Both results were obtained using the previously discussed online EM
scheme with L = 200 and N = 100

3.3. Transient Heat equation. We finally apply the proposed analysis scheme
to the one-dimensional transient heat equation:

{
∂u
∂t = ∂

∂x

(
a(x)∂u∂x

)
, x ∈ [0, 1]

u(0, t) = u(1, t) = 0, ∀t
(3.2)

The spatial domain was discretized with 1, 000 finite elements of equal length and we
considered a “rough” conductivity profile shown in Figure 3.8(a). The conductivity
a(x) in each finite element was assumed constant and its value was drawn indepen-
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dently from a uniform distribution 2. For x ∈ [0, 0.5] we used the uniform U [0.01, 0.1]
and for x ∈ (0.5, 1], U [0.51, 0.6]. This naturally resulted in the jump observed in
Figure 3.8(a) which as a consequence gave rise to two distinct slow time scales in
the solution profile u(x, t) depicted in Figure 3.8(b). A rough profile of initial con-
ditions was also used (as can be seen Figure 3.8(b), t = 0). In particular at each
node xi = 0.001i, i = 1, . . . , 1001 we set u(xi, 0) = 10xi(1 − xi)(1 + 0.1Zi) where
Zi ∼ N(0, 1) (i.i.d).

Upon spatial discretization, we obtain a coupled system of ODEs:

ẏt +Kyt = 0 (3.3)

where yt ∈ R
1001 represents the solution at the nodes xi, i.e. yt = [u(x1, t), u(x2, t), . . . ,

. . . , u(xd, t)]
T
. In contrast to existing approaches for the same diffusion equation (e.g.

[2, 1, 118]) we do not exploit mathematical properties of the PDE in specifying the
coarse-grained model but rely on data. This data is obtained upon temporal dis-
cretization of Equation (3.3) where a time step δt = 0.0001 was used. As a result at
each time step we obtained a vector of observables yt of dimension d = 1001. This
data was incorporated in the Bayesian model proposed using two hidden OU process
(M = 2) of dimension K = 2 each. In particular we employed the online EM scheme
previously discussed over blocks of length L = 10 time steps and N = 100 particles.
In particular (see also Figure 2.5):

• data over 20 times steps δt, y1:20 (i.e. corresponding to total time 20δt =
0.002) were ingested by the Bayesian reduced model, and
• the latter was used to predict the evolution of the system over 500 time steps
(i.e. total time T = 500δt = 0.05).
• The original solver of the governing PDE was then re-initialized using the
posterior mean estimate of the state of the system y520 and was run for further
20 time steps. Using the additional data obtained y521:540, the Bayesian
model was updated and the process described was repeated.

It is noted that the proposed Bayesian prediction scheme results in a reduction of the
number of fine scale integration time steps by a factor of 25 (T/20δt = 0.05/0.002)
leading to a significant acceleration of the simulation process. Figure 3.9 depicts the
posterior estimates of the solution at various time instants. In all cases these ap-
proximate very accurately the exact solution and these estimates improve as more
are accumulated. One of the main advantages of the proposed approach is that apart
from single-point estimates one can readily obtain credible intervals that quantify pre-
dictive uncertainties due to information loss by the use of the reduced-order dynamic
model and the finite amount of data used to learn that model. As it is seen in Figure
3.9 these envelop the exact solution and become tighter at larger times. As one would
expect, when a larger predictive horizon T = 0.1 (i.e. 1, 000 time steps δt) is used,
as it can be seen in Figures 3.10 and 3.11 the predictive uncertainty grows. Such a
scheme however is twice as efficient leading to a reduction of computational effort by
a factor of 50 (i.e. T/20δt = 0.1/0.002). Hence if the analyst is willing to tolerate
the additional uncertainty, efficiency gains can be achieved. This supports the argu-
ments made previously with regards to an adaptive Bayesian scheme where, the level
of predictive uncertainty would be specified and the algorithm would automatically
revert to the fine scale model in order to obtain more data and improve the predictive
estimates.

2We considered a single realization of the conductivity profile and solved for it as a deterministic
problem. The stochastic PDE where a(x) is random is not considered here.
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Fig. 3.9. Comparison of predictive posterior estimates (posterior mean and 5% and 95% quan-
tiles) with exact solution u(x, t) at various t

4. Conclusions. The proposed modeling framework can extract interpretable
reduced representations of high-dimensional systems by employing simple, low-dimensional
processes. It simultaneously achieves dimensionality reduction and learning of reduced
dynamics. The Bayesian framework adopted provides a generalization over single-
point estimates obtained through maximum-likelihood procedures. It can quantify
uncertainties associated with learning from finite amounts of data and produce prob-
abilistic predictive estimates. The latter can be used to rigorously perform concurrent



26 P.S. KOUTSOURELAKIS, E. BILIONIS

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

exact
posterior mean
5% post. quantile
95% post. quantile

x

u
(x
,t
)

(a) t = 0.25

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

exact
posterior mean
5% post. quantile
95% post. quantile

x

u
(x
,t
)

(b) t = 1.0

Fig. 3.10. Comparison of predictive posterior estimates (posterior mean and 5% and 95%
quantiles) with exact solution u(x, t) at various t. These results were obtained with a prediction
horizon T = 0.1 (δt = 0.0001) in contrast to Figure 3.9 which were obtained for T = 0.05.

0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3
0.8

0.85

0.9

0.95

1

exact
posterior mean
5% post. quantile
95% post. quantile

x

u
(x
,t
)

(a) T = 0.05

0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3
0.8

0.85

0.9

0.95

1

exact
posterior mean
5% post. quantile
95% post. quantile

x

u
(x
,t
)

(b) T = 0.1

Fig. 3.11. Comparison of predictive posterior estimates (posterior mean and 5% and 95%
quantiles) with exact solution u(x, t) at t = 1.0. These results were obtained with a prediction
horizon (a) T = 0.05 and (b) T = 0.1.

simulations with the microscopic model without the need of prescribing ad hoc up-
scaling and downscaling operators.

Critical to the efficacy of the proposed techniques is scalability particularly with
regards to the large dimension d of the original process. The algorithms proposed
imply O(d) order of operations. Furthermore they can dynamically update the coarse-
grained models as more data become available. In a typical scenario, the fine-scale
model is reinitialized several times in order to obtain additional information about
the system’s evolution that is incorporated in the coarse-grained dynamics “on the
fly”.

The Bayesian, statistical perspective can readily be extended to the modeling
stochastic dynamical systems. This would require generating more than one realiza-
tions of the original dynamics which can nevertheless be incorporated in the coarse-
grained models using the same online EM scheme. In fact the loss of information that
unavoidably takes place during the coarse-graining, results in probabilistic reduced-
order models even if the original model was deterministic. A critical question that
offers opportunity for future research on the topic relates to structural learning and
in particularly with the dimensionality of the representation, i.e. the number of hid-
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den processes x
(m)
t needed (denoted by M in Equation (2.7)). Treating this as a

model selection problem as it was done in the examples, assumes that there is a sin-
gle, optimal finite-dimensional representation. Current research activities are centered
around nonparametric Bayesian priors over infinite combinatorial structures based on
the Dirichlet process paradigm and infinite latent features models (e.g. [129, 70, 75]).
These offer an alternative perspective by assuming that the number of building blocks
is potentially unbounded, and that the observables only manifest a sparse subset of
those. As a result, the cardinality of the coarse-grained model can be automatically
determined from the data. Another aspect that warrants further investigation is
prior modeling of the static parameters. Apart from the regularization effect this
offers, it can promote the discovery of desirable features, such as slow-varying essen-
tial dynamics, sparse factors (e.g. P (m) in Equation (2.12)) which can advance the
interpretability of the results and facilitate the inference process.
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Appendix. This appendix discusses the sufficient statistics and update equations
for the static parameters Θ used in the probabilistic model proposed. In the first
section we discuss parameters appearing in the reduced-order dynamics models and
in the second those appearing in the likelihood.

Sufficient statistics for parameters appearing in the prior. As discussed
in section 2.2.1, independent, isotropic OU processes are used as prior models for the

latent, coarse-grained dynamics x
(m)
t ∈ R

K as well the process zt ∈ R
M that models

the frctional memberships to to each process m. We therefore discuss the essential
elements for the online EM computations described in section 2.3 ([6, 7, 8]) for a
general isotropic OU process in R

n of the form:

dxt = −b(xt − q)dt+ S1/2dW t (4.1)

It is of interest to determine the parameters θ = (b, q,S). Let also π(θ) denote

the prior on θ. The readers can adjust the expressions below to any x
(m)
t or zt

since independent priors were used. Note that the stationary distribution of xt is a
Gaussian:

ν0(x) = N (x | q,C =
1

2b
S) (4.2)

and the transition density p(xt | xt−1) assuming that equidistant time instants with
time step δt are considered, is given by:

p(xt | xt−1) = N (xt | µδt(xt−1),Sδt) (4.3)

where:

µδt(xt−1) = xt−1 − (1− e−bδt)(xt−1 − q) (4.4)

and:

Sδt =
1− e−2bδt

2b
S (4.5)

Given a block of length L with observables y1:L and according to Equations (2.27)
and (2.28) we have that:

Q̂(θ(k−1), θ) =
〈
− 1

2 log | C | −
1
2 (x1 − q)TC−1(x1 − q)

+
∑L

t=2−
1
2 log | Sδt | −

1
2 (xt − q)TC−1(x1 − q)

〉

+ log π(θ)

where the brackets < . > imply expectation with respect to p̂(x1:L | θ
(k−1),y1:L) as

in Equation (2.28). In order to maximize Q̂(Θ(1:k−1),Θ) as in Equation (2.30) one

needs to solve the system of equations arising from ∂Q̂(θ(1:k−1),θ)
∂θ = 0 These equations

equations with respect to θ are solved with fixed point iterations. They depend on
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the following 7 sufficient statistics Φ = {Φj}7j=1:

Φ1 =< x1 >
Φ2 =< x1x

T
1 >

Φ3 =
〈
∑L

t=2 xt−1

〉

Φ4 =
〈
∑L

t=2 xt − xt−1

〉

Φ5 =
〈
∑L

t=2 xt−1x
T
t−1

〉

Φ6 =
〈
∑L

t=2(xt − xt−1)x
T
t−1

〉

Φ7 =
〈
∑L

t=2(xt − xt−1)(xt − xt−1)
T
〉

(4.6)

Sufficient statistics for parameters appearing in the likelihood. The
process a bit more involved in the case of the parameters appearing in the likelihood
Equation (2.14) i.e. the projection matrices {P (m)}Mm=1 of dimension d × K and
the covariance Σ which is a (positive definite) matrix of d × d. In order to retain
scalability in high-dimensional problems (i.e. d >> 1) we assume a diagonal form of
Σ = diag(σ2

1 , σ
2
2 , . . . , σ

2
d) which implies learning d parameters rather than d(d+1)/2.

Denoting now by θ = ({P (m)}Mm=1, {σ
2
j }

d
j=1) , π(θ) the prior and according to

Equations (2.27) and (2.28) we have that:

Q̂(θ(k−1), θ) =
〈
∑L

t=1−
1
2 log | Σ | −

1
2 (yt −W tXt)

TΣ−1(yt −W tXt)
〉

+ log π(θ)
(4.7)

Differentiation with respect to P (m) reveals that the stationary point must satisfy:

A(m) =

M∑

n=1

P (n)B(n,m) (4.8)

where the sufficient statistics are:

A(m)
︸ ︷︷ ︸

d×K

=

〈
L∑

t=1

zt,myt(x
(m)
t )T

〉

, m = 1, 2, . . . ,M (4.9)

and:

B(n,m)
︸ ︷︷ ︸

K×K

=

〈
L∑

t=1

zt,nzt,mx
(n)
t (x

(m)
t )T

〉

(4.10)

In the absence of a prior π(θ) and if P
(m)
j and A

(m)
j represent the jth rows (j =

1, . . . , d) of the matrices P (m) and A(m) respectively, then Equation (4.9) implies:
[

A
(1)
j A

(2)
j . . . A

(M)
j

]

︸ ︷︷ ︸

Aj :(1×K M)

=
[

P
(1)
j P

(2)
j . . . P

(M)
j

]

︸ ︷︷ ︸

P j :(1×K M)






B(1,1) B(1,2) . . . B(1,M)

B(2,1) B(2,2) . . . B(2,M)

. . . . . . . . . . . .

B(M,1) B(M,2) . . . B(M,M)







︸ ︷︷ ︸

B:(MK×MK)

(4.11)
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This leads to the following update equations for P
(m)
j , ∀j,m:

P j = AjB
−1 (4.12)

Note that the matrix B to be inverted is independent of the dimension of the
observables d (d >> 1) and the inversion needs to be carried out once for all j =

1, . . . , d. Hence the scaling of the update equations for P (m) is O(d) i.e. linear with
respect to the dimensionality of the original system.

Furthermore, in the absence of a prior π(θ), differentiation with respect to σ−2
j

(j = 1, . . . , d) leads to the following update equation:

L σ2
j =

∑L
t=1 y

2
t,j − 2Aj P T

j + P j BP T
j (4.13)

In summary the sufficient statistics needed are the ones in Equations (4.9) and (4.12).

In the numerical examples in this paper a diffuse Gaussian prior was used for P (m)

with variance 100 for each of the entries of the matrix. This leads to the addition of
the term 1/100 in the diagonal elements of the B in Equation (4.12). No priors were
used for σ2

j .
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[8] C. Andrieu, A. Doucet, and V.B. Tadić, Online simulation-based methods for parameter
estimation in non linear non gaussian state-space models, in Proc. IEEE CDC (invited
paper), 2005.

[9] Arik Azran and Zoubin Ghahramani, Spectral methods for automatic multiscale data clus-
tering, in CVPR (1), 2006, pp. 190–197.

[10] F.R. Bach and M.I. Jordan, Learning spectral clustering, with application to speech sepa-
ration, JOURNAL OF MACHINE LEARNING RESEARCH, 7 (2006), pp. 1963 – 2001.

[11] Gökhan H. Bakir, Alexander Zien, and Koji Tsuda, Learning to find graph pre-images,
in DAGM-Symposium, 2004, pp. 253–261.

[12] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen, The infinite hidden markov model, in
Neural Information Processing Systems 14, T.G. Dietterich, S. Becker, and Z. Ghahra-
mani, eds., MIT Press, 2002, pp. 577–585.

[13] C. Bishop, Latent variable models, in Learning in Graphical Models, M. I. Jordan, ed., MIT
Press, 1999, pp. 371–403.

[14] D Blei, T Griffiths, M Jordan, and J Tenenbaum, Hierarchical topic models and the
nested chinese restaurant process, in NIPS 2003, 2003.

[15] D. Blei and J. Lafferty, Dynamic topic models, in 23rd International Conference on Ma-
chine Learning, p. 2006.

[16] D. Blei, A. Ng, and M. Jordan, Latent dirichlet allocation, Journal of Machine Learning
Research, (2003), pp. 993–1022.

[17] E. Cances, F. Legoll, and G. Stoltz, Theoretical and numerical comparison of some sam-
pling methods for molecular dynamics, Mathematical Modelling and Numerical Analysis,
41 (2007), p. 351.
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rithms for dynamical systems, in Analysis, Modeling and Simulation of Multiscale Prob-
lems, A. Mielke, ed., Springer-Verlag, Heidelberg, 2006, p. 619646.

[41] A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data
via the EM algorithm (with discussion), J. Roy. Statist. Soc. Ser. B, 39 (1977), pp. 1–38.

[42] P. Deuflhard, W. Huisinga, A. Fischer, and C. Schütte, Identification of almost invari-
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