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This paper deals with empirical processes of the type

where (X,,) is a sequence of random variables and p, = (1/n) Y1, dx, the empirical measure.
Conditions for supg |Crn(B)| to converge stably (in particular, in distribution) are given, where
B ranges over a suitable class of measurable sets. These conditions apply when (X,) is exchange-
able or, more generally, conditionally identically distributed (in the sense of Berti et al. [Ann.
Probab. 32 (2004) 2029-2052]). By such conditions, in some relevant situations, one obtains that
supg |Cn(B)| L0 or even that vnsupg |Cr(B)| converges a.s. Results of this type are useful in
Bayesian statistics.
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1. Introduction and motivations

A number of real problems reduce to the evaluation of the predictive distribution
an(-) =P(Xpp1 €1X1,...,X5)

for a sequence X1, X, ... of random variables. Here, we focus on those situations where
a, cannot be calculated in closed form and one decides to estimate it based on the
available data X7, ..., X,,. Related references are [1-3, 5, 6, 8, 10, 15, 18, 20].
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For notational reasons, it is convenient to work in coordinate probability space. Ac-
cordingly, we fix a measurable space (.S, B) and a probability P on (5°°,B°°), and we let
X, be the nth canonical projection on (S°°,8°°, P), n > 1. We also let

gn,ZO'(Xl,...,Xn) and XZ(Xl,XQ,...).

Since we are concerned with predictive distributions, it is reasonable to make some
(qualitative) assumptions about them. In [6], X is said to be conditionally identically
distributed (c.i.d.) when

E(Ip(Xk)|Gn) =E(Ip(Xn+1)|Gn) a.s. for all Be B and k >n >0,

where Gy is the trivial o-field. Thus, at each time m > 0, the future observations
(X):k > n) are identically distributed given the past G,. In a sense, this is a weak
form of exchangeability. In fact, X is exchangeable if and only if it is stationary and
c.i.d., and various examples of non-exchangeable c.i.d. sequences are available.

In the sequel, X = (X1, Xo,...) is a c.i.d. sequence of random variables.

In that case, a sound estimate of a,, is the empirical distribution

1 n
=— Ox,.
Hn TLZ; X,

The choice of y,, can be defended as follows. Let D C B and let || - || denote the sup-norm
on D. Suppose also that D is countably determined, as defined in Section 2. (The latter
is a mild condition, only needed to handle measurability issues.) Then

Hﬂn —ay| = sup |pn(B) — an(B)] 5 0, (1)
BeD

provided (X is c.i.d. and) p, converges uniformly on D with probability 1; see [5]. For
instance, ||, — an|| £ 0 whenever X is exchangeable and D is a Glivenko-Cantelli class.
Also, ||pin — an|| 2250 if S =R, D= {(—o0,t]:t € R}, and X; has a discrete distribution
or infesoliminf,, P(|X,+1 — Xp| <e) =0; see [4].

To sum up, under mild assumptions, p, is a consistent estimate of a,, (with respect
to uniform distance) for c.i.d. data. This is in line with de Finetti [10] in the particular
case of exchangeable indicators.

Taking (1) as a starting point, the next step is to investigate the convergence rate,
that is, to investigate whether oy, ||, — ay || converges in distribution, possibly to a null
limit, for suitable constants «,, > 0. This is precisely the purpose of this paper.

A first piece of information on the convergence rate of ||, — a,|| can be obtained as
follows. For B € B, define

u(B) = limsup in (B),

Wi (B) = Vn{un(B) — n(B)}.
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By the SLLN for c.i.d. sequences, pu,(B) &> u(B); see [6]. Hence, for fixed n >0 and
B € B, one obtains

k
Z X,)|Gn)

:E(IB(Xn+1)|gn):an(B) a.s.

B(u(B)(Gn) = lim E(jux(B)|G) = lim

wl'—‘

In turn, this implies that /n{u,(B) — an(B)} = E(W,,(B)|gx) a.s., so

1 1
l[in = an|l < 7n EE%E(IWn(B)HQn) < %E(HWnHIGn) a.s.

If sup,, E||W,||* < oo for some k > 1, it then follows that

k
E{(an||ptn — an|)*} < (\/%) E|[W,|* =0  whenever % — 0.

Even if obvious, this fact is potentially useful since

sup E||W,||¥ < oo for all k> 1, if X is exchangeable, (2)

for various choices of D; see Remark 3. In particular, (2) holds if D is finite.
The intriguing case, however, is a, = /n. For each B € B and probability @) on
(5§°°,B°°), write
CR2(B) = Eq(Wa(B)|Gn) and

Cn(B) = G (B) = Vn{pun(B) — an(B)}.

In Theorem 3.3 of [6], the asymptotic behavior of C),(B) is investigated for fized B. Here,
instead, we are interested in

ICnll = sup [Cn(B)| = Vnllpn — an].
BeD

Our main result (Theorem 1) is the following. Fix a random probability measure N
on R and a probability @ on (S5°°,B%) such that

ICQ|| — N stably under @ and
[IW,|| is uniformly integrable under both P and Q.

Then,
|Cnll = N stably whenever P < Q. (3)



1354 Berti, Crimaldi, Pratelli and Rigo

A remarkable particular case is N = §g. Suppose, in fact, that for some @, one has
CQ| %0 and [IW, || uniformly integrable under P and @. Then,

[1C ] =) whenever P < Q.

Stable convergence (in the sense of Rényi) is a stronger form of convergence in distri-
bution. The definition is recalled in Section 2.

In general, one cannot dispense with the uniform integrability condition. However,
this condition is often true. For instance, ||, || is uniformly integrable (under P and Q)
provided D meets (2) and X is exchangeable (under P and Q).

To make (3) concrete, a large list of reference probabilities @ is needed. Various exam-
ples are available in the Bayesian nonparametrics framework; see, for example, [16] and
references therein. The most popular is perhaps the Ferguson—Dirichlet law, denoted by
Qo. If P=Q, then X is exchangeable and

P(X,eB n(B
an(B) = aP(X: € _2+ nin(B) a.s. for some constant o > 0.
a+n

Since || pn, — an || < (a/n) when P = Qg, something more than ||C,, || £ 0 can be expected
in the case P < Qg. Indeed, we prove that

1| pn — an| = Vnl|Cyl| converges a.s.

whenever P < o with a density satisfying a certain condition; see Theorem 2 and
Corollary 5.
One more example should be mentioned. Let X,, = (Y},, Z,,), where Z,, >0 and

aP(Yi e B)+ ", Zilp(Yi
P(Y,11 € B|G,) = (¥ a_?_z%,:z_é 5(Yi) a.s.
i=1%i

for some constant o > 0. Under some conditions, X is c.i.d. (but not necessarily ex-
changeable), ||, is uniformly integrable and ||C;,| converges stably; see Section 4.

The above material takes a nicer form when the condition P < @) can be given a
simple characterization. This happens, for instance, if S ={x1,..., 2k, Tx41} is finite, X
exchangeable and P(X; =x) >0 for all z € S. Then, P < Qo (for some choice of Q) if
and only if

(N{x1}7 .- '7M{xk})

has an absolutely continuous distribution with respect to Lebesgue measure. In this
particular case, however, a part of our results can also be obtained through the Bernstein—
von Mises theorem; see Section 3.

Finally, we make two remarks:

(i) If X is exchangeable, our results apply to Bayesian predictive inference. Suppose,
in fact, that S is Polish and B the Borel o-field, so that de Finetti’s theorem applies. Then,
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P is a unique mixture of product probabilities on 5°° and the mixing measure is called the
prior distribution in a Bayesian framework. Now, given @, P < @ is just an assumption
on the prior distribution. This is plain in the last example where S = {z1,..., 2k, Tp4+1}-
In Bayesian terms, such an example can be summarized as follows. For a multinomial
statistical model, ||Cy, || L0 if the prior is absolutely continuous with respect to Lebesgue
measure, and /n||C,,|| converges a.s. if the prior density satisfies a certain condition.
(ii) To our knowledge, there is no general representation for the predictive distributions
of an exchangeable sequence. Such a representation would be very useful. Even if only
partially, results like (3) contribute to filling the gap. As an example, for fixed B € B,
one obtains a,(B) = pu,(B) + OP(\/LE), provided X is exchangeable and P < () for some

Q such that C9(B) 20 and W, (B) is uniformly integrable.

2. Main results

A few definitions need to be recalled. Let T be a metric space, By the Borel o-field on
T and (2, A, P) a probability space. A random probability measure on T is a mapping
N on Q x By such that: (i) N(w,-) is a probability on By for each w € Q; (ii) N(-, B)
is A-measurable for each B € Br. Let (Z,,) be a sequence of T-valued random variables
and N a random probability measure on 7. Both (Z,,) and N are defined on (9,4, P).
We say that Z,, converges stably to N in the case where

P(Z,e-|H)— E(N(-)|H) weakly for all H € A such that P(H) > 0.

Clearly, if Z,, — N stably, then Z,, converges in distribution to the probability law
E(N(")) (just let H=1). Stable convergence has been introduced by Rényi in [17] and
subsequently investigated by various authors; see [9] for more information.

Next, we say that D C B is countably determined in the case where, for some fixed
countable subclass Dy C D, one obtains supgep, [V1(B) — v2(B)| = supgep [V1(B) —
v2(B)| for every pair v1,vs of probabilities on B. A sufficient condition is that for some
countable Dy C D, and for every € > 0, B € D and probability v on B, there is By € Dy sat-
isfying v(BABy) < . Most classes D involved in applications are countably determined.
For instance, D = {(—o0,t]:t € R*} and D = {closed balls} are countably determined if
S =R and B is the Borel o-field. As another example, D = B is countably determined
if B is countably generated.

We are now in a position to state our main result. Let N be a random probability
measure on R, defined on the measurable space (S°°,B%), and let @) be a probability on
(§°°,B°).

Theorem 1. Let D be countably determined. Suppose |CSL|| — N stably under Q, and
(|Wyl| :n > 1) is uniformly integrable under P and Q. Then,

1Cnll = Vrllpn — anll = N stably whenever P < Q.
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Proof. Since D is countably determined, there are no measurability problems in taking
suppgep- In particular, ||W, || and ||Cy,|| are random variables and ||C,, || is G,-measurable.
Let f be a version of % and Uy, = f — Eq(f|Gn). Then,

Ca(B) = E(Wo(B)|Gn) = EQ%Z;@%)

EQ(Uan(B)|gn)
Eq(f1Gn)

P-a.s., for each B € B.

Letting M,, = Eo(f1G0)

and taking suppgcp, it follows that

|CR|| — My, < ||Cn|| < |ICE|| + M,  P-as.

We first assume f to be bounded. Since ||C%|| — N stably under @, given a bounded
random variable Z on (5°°,B°), one obtains

[eticgnzag— [N@)zaQ
for each bounded continuous ¢:R — R, where N(¢) = /¢(x)N(-,dx).

Letting Z = fIy/P(H) with H € B> and P(H) > 0, it follows that ||C2| — N stably
under P. Therefore, it suffices to prove that FM, — 0. Given £ > 0, since ||, ] is
uniformly integrable under @, there exists some ¢ > 0 such that

3

sup f

for all n.

EQ{IWallIgiw, >ep ) <

Since M, is G,-measurable,

EM, = Eq(fMn) = EQ(EqQ(f|Gn)Mn) = EQ(|Un|[|Wnl])
< cEg|U, |+ (Supf)EQ(||Wn||I{||WnH>c}) < cEq|Uy| +¢ for all n.

Therefore, the martingale convergence theorem implies that

limsup EM,, < climsup Eg|U,| +c=c¢.
n n

This concludes the proof when f is bounded.

Next, let f be any density. Fix k > 0 such that P(f <k) >0 and define K = {f <k}
and Pk () = P(|K). Then, Px has the bounded density fIx/P(K) with respect to Q.
By what has already been proven, ||Cl*|| — N stably under P, where

(B)— _ B{IxWa(B)Gn)
Ol (B) = Ep (Wa(B)IG,) = e

Pg-a.s.
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LAY
e g S LA L)

§CE|Rn|+E{||Wn||f{||wn|‘>c}} for all ¢ > 0.

Letting R,, = Ix — E(Ix|G,), it follows that

E{R,W,(B)|Gn}
E(Ik|Gn)

E{Ig||C, — CP||} = E{IKsu
BeD

<E{IK

Since E|R,| — 0 and ||W,,]| is uniformly integrable under P, arguing as above gives that

E{Ik||Cp — |1}

— |k <
BrylICall - 071 < =0

— 0.

Therefore, ||C),|| — N stably under Pk. Finally, fix H € B>, P(H) > 0 and a bounded
continuous function ¢:R — R. Then P(HNK)=P(HN{f <k}) >0 for k sufficiently
large and

P(H)|E(o(Cnl)H) = E(N(¢)|H))]
<2sup|¢|P(f > k) + |E(o([|Cnl)|H N K) — E(N(¢)[H N K)|.

Since E(¢(||Cr|)JHNK) — E(N(¢)|[HNK) asn — oo and P(f > k) — 0 as k — oo, this
concludes the proof. O

Next, we deal with the particular case @ = Qq, where Qg is a Ferguson—Dirichlet law
n (8%, B>). If P« Qo with a density satisfying a certain condition, the convergence
rate of ||, — ay|| can be remarkably improved.

Theorem 2. Suppose D is countably determined and sup,, Eq,||Wy||*> < co. Then,
V|| Crll = nllpn — an|| converges a.s., provided P < Qo and

dpr
dQo’

Proof. Let D, (B)=+/nCy(B). Then, || D,] is G,-measurable (as D is countably deter-
mined) and
)

Eqy(f*) — Eg,{Eq,(f1Gn)*} =0 (%) for some version f of ——

n+1

ZIB — (n+ 1) E(u(B)|Gn+1)

E([|[Dntall|Gn) = (Sup

n+1
= 5| <ZIB |gn>—<n+1>E<u<B>|gn>
" pepl? ZIB ) = nE(u(B)|G.)| =Dull  as.
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Since || D,|| is a G,-submartingale, it suffices to prove that sup,, E|| D, || < co.
Let Up, = f — Eo(f|Gn), where Ey stands for Eq,. By assumption, there exist ¢1,c¢3 >0
such that

Eo|[Whl? <ec1,  nEU2=n{Eo(f?) — Eo(Eo(f|Gn)*)} <co  for all n.
As noted in Section 1, since Qg is a Ferguson—Dirichlet law, there is an o > 0 such that

V||| = v/ sup |Eo(Win(B)|Gn)| <o for all n.
BeD

Define M,, = W and recall that ||C,|| < ||C9°| + M, P-a.s.; see the proof

of Theorem 1. Then, for all n, one obtains
E||Dy| = vnE|Cyll < Vn(E||CZ°|| + EM,,) < o+ v/nEo(fM,)
— o+ VRE(|UlWall) < o+ v/ BoUZ B [Wal?
<a++eanEyU?2 <a+ . /cics. O

Finally, we clarify a point raised in Section 1.

Remark 3. There is a long list of (countably determined) choices of D such that

sup B|Wy||F <c(k)  forall k> 1, if X is iid.,
where ¢(k) is some universal constant; see, for example, Sections 2.14.1 and 2.14.2 of [21].
Fix one such D, k> 1, and suppose that S is Polish and B is the Borel o-field. If X is
exchangeable, then de Finetti’s theorem yields E(||W,,||*|T) < ¢(k) a.s. for all n, where T~

is the tail o-field of X. Hence, E||W,||¥ = E{E(|W,||*|T)} < c(k) for all n. This proves
inequality (2).

3. Exchangeable data with finite state space

When X is exchangeable and S finite, there is some overlap between Theorem 1 and a
result of Bernstein and von Mises.

3.1. Connections with the Bernstein—von Mises theorem
For each € in an open set © C R¥, let Py be a product probability on (S, B>) (that is,

X is i.i.d. under Py). Suppose the map 6 — Py(B) is Borel measurable for fixed B € B*®.
Given a (prior) probability 7 on the Borel subsets of O, define

P(B) = / Py(B)r(df),  BeB>.
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Roughly speaking, the Bernstein—von Mises (BvM) theorem can be stated as follows.
Suppose 7 is absolutely continuous with respect to Lebesgue measure and the statistical
model (Py: 0 € O) is suitably “smooth” (we refer to [13] for a detailed exposition of what
“smooth” means). For each n, suppose that 6 admits a (consistent) maximum likelihood
estimator é\n Further, suppose the prior m possesses the first moment and denote by 67
the posterior mean of 6. Then,

Vi@, —0%) 250

for each 0y € © such that the density of 7 is strictly positive and continuous at 6.

Actually, the BvM theorem yields much more than asserted; what is reported above is
just the corollary connected to this paper. We refer to [13] and [14] for more information
and historical notes; see also [18].

Assuming a smooth, finite-dimensional statistical model is fundamental; see, for ex-
ample, [11]. Indeed, the BvM theorem does not apply when the only information is that
X is exchangeable (or even c.i.d.) and P < @ for some reference probability ). One
exception, however, is when S is finite.

Let us suppose

S={x1,..., Tk Tpt+1}, X is exchangeable, P(Xy=x)>0
for all z € S and D =B = power set of S.

Also, let A denote Lebesgue measure on R* and 7 the probability distribution of

0= (:u{xl}a : "hu{xk})'

As noted in Section 1, m < X if and only if P < Qg for some choice of Q. Since D
is finite and X exchangeable under P and Qq, ||[W,|| is uniformly integrable under P
and Q. Thus, Theorem 1 yields ||Cy]| % 0 whenever m < X. On the other hand, 7 is
the prior distribution for this problem. The underlying statistical model is smooth and
finite-dimensional (it is just a multinomial model). Further, for each n, the maximum
likelihood estimator and the posterior mean of # are, respectively,

O = {1}y pnfan}), 05 = (an{@1},. . an{an}).

Thus, the BvM theorem implies that ||C,,|| L0, provided 7 < A and the density of 7 is
continuous on the complement of a 7-null set.

To sum up, in this particular case, the same conclusions as from Theorem 1 can be
drawn from the BvM theorem. Unlike the latter, however, Theorem 1 does not require
any conditions on the density of .

3.2. Some consequences of Theorems 1 and 2

In this subsection, we focus on S ={0,1}. Thus, D = B = power set of S and A\ denotes
Lebesgue measure on R. Let N(0,a) denote the one-dimensional Gaussian law with mean
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0 and variance a > 0 (where N(0,0) = dg). Our first result allows 7 to have a discrete
part.

Corollary 4. With S=1{0,1}, let w be the probability distribution of u{1} and
A={0€]0,1]:7{6} >0}, A={we S u(w,{1}) € A}.
Define the random probability measure N on R as
N = (1= L)oo + LN (0, u{1}(1 — p{1})).
If X is exchangeable and 7 does not have a singular continuous part, then
Cp{l} = N stably and ||Cy|| — Noh™* stably,

where h(z) = |z|, € R, is the modulus function.

Proof. By standard arguments, the corollary holds when w(A) € (0,1), provided it holds
when 7(A) =0 and 7(A) =1. Let 7(A) =0. Then, 7 < A as 7 does not have a singular
continuous part, and the corollary follows from Theorem 1. Thus, it can be assumed
that w(A) = 1. Since C,,{0} = —C, {1}, ||Cy|| = |Cr{1}| and the modulus function is
continuous, it suffices to prove that C, {1} — N stably.

Next, exchangeability of X implies that W,{1} — N(0,u{1}(1 — p{1})) stably; see,
for example, Theorem 3.1 of [6]. Since m(A) =1, we have N = N(0, u{1}(1 — p{1})) a.s.
Hence, it is enough to show that E|C, {1} — W,{1}| — 0.

Fix € >0 and let M,, = W, {1}. Since X is exchangeable, M, is uniformly integrable.
Therefore, there exists some ¢ > 0 such that

PR

sup E(| M |I{jar, 5e}) <

Define ¢(z) =z if |z| <¢, ¢(x) =c if > ¢, and ¢(x) = —c if © < —c. Since Cp, {1} =
E(M,|G,) a.s., it follows that

E|C{1} = W {1} < E|E(Mn|Gn) — E($(My)|Gn)|
+ E[E(¢(My)|Gn) — ¢(Mn)| + E|¢(Mn) — My|
< E|E((Mn)[Gn) — ¢(Mn)| + AE(|Mp|Ijag,|>c})
< E|E(¢(M)|Gn) — ¢(M,)| + ¢ for all n.

Write A = {a1,a2,...} and M, j = /n(p,{1} — a;). Since o(M, ;) C G, and P(pu{1} €
A) =7(A) =1, one also obtains

=Y EIE((Ma ) {ui1y=a;31Gn) = #(Mu i) Iiu(1)=a,]
7
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= ZElfb(Mn,j){P(u{l} =a;|Gn) = Iiu{1y=a,) }|

<c) EIP(uf1} = a;|Gn) — Iugiy=ayl +2¢ Y 7{a;}  for all m,n.

j=1 j>m

By the martingale convergence theorem, E|P ({1} = a;|Gn) — I{{1})=a,}| — 0 as n — oo,
for each j. Thus,

hmsupE|C {1} = W, {1} <E—|—2CZ7T{GJ} for all m.

j>m

Taking the limit as m — oo completes the proof. O

If 7 is singular continuous, we conjecture that C, {1} converges stably to a non-null
limit. However, we do not have a proof.

In the next result, a real function g on (0, 1) is said to be almost Lipschitz in the case
where 2+ g(z)2%(1 — 2)® is Lipschitz on (0, 1) for some reals a,b < 1.

Corollary 5. Suppose S ={0,1}, X is exchangeable and 7 is the probability distribution
of p{1}. If ™ admits an almost Lipschitz density with respect to A, then \/n||Cy|| converges
a.s. to a real random variable.

Proof. Let V = p{1}. By assumption, there exist a,b <1 and a version g of d—’; such

that ¢(0) = g(0)0*(1 — 0)® is Lipschitz on (0,1). For each u1,us > 0, we can take @y such
that V' has a beta-distribution with parameters uy,us under Qy. Let Qg be such that V'
has a beta-distribution with parameters u; =1 —a and us =1 — b under @¢. Then, for
any n>1 and x1,...,2, € {0,1}, one obtains

PXl—J?l,... Xn—l‘n)

/orl— n=r(d)

/(,m oy —r—b(8) 40

= c/VT(l — V)" (V) dQo, where r = Z@ and ¢ > 0 is a constant.

i=1

Let h = c¢. Then, h is Lipschitz and f = h(V) is a version of ddQPO.
Let V,, = Eo(V|Gy), where Ey stands for Eq,. Since h is Lipschitz,

|f = Eo(f1Gn)l < [R(V) = h(Va)| + Eo(|h(V) = h(V2)[|Gn)
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where d is the Lipschitz constant of h. Since Ey||C%°||? < Eo||W,||? and
ValV = V| = |CR {1} = W {1} < |C2 || + [[Wall,
it follows that

Eo(f?) = Eo(Eo(f19n)*) = Eo{(f — Eo(£1Gn))"} S Ad*Eo{(V — V2)*}

4d? 164>
< B ({2 + IWall)?} < 2 By W2

Since sup,, Eo||Wy||? < oo, we have Ey(f?) — Eo(Eo(f|Gn)?) = O(1/n). An application of
Theorem 2 completes the proof. O

Corollaries 4 and 5 deal with S ={0,1}, but similar results can be proven for any finite
S; see also [12] and [19].

4. Generalized Pdlya urns

In this section, based on Examples 1.3 and 3.5 of [6], the asymptotic behavior of ||C,, ||
is investigated for a certain c.i.d. sequence.
Let (), By) be a measurable space, B+ the Borel o-field on (0, 00) and

S=Yx(0,00), B=By® B, Xn=n,Zpn),
where Y, (w) = yn, Zn(w) = 2, for all w = (y1, 21, Y2, 22,...) € S™.
Given a law P on B, it is assumed that

PY,eB " ZiIg(Y;
P(Yn-{—l S B|gn) = a ( ! o l—%;z_é B( ) a.s., 1 Z 1) (4)
=11

P(ZnJrl€C|X1,...,Xn,yn+1)=P(Z1GC) a.s., n >0, (5)

for some constant o > 0 and all B € By,C € B;. Note that (Z,) is i.i.d. and Z,11 is
independent of (Y1,21,...,Y,, Z,,Yn11) for all n> 0.

In real problems, the Z,, should be viewed as weights, while the Y,, describe the phe-
nomenon of interest. As an example, consider an urn containing white and black balls.
At each time n > 1, a ball is drawn and then replaced together with Z, more balls of
the same color. Let Y, be the indicator of the event {white ball at time n} and suppose
that Z, is chosen according to a fixed distribution on the integers, independently of
Y1,Z1,...,Y0_1,Z,-1,Ys). The predictive distributions of X are then given by (4)—(5).
Also, note that the probability law of (Y},) is Ferguson—Dirichlet in the case where Z,, = 1
for all n.

It is not hard to prove that X is c.i.d. We state this fact as a lemma.

Lemma 6. The sequence X assessed according to (4)-(5) is c.i.d.
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Proof. Fix k >n >0 and A € By ® By. By a monotone class argument, it can be
assumed that A =B x C, where B € By and C € B,. Further, it can be assumed that
k=n+2. Let n=0 and Gy be the trivial o-field. Since X9 ~ X; (as is easily seen),
E(IB (Yé)[c(Zg”Qo) = E(IB (Yl)Ic(Zl)|g0) a.s. If n 2 ]., define

Q,ﬁ = O'(Xl, .o .,Xn, Zn+1).
Noting that E(Ip(Yn+1)|G;) = E(Ig(Yn+1)|Gn) a.s., one obtains
E(Ip(Yn+2)|G,) = E{E(Ip(Yn+2)|Gn+1)|9, }

_aPM €B)+3 L, Zidp(Yi) + Zni1 E(Ig(Yn41)9;,)
a+ 4 7

_ (a+ 30 Z)E(Ip(Yei1)|Gn) + Zns1 E(Ig(Yn41)|Gn)
0“"2?:11 Zi .

=E(Ip(Yn+1)|Gn) = E(I5(Yn41)[G,)  as.

Finally, since G,, C G, the previous equality implies that

E(I(Ynt2)Io(Znt2)|Gn) = P(Z1 € C)E{E(Ip(Yn+2)|9,)|Gn}
= P(Z1 € O)E{E(Ip(Yn+1)]G,)|Gn}
— B (Yas)Ie(Zas1)lGn)  as.
Therefore, X is c.i.d. O

Usually, one is interested in predicting Y,, more than Z,,. Thus, in the sequel, we focus
on P(Y,4+1 € B|G,). For each B € By, we write

Cn(B) =Cp(B x (0,00)), an(B) = an(B x (0,00)) = P(Yn41 € B|Gy),

and so on.
In Example 3.5 of [6], assuming EZ} < oo, it is shown that

5 var(Zy)

Cn(B) = N(0,0%) stably, where o7 = AL
1

w(B)(1 = u(B)).

Here, we prove that C,, converges stably when regarded as a map C,, : S°° — [*°(D), where
[*°(D) is the space of real bounded functions on D equipped with uniform distance; see
Section 1.5 of [21]. In particular, stable convergence of C,, as a random element of [°°(D)
implies stable convergence of ||Cy,|| =supgcp |Cn(B)].

Intuitively, the stable limit of C,, (when it exists) is connected to the Brownian bridge.
Let By, Bs,... be pairwise disjoint elements of By and

k
D={By x (0,00):k>1},  To=0, Tpi=Y_ u(B).
i=1
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Also, let G be a standard Brownian bridge process on some probability space (Qo, Ao, Fo).
For fixed w € S,

var(Z7)

L(W,Bk): _EZH

{G(Tk(w)) = G(Th-1(w))}
is a real random variable on (0,49, Py). Since the By are pairwise disjoint and G has

continuous paths, L(w,Bg) — 0 as k — co. It thus makes sense to define M (w,-) as the
probability distribution of L(w) = (L(w, B1), L(w, Bs),...), that is,

M(w,A)=Py(L(w) € A) for each Borel set A C [°°(D).

Similarly, let N(w,-) be the probability distribution of sup,>, [L(w, By)|, that is,

N(w,A) =P, (sup |L(w, Bg)| € A) for each Borel set A C R.
k>1

Theorem 7. Suppose By, Ba,... € By are pairwise disjoint and D, M, N are defined
as above. Let X be assessed according to (4)-(5) with a < Zy <b a.s. for some constants
0<a<b. Then,

sup E||W,|* < ¢ P(EEUBk) (6)
n k

for some constant ¢ independent of the By, and C, — M stably (in the metric space
1°°(D)). In particular, ||Cy|| — N stably.

Let ()1 denote the probability law of a sequence X satisfying (4)—(5) and a < Z; <b a.s.
In view of Theorem 7, ()1 can play the role of @) in Theorem 1. That is, for an arbitrary
c.i.d. sequence X with distribution P, one has ||C)|| — N stably, provided P < Q1 and
|IW.,.|| is uniformly integrable under P. The condition of pairwise disjoint By, is actually
rather strong. However, it holds in at least two relevant situations: when a single set B
is involved, and when S = {z1,x2,...} is countable and By, = {z}} for all k.

Proof of Theorem 7. This proof involves some simple but long calculations. Accord-
ingly, we provide only a sketch of the proof and refer to [7] for details.

Since X is c.i.d., for fixed B € By, one has a,(B) = E(u(B)|G,) a.s. Hence, (an,(B):n >
1) is a G,-martingale with a,,(B) =% 1(B) and this implies that

El(anir(2) - n(8)") = B (L (0s(8) - asa(8)) | = 3 El(as(8) - asea (3}

i>n i>n

Replacing a;(B) by (4) and using the fact that a < Z; <b a.s. for all 4, a long but

straightforward calculation yields >° .., E{(a;(B) — aj+1(B))*} < £ P(Y1 € B), where
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c1 is a constant independent of B. It follows that

Ellan 1 =l = B{sup(an1(Bx) = u(Be)* } < 3= Bl(ans (Br) — u(Bi)’)
k

= >3 Bl(a;(Bi) — g (B)*} < T P(Yi € By)
k

k j>n

c
= —1P<Y1 S UBk) as the Bj, are pairwise disjoint.
" k
Precisely as above, after some algebra, one obtains
2 _ C2
Bl — analP < 2, [P(vi €U, )
n
k
for some constant ¢y independent of By, Bs, . ... Therefore,

B =1l ~ i < 20l — ana |+ 20l < [P(vi e U
k

where ¢ =2(c; + ¢2). This proves inequality (6).
It remains to prove that C,, — M stably (in the metric space [*°(D)). For each m > 1,
let 3,, be the m x m matrix with elements

By Theorems 1.5.4 and 1.5.6 of [21], for C,, — M stably, it is enough that:

(i) (finite-dimensional convergence):
(Cr(B1),...,Cn(Bn)) = Nim(0,%,,)  stably for each m > 1,

where N, (0,%,,) is the m-dimensional Gaussian law with mean 0 and covariance matrix
Lm;
(ii) (asymptotic tightness): for each €, > 0, there exists some m > 1 such that

limsupP( sup |Cn(By) — Ch(Bs)| > 6) <.

r,8>m

Fix m>1, by,...,b, € R and define R,, =", byIp,(Yy,). Since (R, :n > 1) is c.id.,
arguing exactly as in Example 3.5 of [6], one obtains

E?:l {Ri B E(Rn+1 |gn
Jn

Zbkcn(Bk) = )} —>N(O,Zbkbjok,j) stably.
k=1 k.j
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Since by, ..., by, are arbitrary, (i) holds. To check (ii), given €,d > 0, take m such that

P(Y1 e Br) < (f—f)Q,

r>m

where ¢ is the constant involved in (6). By what has already been proven,

P( sup |Cn(B,) — Cn(Bs)| > 5) < P(2 sup |G (B,)| > e)

r,8>Mm r>m

< P(zE(ngg Wa(BG ) > €) < éE{ngg W, (B,)?
U BT) < 6.

4
< —g\/P(Yle
3
r>m

Thus, (ii) holds and this completes the proof. O
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