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In the inflationary universe, there can be light fields other than the inflaton. We explore a pos-
sibility that such light fields source the primordial perturbations, while minimally affecting the
inflaton dynamics. We show that during inflation, fluctuations of the light fields can be converted to
adiabatic curvature perturbations, which accumulate and become significant by the end of the infla-
tionary era. An additional goal of this work is to distinguish between light fields which can/cannot
be ignored during inflation. Such criteria become useful for examining cosmological scenarios with
multiple fields. As concrete examples, our results are applied to D-brane inflation models. We con-
sider effects from KK modes (oscillation modes) of wrapped branes in monodromy-driven large-field
models, and angular directions of throat geometries in warped D-brane inflation.

I. INTRODUCTION

The initial conditions for the Hot Big Bang cosmology can be set by having an exponential expansion phase in the
early universe [1–3]. A simple way to drive such an inflationary stage is to have a scalar field, dubbed the inflaton,
whose potential energy dominates the universe. However, microscopic descriptions of inflationary cosmology in many
cases predict, or even require the existences of additional light fields during this era. One may expect that such light
fields show up merely as tiny corrections to the inflaton action, having negligible influences on the inflaton dynamics.
In this work, we show that even in such cases, light fields can leave significant imprints on the primordial curvature
perturbations. We explore the possibility that light fields other than the inflaton generate the dominant contributions
to the curvature perturbations while minimally affecting the inflaton dynamics. This may open up new possibilities
for inflationary models in which the inflaton field cannot produce perturbations compatible with observational data.

An additional goal of this work is to distinguish between light fields which can and cannot be ignored during
inflation. This is related to questions such as: When can we treat multi-field inflation models as single-field ones?
What are the effects of unstabilized moduli during inflation? Implications of light fields on cosmology after inflation
have been discussed extensively as the moduli problem [4–6], while in this paper we discuss the effects of light fields
during inflation, especially on the generated curvature perturbations. We discuss conditions under which the existence
of light fields can/cannot be ignored. This may have relevance to mechanisms such as curvaton [7–10] and modulated
reheating [11, 12] scenarios which require (and often simply assume) light fields to have no effects during inflation.

How light fields generate curvature perturbations can simply be understood as follows: When a light field σ shows up
as corrections to the inflaton action, then the number of e-foldings dN obtained within a certain inflaton field range dφ
also becomes dependent on σ, dN = F (φ, σ) dφ. Therefore it is clear that fluctuations of σ lead to inhomogeneous
expansion of the universe, generating cosmological perturbations.

One can also consider the light field as one of the inflatons, and interpret the system as a multi-field inflation model.
Then the perturbations can be understood as arising from patches of the universe taking different paths in field space,
where the entropy perturbations are converted to curvature perturbations during inflation (see e.g. [13–16]). We
will see that such perturbations originating from the fluctuations of σ can become dominant over the curvature
perturbations from φ.

As microscopic examples, our results are applied to D-brane inflation models in string theory. We discuss the model
proposed in [17] where monodromy of wrapped branes allows large-field inflation. In this paper we further analyze
effects of KK modes (oscillation modes) of the wrapped branes which can become light during inflation. We also
comment on D-brane inflation in a warped throat geometry [18] with light angular directions.

The rest of the paper is divided as follows. We first study effects of light fields when they correct the inflaton action
in the form (1) in Section II. Then in Section III, we further discuss cases where the light field corrections show up
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in different ways, as in (26) and (39). The results are applied to D-brane inflation models in Section IV, where the
details of the calculations are shown in the appendix. We present our conclusions in Section V.

II. INFLATION MODULATED BY LIGHT FIELDS

In this paper we study implications of having additional light fields manifesting themselves as corrections to the
inflaton action. For this purpose, let us start by considering the following toy Lagrangian,

L√
−g

= −1

2
gµν∂µφ∂νφ

(
1− f σ2

µ2−mφm

)
− 1

2
gµν∂µσ∂νσ − V (φ)

(
1 + g

σ2

µ2−mφm

)
, (1)

where the inflaton (φ) kinetic term and potential are modified by modulus (σ) corrections. (σ can also be called the
inflaton, but for convenience we call φ the inflaton and σ the modulus in this paper.) Though we have omitted the
Einstein-Hilbert term, we are assuming Einstein gravity. Here µ is a constant with mass dimension one, and f , g are
dimensionless constants. Lagrangians of this type show up in many cases, e.g., when having nonminimally coupled
fields in the Jordan frame, from nonminimal Kähler potentials in supersymmetric models. Later in Section IV we
give explicit examples in the context of D-brane inflation models. One may encounter microscopic models involving
more complicated moduli corrections, but the crucial points can be captured by studying the above Lagrangian.
Cases where the σ-corrections to the inflaton kinetic term and potential have different minima are later studied in
Subsection III B.

We discuss curvature perturbations arising from fluctuations δφ and δσ. Since we focus on cases where the σ-
corrections to the inflaton action is small, δφ almost directly generates adiabatic curvature perturbations at the time
when the fluctuations exit the horizon. On the other hand, δσ mainly produces entropy perturbations which can be
converted to curvature perturbations during inflation. This kind of curvature perturbations arise due to δσ kicking
patches of the universe to different classical trajectories in the φ − σ plane, generating perturbations in the number
of e-foldings δN among different trajectories. As we will soon see, when the entropy perturbations from δσ are
sufficiently transformed to adiabatic ones, then ∂N/∂σ becomes dominant over ∂N/∂φ.

The modulus correction to the inflaton kinetic term (i.e. the term with the coefficient f in (1)) modifies the
inflaton velocity, whereas the correction to the inflaton potential (i.e. the term with g) modifies the inflaton velocity
as well as the Hubble parameter during inflation, cf. (11) and (12). Therefore inflation proceeds differently among
different trajectories in the φ− σ plane. δN produced in this way is amplified when the trajectories during inflation
diverge and differences among patches expand. On the other hand, in cases where the trajectories converge, the later
transformation of the entropy to adiabatic perturbations is suppressed.1 In this paper, no matter the trajectories
diverge or converge during inflation, we assume that after the inflationary era the trajectories converge to a single
one (as is the case for the examples in Section IV).

Now let us actually compute δN produced from δφ and δσ, and see under which conditions the curvature pertur-
bations sourced by the modulus field become significant.

In a flat FRW universe, the equations of motion for φ and σ, and the Friedmann equation are

φ̈

(
1− f σ2

µ2−mφm

)
+ 3Hφ̇

{
1−

(
1 +

2

3

σ̇

Hσ
− m

6

φ̇

Hφ

)
f

σ2

µ2−mφm

}
= −V ′

{
1 +

(
1− mV

V ′φ

)
g

σ2

µ2−mφm

}
, (2)

σ̈ + 3Hσ̇ = −(2gV + fφ̇2)
σ

µ2−mφm
, (3)

3H2M2
p =

1

2
φ̇2
(

1− f σ2

µ2−mφm

)
+

1

2
σ̇2 + V

(
1 + g

σ2

µ2−mφm

)
, (4)

where derivatives with respect to φ are denoted by primes, and time t derivatives by overdots.

1 More precisely, distances among trajectories in field space do not necessarily reflect how differently inflation proceeds among patches.
One should keep in mind that the diverging/converging discussion in the text is adopted for illustrative purposes.
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We assume in this paper that φ is under slow-roll inflation, though estimations can be carried out in a similar
manner with inflation models giving different inflaton dynamics, e.g. rapid-roll [19–21], Dirac-Born-Infeld (DBI)
inflation models [22, 23]. Also, we focus on cases where the σ-corrections to the inflationary dynamics are tiny,
therefore, (2) and (4) are approximated by

3Hφ̇ ∼ −V ′, 3H2Mp2 ∼ V. (5)

We further assume

|g| & |f | (6)

(cases with g = 0 are discussed in Subsection III A), and that σ is slow-rolling under the approximation

3Hσ̇ ∼ −2gV
σ

µ2−mφm
. (7)

Then one can check that the necessary conditions for the approximations (5) and (7) to hold are the absolute values
of the following quantities be sufficiently smaller than one,

ε ≡
M2
p

2

(
V ′

V

)2

, η ≡M2
p

V ′′

V
,

g
σ2

µ2−mφm
,

mV

V ′φ
g

σ2

µ2−mφm
,

m
φ̇

Hφ
∼ −m

M2
pV
′

φV
, g

M2
p

µ2−mφm
,

(8)

where roughly speaking, the first line is the slow-roll conditions for φ, the second line for the modulus corrections to
be minimal, and the third line for slow-rolling of σ. The smallness of the last quantity in the third line is equivalent
to the effective mass of σ being smaller than the Hubble parameter, i.e. m2

σ � H2.

To make the discussion concrete, henceforth we consider large-field inflation with

V (φ) ∝ φn, where n = O(1). (9)

Computations with other inflaton potentials are straightforward, though we expect results obtained from (9) to be
rather general. Implications for other potentials including small-field models will be briefly discussed at the end of
the section. Then, given |m| ≤ O(1), the condition (8) is translated to

M2
p

φ2
� 1,

∣∣∣∣g σ2

µ2−mφm

∣∣∣∣� 1,

∣∣∣∣∣g M2
p

µ2−mφm

∣∣∣∣∣� 1. (10)

Now we need approximations more precise than (5) for the inflaton dynamics. Dropping terms in (2) and (4) that

are clearly smaller than order g σ2

µ2−mφm corrections to (5), one can write down

φ̈+ 3Hφ̇

(
1− f σ2

µ2−mφm

)
' −V ′

{
1 +

(
1− m

n

)
g

σ2

µ2−mφm

}
, (11)

3H2M2
p '

1

2
φ̇2 + V

(
1 + g

σ2

µ2−mφm

)
. (12)

Hence the number of e-foldings dN = da/a is given by

dN = Hdt = H
dφ

φ̇
' − V dφ

M2
pV
′

{
1 +

(m
n
g − f

) σ2

µ2−mφm
+O(ε, η)

}
, (13)

where we have expressed terms φ̇2

V × O(1), φ̈
V ′′ × O(1) as O(ε, η). One should note that unless m 6= 0, the modulus

correction to the inflaton potential (i.e. the term with g) is canceled between (11) and (12), and leaves no effect at
linear order in (13). Now, (5) and (7) give

dσ

dφ
=
σ̇

φ̇
∼ 2g

V

V ′
σ

µ2−mφm
, (14)



4

which is integrated to yield

ln
σ

σ∗
∼


2g

n
ln

φ

φ∗
(m = 2)

2g

n(2−m)

φ2−m − φ2−m∗
µ2−m (m 6= 2)

(15)

where σ∗ and φ∗ are their field values at some fixed time. Substituting (15) into (13) yields an expression of the
form dN = F (φ, φ∗, σ∗) dφ. (However, note that the errors of the leading order approximation can be amplified when
taking the exponential of both sides of (15) before substitution. |(terms in (10)) × (15)| � 1 is required for good

approximation.) By changing the variables (φ, φ∗, σ∗) → (φ̃, φ, σ), the number of e-foldings obtained from a point
(φ, σ) in field space to the end of inflation is expressed as

N (φ, σ) =

∫ φf

φ

F (φ̃, φ, σ) dφ̃, (16)

where φf is the value of φ at the end of inflation. Then by using the δN -formalism [24–27], the curvature perturbation
is given by

δN = N (φ+ δφ, σ + δσ)−N (φ, σ) =
∂N
∂φ

δφ+
∂N
∂σ

δσ + · · · . (17)

To leading order, the number of e-foldings obtained from (φ, σ) is

N ∼
φ2 − φ2f
2nM2

p

. (18)

Since the σ-corrections are small, the surface where inflation ends in field space is almost independent of the modulus
field. Therefore let us take φf as a constant for the moment. Later on, we justify this assumption. Then, the part of
δN linear in δφ is given by

∂N
∂φ
∼ V

M2
pV
′ =

φ

nM2
p

. (19)

This familiar result represents adiabatic curvature perturbations generated due to δφ pushing patches of the universe
along the classical trajectories in the φ− σ plane.2

The leading contribution for ∂N/∂σ comes from the second term in the curly brackets in (13). (Note that the
O(ε, η) terms may be larger than the second term, but their dependence on σ are schematically of the form ε =

ε0

(
1 +O

(
g σ2

µ2−mφm

))
with ε0 the value in the absence of modulus corrections, hence their contributions to ∂N/∂σ

are suppressed by O(ε, η).) Thus we obtain

∂N
∂σ
∼


1

2

(
2

n
− f

g

)
σ

M2
p

{
1−

(
φf
φ

) 4
n g
}

(m = 2)

1

2

(
m

n
− f

g

)
σ

M2
p

{
1− exp

(
4g

n(2−m)

φ2−mf − φ2−m

µ2−m

)}
(m 6= 2)

∼ 1

2

(
m

n
− f

g

)
σ

M2
p

{
1−

(σf
σ

)2}
.

(20)

Note that we have used (15) in moving to the last line.3 This shows that when σ has a positive effective mass
squared (i.e. g > 0, provided φ and µ being positive) and σ rolls towards zero, then ∂N/∂σ ∝ σ/M2

p . On the other

2 Contribution to ∂N
∂φ

from the σ2

µ2−mφm
term in (13) represents differences among trajectories, similar to ∂N

∂σ
. This, compared to (19),

is suppressed by g
σ2
f

µ2−mφm
. This factor can come close to or exceed unity only under m < 0 and σ2

f �M2
p .

3 When the σ-corrections are independent of φ, i.e. when m = 0, our results (19) and (20) can be checked to agree with the result (3.24)
in [13] where generic two-field inflation models with separable potentials are studied.
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hand, when the modulus has a tachyonic mass (i.e. g < 0) and |σ| grows, then adjacent trajectories diverge towards
the end of inflation and curvature perturbations are amplified by the factor −(σf/σ)2. Major conversion of entropy
perturbations from δσ to adiabatic curvature perturbations δN occurs at early (later) times for converging (diverging)
trajectories.

The ratio between linear contributions to δN from δφ (19) and δσ (20) takes the form,

∂N/∂σ
∂N/∂φ

= O(1)× σ

φ

{
1−

(σf
σ

)2}
. (21)

Especially under |σ| < |φ| which is expected to hold for most microscopic models (e.g., Section IV), then curvature
perturbations from σ can become dominant over that from φ only when the modulus has a tachyonic mass. It is
important to bear in mind that even when the absolute field value of σ is always smaller than that of φ, a large

growth of |σ| such that
∣∣∣σφ (σfσ )2∣∣∣ & 1 makes contributions from δσ significant. (However one should also note that

this “amplification factor” (σf/σ)2 is determined by φ and φf , cf. (20).)

Before turning to properties of curvature perturbations from δσ, let us briefly discuss possible corrections to the
above formulae. First of all, where inflation ends (which is roughly when the slow-roll parameters become of order
unity, i.e. φf = O(1) × Mp) is not a constant but is slightly shifted by the modulus corrections. This can be

written schematically in the form φf = φf0

(
1 +O

(
g

σ2
f

µ2−mφmf

))
with φf0 the value of φf in the absence of the σ-

corrections. Hence fluctuations of φ and σ can modulate φf , and curvature perturbations can be generated at the end
of inflation [28, 29]. Furthermore, we should also note that different trajectories in the φ − σ plane end inflation at
different energy densities. This starts the subsequent evolution of the universe from different temperatures, leading
to extra δN after inflation (see, e.g. [16]). However, one can check that as long as (10) holds during inflation, both
types of corrections are subdominant, i.e., such corrections sourced by δφ and δσ are negligible compared to (19) and
(20), respectively.4 We demonstrate the calculations only for the case we study in Subsection III A, but extending
the estimations there ((35), (36)) to the present case is straightforward.

We should also remark that in actual cases, the conditions (10) may break down during inflation. Inflation

approaches an end when M2
p/φ

2 → O(1), but can also be terminated by the σ-correction
∣∣∣g σ2

µ2−mφm

∣∣∣ approaching

unity. Meanwhile, inflation is not directly affected by
∣∣∣g M2

p

µ2−mφm

∣∣∣ → O(1), but this will accelerate/decelerate σ and

then the approximation (7) becomes invalid. Here, we emphasize that when σ2 � σ2
f , i.e. the trajectories converge,

most of the conversion of entropy to curvature perturbations occur at early times, hence the breakdown of (7) at
later times does not affect the result (20) significantly.5 But when σ2 � σ2

f , δN is generated substantially towards

the end of inflation and (10) is required all through in order to trust (20).

Now let us focus on the curvature perturbations (20) generated by σ. By using P1/2
δσ = H/2π, the power spectrum

is

Pζσ =

(
∂N
∂σ

)2(
H

2π

)2
∣∣∣∣∣
k=aH

, (22)

where the right hand side is to be estimated at the time of horizon crossing. Then its spectral index can be computed,

ns − 1 =
d lnPζσ
d ln k

∼
σ2
f + σ2

σ2
f − σ2

4g
M2
p

µ2−mφm
− n2

M2
p

φ2
, (23)

where one should recall that φf is fixed. In addition, non-Gaussianity is sourced by the second derivative of N with
respect to σ,

∂2N
∂σ2

∼ 1

2

(
m

n
− f

g

)
1

M2
p

{
1−

(σf
σ

)2}
. (24)

4 To be precise, only when σ ∼ σf , the additional δN sourced from δσ can become comparable to (20). However in such cases, curvature
perturbations from δσ are suppressed anyway (cf. (21)), and are negligible unless σ2 � φ2.

5 However, as discussed above, when (10) breaks down then additional δN produced at the end and after inflation may become non-
negligible.
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Defining the non-Gaussianity parameter simply as the ratio between the three-point function and the squared two-
point function, we arrive at

fNL =
〈δN 3〉
〈δN 2〉2

=
1

2

∂2N/∂σ2

(∂N/∂σ)2
∼
(
m

n
− f

g

)−1 M2
p

σ2 − σ2
f

. (25)

One clearly sees that when σ2
f � σ2 (which is required for σ with small field values to generate significant curvature

perturbations), then fNL ∝M2
p/σ

2
f and a sub-Planckian modulus field produces large non-Gaussianity.

Before ending this section, let us pause to note implications for inflation models other than with V (φ) ∝ φn. Given
other inflaton potentials, (14) is integrated to yield results different from (15), leading to different growing or damping
rate of |σ|. If then the growing rate of a tachyonic σ is large, as we emphasized in the discussions above, ∂N/∂σ
is significantly amplified. We also mention that for small-field (i.e. |φ| � Mp) slow-roll models, | VV ′φ | = 1√

2ε
|Mp

φ |
is always larger than unity (in contrast to when V (φ) ∝ φn where = O(1)). Then for m 6= 0 cases, the leading

modulation to the inflaton dynamics will be the mV
V ′φg

σ2

µ2−mφm term in the right hand side of (2).

III. CASES WITH OTHER TYPES OF MODULUS CORRECTIONS

In the previous section we have seen that light moduli with small field values can leave their imprints on primordial
curvature perturbations only when they receive tachyonic backreaction and their field values are amplified. However,
this is not necessarily the case when the modulus corrections enter the inflaton action in different manners. The two
interesting cases we study in this section are when the σ-correction only enters the inflaton kinetic term, and when
the σ-corrections in the inflaton kinetic term and potential have different minima.

A. Modulating only the inflaton kinetic term

First we study the case where the modulus correction only enters the inflaton kinetic term, i.e. g = 0 in (1). Here
σ modulates inflation without receiving significant backreaction.

For simplicity, we fix m in (1) to zero and study the Lagrangian

L√
−g

= −1

2
gµν∂µφ∂νφ

(
1− f σ

2

µ2

)
− 1

2
gµν∂µσ∂νσ − V (φ). (26)

Let us again consider large-field inflation with V (φ) ∝ φn, where n = O(1). Here σ receives an effective mass from
the inflaton kinetic term, therefore instead of (7) the following approximation is assumed,

3Hσ̇ ∼ −fφ̇2 σ
µ2
. (27)

Then (5) and (27) require the necessary conditions,

M2
p

φ2
� 1,

∣∣∣∣f σ2

µ2

∣∣∣∣� 1,

∣∣∣∣∣M2
p

φ2
f
M2
p

µ2

∣∣∣∣∣� 1, (28)

where the last condition is equivalent to m2
σ/H

2 � 1. Now, (5) and (27) are combined to yield

ln
σ

σ∗
∼ n

3
f
M2
p

µ2
ln

φ

φ∗
. (29)

Since now the effective mass of σ is suppressed by the slow-roll parameter ε, σ tends to roll less compared to the
previous section. Let us further assume ∣∣∣∣∣f M2

p

µ2

∣∣∣∣∣� 1, (30)
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and study cases where the modulus field is fixed during inflation, i.e. σ ∼ const. Then from

dN ' − V dφ

M2
pV
′

{
1− f σ

2

µ2
+O(ε, η)

}
, (31)

we arrive at

∂N
∂σ
∼ −

φ2 − φ2f
nM2

p

f
σ

µ2
∼ −2N f σ

µ2
, (32)

where N is the number of e-foldings obtained between φ and φf , cf. (18). Since σ ∼ const., its correction to the
inflaton dynamics stays constant all through inflation and the resulting curvature perturbation becomes proportional
to N . This means that the conversion of the entropy to curvature perturbations happen more at larger φ, where more
e-foldings are generated.

Note that (32) can also be obtained as a σ → σf limit of (20) with m = 0. (Remember that when m = 0, the
σ-correction to the inflaton potential had no effect on δN , cf. (13).) However we emphasize that in (20), σ ∼ σf

suppresses the curvature perturbation to |∂N/∂σ| � |σ/M2
p |. (Especially for m = 0,

∣∣∣g φ2

µ2

∣∣∣� 1 was the condition for

σ ∼ σf .) Whereas in the present case (32), one need not require
∣∣∣f φ2

µ2

∣∣∣� 1 for σ staying constant, therefore |∂N/∂σ|
can become larger than |σ/M2

p |. This is nothing but stating that σ tends to roll less in the present case due to the
small effective mass induced by the inflaton kinetic term.

Curvature perturbations from δφ is the same as in the previous section, i.e. (19). Then the ratio between contri-
butions from δφ (19) and δσ (32) is now

∂N/∂σ
∂N/∂φ

∼ −f σφ
µ2
, (33)

where we have used φ2 � φ2f = O(1) ×M2
p . For example, φ ∼ 10Mp, σ ∼ Mp, and f

M2
p

µ2 ∼ 1
10 make curvature

perturbations from δφ and δσ comparable.

Before continuing, let us look into additional δN produced at the end of and after inflation, which was briefly
discussed in the previous section.

Where inflation ends is shifted as φf = φf0

(
1 +O

(
f σ

2

µ2

))
where φf0 is the value in the absence of the σ-correction,

hence modulation of φf is of order (note that when σ stays constant, δφ does not modulate φf )

δφf
φf

= O
(
f
σ

µ2

)
δσ. (34)

This modulates (18) and yields

δNf ∼ −
φf
nM2

p

δφf = −
φ2f
nM2

p

O
(
f
σ

µ2

)
δσ. (35)

Since φ2 � φ2f , this contribution at the end of inflation is small compared to (32) which is mostly generated at large φ.
Further δN can be produced after inflation, due to the fact that the energy density is not equal on the surface

where inflation ends in field space. This effect can be estimated by computing the modulation of the potential energy
at the end of inflation,

δNc =
1

4

δVf
Vf

=
n

4

δφf
φf

= O
(
f
σ

µ2

)
δσ, (36)

where we have assumed that the universe becomes radiation dominated right after inflation ends. One sees that this
effect is of the same order as (35), hence can also be ignored.

Focusing on the curvature perturbation sourced by δσ (32), its spectral index (note especially that Pζ ∝ N 2 induces
ns − 1 ⊃ −2/N ) is

ns − 1 ∼ 2

(
− 1

N
+

Ḣ

H2

)
∼ −n(n+ 4)

M2
p

φ2
, (37)
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and the non-Gaussianity parameter defined as in (25) is

fNL ∼ −
1

4N
µ2

fσ2
∼ −n

2

M2
p

φ2
µ2

fσ2
. (38)

In this subsection we have mainly focused on the case where σ stays constant during inflation, but extending the
calculations to rolling σ is straightforward. Basically, as one can guess easily, ∂N/∂σ is reduced (amplified) for σ
with large positive (negative) m2

σ. However, in contrast to what we have studied in the previous section, one finds
that even in cases where σ rolls towards zero, the curvature perturbations sourced by sub-Planckian σ can exceed
that from super-Planckian φ.

B. σ-corrections with different minima

In actual cases, it may well be that the σ-corrections show up both in the inflaton kinetic term and potential, but
with different minima. Then after redefining σ so that the minimum of the potential correction is zero (and also
absorbing extra constant terms to φ ), we arrive at the Lagrangian

L√
−g

= −1

2
gµν∂µφ∂νφ

(
1− hσ

µ
− f σ

2

µ2

)
− 1

2
gµν∂µσ∂νσ − V (φ)

(
1 + g

σ2

µ2

)
. (39)

Now the linear σ-correction (i.e. the term with h) gives additional modulation. However for large σ, i.e. |σ| �
∣∣∣hf µ∣∣∣,

the h-term becomes negligible compared to the f -term. Then the difference in minima can be ignored and the previous
discussions are applied.

On the other hand when σ is small as |σ| �
∣∣∣εhgµ∣∣∣, then now the g-term becomes negligible, i.e., the leading

backreaction to σ, and modulation to the inflaton dynamics are both sourced by the σ-correction in the inflaton
kinetic term. Thus we recover the situation in Subsection III A.

A behavior unique to (39) arises when σ is in the intermediate range so that the σ-dynamics is controlled by the
g-term, while the leading modulation to the inflaton dynamics is given by the linear h-term.

If |g| & |f |, then the necessary conditions for (5) and

3Hσ̇ ∼ −2gV
σ

µ2
(40)

to hold under the Lagrangian (39) are that the absolute values of the following quantities to be smaller than one,

ε, η, h
σ

µ
, g

σ2

µ2
, g

M2
p

µ2
, ε

h

g

µ

σ
. (41)

The last quantity is required to be small so that the σ-dynamics (i.e. the right hand side of (40)) is given by the
g-term, not the h-term. (Some terms in (8) are absent here since we are considering the m = 0 case in (1) with an
additional linear h-term.) Then, computing the curvature perturbations from δσ as in Section II, now we obtain an
additional contribution from the h-term,

∂N
∂σ
⊃ ∂

∂σ

∫ φf

φ

Ṽ dφ̃

M2
p Ṽ
′
h
σ̃

µ
∼ − h

2g

µ

M2
p

(
1− σf

σ

)
. (42)

Note that this result holds for arbitrary inflaton potential V (φ). This contribution becomes dominant over that

from the f -term: ∂N
∂σ ⊃ −

f
2g

σ
M2
p

{
1−

(σf
σ

)2}
(this m = 0 result from (20) is also valid for arbitrary V (φ)) when

|σ + σf | �
∣∣∣hf µ∣∣∣. (Here, since m = 0, the g-term does not modulate dN at its linear order g σ

2

µ2 . However if |g| � |f |,
then its higher order contributions may exceed the linear order contribution from the f -term.) Thus, σ can source

curvature perturbations in a way different from the previous cases in the
∣∣∣εhgµ∣∣∣� |σ| � ∣∣∣hf µ∣∣∣ region.
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IV. EXAMPLES: LIGHT FIELDS IN D-BRANE INFLATION MODELS

For concrete realizations of the above discussions, let us study D-brane inflation models in string theory. Usually
in this class of models the position of a D-brane plays the role of the inflaton, but its dynamics can be modulated by
other physical degrees of freedom of the brane. In this section we focus on the extra spatial directions in the internal
manifold, and KK modes (oscillation modes) of wrapped branes.

A. Monodromy-driven inflation with wrapped D-branes

When inflation is driven by D-branes wrapped on cycles of the internal geometry [17, 30, 31], KK modes in the
wrapped direction(s) (i.e. oscillation modes) can modulate the zero mode dynamics. In this subsection we focus on
the model proposed in [17] where monodromy elongates the wrapped cycle and yields large-field inflation. In such
case the KK modes become more and more light as the cycle becomes large.6

In the paper [17], the authors consider ten-dimensional type IIA string theory compactified on an orientifold of a
product of two nil three-manifolds [32]. The nil three-manifold N3 has the geometry

ds2nil
α′

= L2
u1
du21 + L2

u2
du22 + L2

x

(
dx+

M

2
[u1du2 − u2du1]

)2

= L2
u1
du21 + L2

u2
du22 + L2

x(dx′ +Mu1du2)2,

(43)

(where x′ = x− M
2 u1u2) compactified by

(x, u1, u2)→ (x+ 1, u1, u2),

(x, u1, u2)→
(
x− M

2
u2, u1 + 1, u2

)
,

(x, u1, u2)→
(
x+

M

2
u1, u1, u2 + 1

)
.

(44)

Then assuming a D4-brane wrapped along the u2 direction and moving along u1 (with fixed x′), its position in the
u1 direction can become the inflaton.

Let us now derive the inflaton action obtained in [17], but this time including the KK modes. We give in the appendix
a general expression for the four-dimensional effective action obtained from a wrapped 4-brane. The formulae there
are applied to the present case by u1 → r and u2 → λ/2π. Henceforth, we set u1 = r and use r instead of u1. Then
for large r, i.e. r � Lu2

/MLx, the relevant six-dimensional part of the metric takes the form (A1) with

grr = α′L2
u1
≡ A2,

gλλ =
1

(2π)2
α′L2

xM
2r2 ≡ B2r2.

(45)

Then for zero B2 field in the world volume directions, and vanishing world volume gauge field strength, one can
compute the DBI (or simply the Nambu-Goto) action of the D4-brane of the form (A2). After integrating out the
wrapped direction, we obtain the four-dimensional effective action for the zero mode position of the brane with an
infinite tower of KK modes. (For detailed derivation, see the appendix.) The zero mode r0 and the KK modes rn
(n 6= 0) are almost canonically normalized by

φ ≡ 2

3
A(2πpT4B)1/2r

3/2
0 , ψn ≡ A(2πpT4B)1/2r

1/2
0 rn. (46)

6 For a brane wrapped along a direction λ1 with cycle length l1, the elongation of the wrapped cycle can be understood as the monodromy
allowing the brane to wrap multiple times m along another direction λ2 (with length l2), while spaced evenly in the λ1 direction.
Therefore the mass of the KK modes is of order mKK ∼ 1/ml2, cf. n2/p2 term in (A5). Furthermore, when the spacing between the
multiply wrapped brane becomes narrow, light open string modes can also emerge with mass mopen ∼ l1/mα′. However, we note that
these open strings stretching between the wrapped brane are basically heavier than the KK modes as long as the length scales of the
internal space are larger than the string scale, i.e. l1l2 > α′. We thank Hirosi Ooguri for helpful discussions on this point.
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Considering small oscillations around the zero mode position, i.e. |rn| � r0, or |ψn| � φ, the action up to two
derivatives and quadratic order in (rn, ∂µrn) is obtained as follows,

S =

∫
d4x
√
−g(4)

−1

2
(∂φ)2

1− 2

9

A2

B2

∑
n 6=0

n2

p2
|ψn|2

φ2
− 1

3

∑
n 6=0

|ψn|2

φ2

− 1

2

∑
n 6=0

(∂ψn)(∂ψn)

−
(

3πpT4B

A

)2/3

φ2/3

1 +
2

9

A2

B2

∑
n6=0

n2

p2
|ψn|2

φ2

− 1

3

∑
n 6=0

ψn
φ

(∂φ)(∂ψn)

 ,
(47)

where p is the winding number. Dropping the KK modes ψn, one recovers the inflaton action obtained in [17] with
potential V (φ) ∝ φ2/3. Here, the ψn-correction to the inflaton kinetic term can be understood as nonzero ψn increasing
the wrapped volume, therefore correcting the canonical normalization (46). The correction to the inflaton potential
is due to the brane tension damping the oscillation, which gives ψn effective mass which becomes lighter for larger φ,
i.e. for longer cycle. However, the KK modes also receive tachyonic instability from their coupling to the zero mode

motion (note that during inflation a3
∑ ψn

φ φ̇ψ̇n ' −
3
2a

3H φ̇
φ

∑
|ψn|2 + (total derivatives)). This effective tachyonic

mass can be seen explicitly if instead of φ we introduce

ϕ ≡ 2

3
A(2πpT4B)1/2r

3/2
0

1 +
3

8

∑
n 6=0

|rn|2

r20

 , (48)

for which the action becomes

S =

∫
d4x
√
−g(4)

−1

2
(∂ϕ)2

1− 2

9

A2

B2

∑
n 6=0

n2

p2
|ψn|2

ϕ2

− 1

2

∑
n 6=0

(∂ψn)(∂ψn)

−
(

3πpT4B

A

)2/3

ϕ2/3

1 +
2

9

A2

B2

∑
n 6=0

n2

p2
|ψn|2

ϕ2
− 1

9

∑
n 6=0

|ψn|2

ϕ2

 .
(49)

Basically, if A2 � B2 the lower KK modes obtain tachyonic instability. (One can image a cone which spreads out
quickly away from its tip.)

We comment that, as was discussed in [17], the N3 × Ñ3 space also allows a variant inflaton action. Given a
different configuration for the D4-brane (e.g. by wrapping the brane along the u2 − ũ2 direction while moving it in
a linear combination of u1 + ũ1 and u2 + ũ2 directions with u1 = ũ1), a metric grr ∝ r2, gλλ ∝ r2 can be realized
for large r, which gives an inflaton potential V (φ) ∝ φ2/5. One can check that in this case, the ψn-correction terms

proportional to n2

p2 take the form |ψn|2
µ4/5φ6/5 .

Going back to the action (47) or (49), the example values chosen in [17] for the parameters give A2

B2 = (2π)2
L2
u1

L2
xM

2 &

104, so for winding number p = O(1) the tachyonic instability is negligible. There, since the CMB scale leaves the
horizon at φ/Mp = O(10) for V (φ) ∝ φ2/3, the effective mass of ψn becomes heavier than the Hubble parameter, i.e.
the last condition of (10) is not satisfied. However, since the parameters can be shifted in variants of the construction,
let us give general discussions for cases where the metric takes the form (45).

We assume A2

B2
n2

p2 � 103, so that the effective mass of ψn is lighter than the Hubble parameter when the CMB

scale exits the horizon. Then, for A2

B2
n2

p2 � 1, the KK modes ψn roll towards zero and from the discussions given

in Section II, curvature perturbations generated from fluctuations of ψn is negligible compared to that from the

inflaton φ. Meanwhile, if A2

B2
n2

p2 � 1 the KK modes ψn are tachyonic. Substituting n = 2/3, m = 2, f = 0, and

g = −1/9 to (20), one finds the “amplification factor” (i.e. (σf/σ)2) to be (φf/φ)2/3, which is smaller than 10.
One can also check that when δφ sources the dominant contribution to the curvature perturbations, non-Gaussianity

produced by the KK modes ψn is negligible, i.e.

∣∣∣∣∂2N
∂σ2

(
∂N
∂σ

)2/(∂N
∂φ

)4∣∣∣∣ � 1, for both A2

B2
n2

p2 � 1 and � 1 cases as

long as |ψn| � |φ| holds during inflation.

Therefore, for the metric (45) with A2

B2
n2

p2 � 1 or � 1, we conclude that unless the KK modes start off from

Planckian or super-Planckian values, we can safely neglect such modes during inflation. However, one may also need
to look into their cosmological implications after inflation, since even though they become heavy after (or towards
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the end of) inflation, they can carry on non-negligible oscillation amplitudes from the early times in the inflationary
era when they were light.

Before ending this section, we note that given additional contributions to the inflaton action other than from the
Nambu-Goto part of the DBI action, then the KK modes’ corrections to the inflaton potential can be weakened while
the corrections to the inflaton kinetic term remains effective. Especially for wrapped D-brane inflation models in
warped throats [30, 31] where one expects various sources contributing to the inflaton potential, the cases studied in
Section III may be realized and then one needs to take into account of the KK modes seriously.

B. Warped D-brane inflation

D3-brane inflation models in a warped throat geometry [18, 33–39] admit light field corrections from angular
directions. One may expect that a finite region of the throat is well modeled by a noncompact throat (such as a
conifold) possessing angular isometries, plus corrections which break the isometries due to the throat being glued to
a compact bulk. Then, given that such corrections are well suppressed by the warping, light angular directions can
emerge in the regime deep into the throat. (Hence for an inflaton D3 moving towards the throat tip, light angular
directions are expected to show up at later times in the inflationary era, which is in contrast to the previous subsection
where the KK modes were lighter at earlier times. If inflation ends by brane annihilation, then one may not have to
worry about the cosmological moduli problem for the light directions at all.) Usually the model is treated as a single
field model of the radial position of the D3-brane, by fixing its angular positions at their local minima and integrating
out the angular degrees of freedom. However, in cases where the angular directions become light, one may have to
treat such directions as dynamical fields.7

In simple cases, the D3-brane’s radial r and periodic angular directions θi are canonically normalized to φ ∝ r and
σi ∝ rθi (hence |φ| & |σi|). Then one expects an inflaton potential corrected by terms σi/φ multiplied by some powers
of the warp factor (along with some mixing of the kinetic terms). Furthermore, if inflation ends by D3-D3 annihilation
at the throat tip, then the D3-brane’s angular degrees of freedom σ̃ may also become light and give corrections of the
form σ̃/µ.

One can imagine that various contributions to the inflaton potential have different dependence on angular positions
of D3/D3, giving an action highly more complicated than (1). However, from the discussions in the previous sections,
we expect that the multi-field effects can become important if the D3/D3 starts off near a local maximum of the
angular directions and rolls down during inflation. It would be interesting to examine the effects of angular directions
in a concrete and computable setup of warped D3-brane inflation.

V. CONCLUSIONS

We have studied effects of light fields showing up as small corrections in the inflaton action. While minimally
affecting the inflaton dynamics, such moduli can still leave imprints on cosmological observables through generating
curvature perturbations. The fluctuations of the moduli are converted to curvature perturbations during inflation,
due to patches of the universe taking different trajectories in field space. The basic picture is simple: for converging
trajectories the transformation of entropy to adiabatic perturbations is suppressed at later times, and for diverging
trajectories it is enhanced. The curvature perturbation produced by the moduli is especially amplified and can
dominate over that from the inflaton when the moduli receive tachyonic backreaction from the inflaton potential, or
when the main moduli corrections enter the inflaton kinetic term. In this paper we mainly focused on modulating
large-field inflation with V (φ) ∝ φn, but it would be interesting to perform a systematic study with more general
inflaton potentials. The effects of moduli can be simply stated as modulating the relation between dN and dφ, hence
they can operate in basically any inflation model. Modulating models beyond the slow-roll ones may have distinct
features and is worthy of investigation. (For e.g., rapid-roll [19–21] and DBI inflation models [22, 23]. Both are
well-motivated by the warped D-brane inflation setup, which provides many candidate light fields as was discussed in
Section IV.)

Our study has a range of applications. As in the D-brane inflation models we have studied in the paper, it is
important to examine the (in)validity of integrating out extra degrees of freedom in inflation models consisting of

7 Generating curvature perturbations at the end of inflation (by shifting φf ) with light angular directions were investigated in [40, 41].
Also, in [42], the two-field dynamics of the D3’s radial position and the volume modulus was studied.
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multiple fields. Also, when discussing cosmological scenarios where the presence of light fields are inevitable or required
(e.g. curvaton, modulated reheating scenario), one needs to look into the fields’ effects not just after inflation, but also
during inflation. In this work, for some simple cases we provided conditions under which the moduli can be ignored.
On the other hand we also exhibited cases where the light moduli dominantly source the curvature perturbations.
The mechanism of generating curvature perturbations from light moduli instead of the inflaton may open up new
possibilities for inflation model building.
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Appendix A: Effective Action of a Wrapped 4-Brane

Here we give a general expression for the four-dimensional effective action derived from the Nambu-Goto action of
a 4-brane wrapping a 1-cycle. We consider the 4-brane to be stretching along the external space xµ (µ = 0, 1, 2, 3),
while wrapping the λ direction with winding number p and moving along the r direction in the internal space. The
six-dimensional part of the metric which is relevant for us is assumed to take the following form,

ds2 = g(4)µν (x) dxµdxν + grr(r) dr
2 + gλλ(r) dλ2, (A1)

with the λ direction compactified by λ ' λ + 2π. Taking the brane coordinates to coincide with xµ and λ, the
Nambu-Goto action of the 4-brane is

S = −T4
∫
d4x

∫ 2πp

0

dλ
√
− det (GMN ∂mXM∂nXN ), (A2)

(where T4 is the 4-brane tension) with

det
(
GMN ∂mX

M∂nX
N
)

= g(4)
{
gλλ + gλλgrrg

(4)µν∂µr∂νr + grr(∂λr)
2
}
, (A3)

where g(4) = det(g
(4)
µν ).

Now let us expand the radial position of the 4-brane as

r(xµ, λ) =

∞∑
n=−∞

rn(xµ) ei
n
p λ (A4)

where r̄n = r−n. Upon expanding the action (A2) up to two xµ-derivatives and quadratic order in (rn, ∂µrn), and
then integrating out the λ direction, we arrive at

S ' −2πpT4

∫
d4x
√
−g(4)√gλλ

×

[
1

2
grrg

(4)µν∂µr0∂νr0

1 +
1

2

∑
n6=0

|rn|2
(

1

2

g′′λλ
gλλ
− 1

4

(
g′λλ
gλλ

)2

+
g′rrg

′
λλ

grrgλλ
+
g′′rr
grr
− n2

p2
grr
gλλ

)
+

1

2
grr
∑
n 6=0

g(4)µν∂µrn∂ν r̄n +

(
1

2

g′λλ
gλλ

+
g′rr
grr

)
grr
∑
n 6=0

rng
(4)µν∂µr0∂ν r̄n

+ 1 +
1

2

∑
n 6=0

|rn|2
(

1

2

g′′λλ
gλλ
− 1

4

(
g′λλ
gλλ

)2

+
n2

p2
grr
gλλ

)]
, (A5)
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where
∑
n 6=0 ≡

∑∞
n=−∞, n6=0. The primes denote derivatives, and grr, gλλ are functions of the zero mode r0(xµ).
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