
Chapter 1

Likelihood-free Markov chain Monte

Carlo

Scott A. Sisson and Yanan Fan

1.1 Introduction

In Bayesian inference, the posterior distribution for parameters θ ∈ Θ is given by π(θ|y) ∝
π(y|θ)π(θ), where one’s prior beliefs about the unknown parameters, as expressed through

the prior distribution π(θ), is updated by the observed data y ∈ Y via the likelihood function

π(y|θ). Inference for the parameters θ is then based on the posterior distribution. Except in

simple cases, numerical simulation methods, such as Markov chain Monte Carlo (MCMC),

are required to approximate the integrations needed to summarise features of the posterior

distribution. Inevitably, increasing demands on statistical modelling and computation have

resulted in the development of progressively more sophisticated algorithms.

Most recently there has been interest in performing Bayesian analyses for models which

are sufficiently complex that the likelihood function π(y|θ) is either analytically unavailable
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2 CHAPTER 1. LIKELIHOOD-FREE MCMC

Table 1.1: The likelihood-free rejection sampling algorithm (Tavaré et al., 1997). Accepted
parameter vectors are drawn approximately from π(θ|y).

Likelihood-free rejection sampling algorithm

1. Generate θ′ ∼ π(θ) from the prior.
2. Generate dataset x from the model π(x|θ′).
3. Accept θ′ if x ≈ y.

or computationally prohibitive to evaluate. The classes of algorithms and methods devel-

oped to perform Bayesian inference in this setting have become known as likelihood-free

computation or approximate Bayesian computation (Beaumont et al., 2002; Marjoram et al.,

2003; Ratmann et al., 2009; Sisson et al., 2007; Tavaré et al., 1997). This name refers to the

circumventing of explicit evaluation of the likelihood by a simulation-based approximation.

Likelihood-free methods are rapidly gaining popularity as a practical approach to fitting

models under the Bayesian paradigm that would otherwise have been computationally im-

practical. To date they have found widespread usage in a diverse range of applications.

These include wireless communications engineering (Nevat et al., 2008), quantile distribu-

tions (Drovandi and Pettitt, 2009), HIV contact tracing (Blum and Tran, 2009), the evolution

of drug resistance in tuberculosis (Luciani et al., 2009), population genetics (Beaumont et al.,

2002), protein networks (Ratmann et al., 2009, 2007), archaeology (Wilkinson and Tavaré,

2009); ecology (Jabot and Chave, 2009), operational risk (Peters and Sisson, 2006), species

migration (Hamilton et al., 2005), chain-ladder claims reserving (Peters et al., 2008), coales-

cent models (Tavaré et al., 1997), α-stable models (Peters et al., 2009), models for extremes

(Bortot et al., 2007), susceptible-infected-removed (SIR) models (Toni et al., 2009), pathogen

transmission (Tanaka et al., 2006) and human evolution (Fagundes et al., 2007).

The underlying concept of likelihood-free methods may be simply encapsulated as follows

(see Table 1.1): For a candidate parameter vector θ′, a dataset is generated from the model

(i.e. the likelihood function) x ∼ π(x|θ′). If the simulated and observed datasets are similar

(in some manner), so that x ≈ y, then θ′ is a good candidate to have generated the observed

data from the given model, and so θ′ is retained and forms as a part of the samples from the
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posterior distribution π(θ|y). Conversely, if x and y are dissimilar, then θ′ is unlikely to have

generated the observed data for this model, and so θ′ is discarded. The parameter vectors

accepted under this approach offer support for y under the model, and so may be considered

to be drawn approximately from the posterior distribution π(θ|y). In this manner, the

evaluation of the likelihood π(y|θ′), essential to most Bayesian posterior simulation methods,

is replaced by an estimate of the proximity of a simulated dataset x ∼ π(x|θ′) to the observed

dataset y. While available in various forms, all likelihood-free methods and models apply

this basic principle.

In this article we aim to provide a tutorial-style exposition of likelihood-free modelling

and computation using MCMC simulation. In Section 1.2 we provide an overview of the

models underlying likelihood-free inference, and illustrate the conditions under which these

models form an acceptable approximation to the true, but intractable posterior π(θ|y). In

Section 1.3 we examine how MCMC-based samplers are able to circumvent evaluation of the

intractable likelihood function, while still targetting this approximate posterior model. We

also discuss different forms of samplers that have been proposed in order to improve algorithm

and inferential performance. Finally, in Section 1.4 we present a step-by-step examination of

the various practical issues involved in performing an analysis using likelihood-free methods,

before concluding with a discussion.

Throughout we assume a basic familiarity with Bayesian inference and the Metropolis-

Hastings algorithm. For this relevant background information, the reader is referred to the

many useful articles in this volume.

1.2 Review of likelihood-free theory and methods

In this Section we discuss the modelling principles underlying likelihood-free computation.
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1.2.1 Likelihood-free basics

A common procedure to improve sampler efficiency in challenging settings is to embed the

target posterior within an augmented model. In this setting, auxiliary parameters are in-

troduced into the model whose sole purpose is to facilitate computations (see for exam-

ple simulated tempering or annealing methods (Geyer and Thompson, 1995; Neal, 2003)).

Likelihood-free inference adopts a similar approach by augmenting the target posterior from

π(θ|y) ∝ π(y|θ)π(θ) to

πLF (θ, x|y) ∝ π(y|x, θ)π(x|θ)π(θ) (1.2.1)

where the auxiliary parameter x is a (simulated) dataset from π(x|θ) (see Table 1.1), on the

same space as y ∈ Y (Reeves and Pettitt, 2005; Wilkinson, 2008). As discussed in more

detail below (Section 1.2.2), the function π(y|x, θ) is chosen to weight the posterior π(θ|x)

with high values in regions where x and y are similar. The function π(y|x, θ) is assumed to

be constant with respect to θ at the point x = y, so that π(y|y, θ) = c, for some constant

c > 0, with the result that the target posterior is recovered exactly at x = y. That is,

πLF (θ, y|y) ∝ π(y|θ)π(θ).

Ultimately interest is typically in the marginal posterior

πLF (θ|y) ∝ π(θ)

∫
Y
π(y|x, θ)π(x|θ)dx, (1.2.2)

integrating out the auxiliary dataset x. The distribution πLF (θ|y) then acts as an approxi-

mation to π(θ|y). In practice this integration is performed numerically by simply discarding

the realisations of the auxiliary datasets from the output of any sampler targetting the joint

posterior πLF (θ, x|y). Other samplers can target πLF (θ|y) directly – see Section 1.3.1.

1.2.2 The nature of the posterior approximation

The likelihood-free posterior distribution πLF (θ|y) will only recover the target posterior

π(θ|y) exactly when the function π(y|x, θ) is precisely a point mass at y = x and zero
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elsewhere (Reeves and Pettitt, 2005). In this case

πLF (θ|y) ∝ π(θ)

∫
Y
π(y|x, θ)π(x|θ)dx = π(y|θ)π(θ).

However, as observed from Table 1.1, this choice for π(y|x, θ) will result in a rejection sampler

with an acceptance probability of zero unless the proposed auxiliary dataset exactly equals

the observed data x = y. This event will occur with probability zero for all but the simplest

applications (involving very low dimensional discrete data). In a similar manner, MCMC-

based likelihood-free samplers (Section 1.3) will also suffer acceptance rates of zero.

In practice, two concessions are made on the form of π(y|x, θ), and each of these can

induce some form of approximation into πLF (θ|y) (Marjoram et al., 2003). The first allows

the function to be a standard smoothing kernel density, K, centered at the point x = y and

with scale determined by a parameter vector ε, usually taken as a scalar. In this manner

πε(y|x, θ) =
1

ε
K

(
|x− y|
ε

)
weights the intractable likelihood with high values in regions x ≈ y where the auxiliary

and observed datasets are similar, and with low values in regions where they are not similar

(Beaumont et al., 2002; Blum, 2009; Peters et al., 2008). The interpretation of likelihood-free

models in the non-parametric framework is of current research interest (Blum, 2009).

The second concession on the form of πε(y|x, θ) permits the comparison of the datasets,

x and y, to occur through a low-dimensional vector of summary statistics T (·), where

dim(T (·)) ≥ dim(θ). Accordingly, given the improbability of generating an auxiliary dataset

such that x ≈ y, the function

πε(y|x, θ) =
1

ε
K

(
|T (x)− T (y)|

ε

)
(1.2.3)

will provide regions of high value when T (x) ≈ T (y) and low values otherwise. If the vector

of summary statistics is also sufficient for the parameters θ, then comparing the summary

statistics of two datasets will be equivalent to comparing the datasets themselves. Hence

there will be no loss of information in model fitting, and accordingly no further approximation
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will be introduced into πLF (θ|y). However, the event T (x) ≈ T (y) will be substantially more

likely than x ≈ y, and so likelihood-free samplers based on summary statistics T (·) will

in general be considerably more efficient in terms of acceptance rates than those based on

full datasets (Pritchard et al., 1999; Tavaré et al., 1997). As noted by McKinley et al.

(2009), the procedure of model fitting via summary statistics T (·) permits the application

of likelihood-free inference in situations where the observed data y are incomplete.

Note that under the form (1.2.3), limε→0 πε(y|x, θ) is a point mass on T (x) = T (y). Hence,

if T (·) are also sufficient statistics for θ, then limε→0 πLF (θ|y) = π(θ|y) exactly recovers the

intractable posterior (Reeves and Pettitt, 2005). Otherwise, if ε > 0 or if T (·) are not

sufficient statistics, then the likelihood-free approximation to π(θ|y) is given by πLF (θ|y) in

(1.2.2).

A frequently utilised weighting function πε(y|x, θ) is the uniform kernel density (Marjoram

et al., 2003; Tavaré et al., 1997), whereby T (y) is uniformly distributed on the sphere centered

at T (x) with radius ε. This is commonly written as

πε(y|x, θ) ∝

 1 if ρ(T (x), T (y)) ≤ ε

0 otherwise
(1.2.4)

where ρ denotes a distance measure (e.g. Euclidean) between T (x) and T (y). In the form

of (1.2.3) this is expressed as πε(y|x, θ) = ε−1Ku(ρ(T (x), T (y))/ε), where Ku is the uniform

kernel density. Alternative kernel densities that have been implemented include the Epanech-

nikov kernel (Beaumont et al., 2002), a non-parametric density estimate (Ratmann et al.,

2009) (see Section 1.3.2), and the Gaussian kernel density (Peters et al., 2008), whereby

πε(y|x, θ) is centered at T (x) and scaled by ε, so that T (y) ∼ N(T (x),Σε2) for some covari-

ance matrix Σ.

1.2.3 A simple example

As an illustration, we examine the deviation of the likelihood-free approximation from the

target posterior in a simple example. Consider the case where π(θ|y) is the univariate N(0, 1)
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Figure 1.1: Comparison of likelihood-free approximations to the N(0, 1) target posterior
(solid line). Likelihood-free posteriors are constructed using uniform (dotted line) and Gaus-
sian (dashed line) kernel weighting densities πε(y|x, θ). Panels (a)–(c) correspond to ε values
of
√

3,
√

3/2 and
√

3/10 respectively.

density. To realise this posterior in the likelihood-free setting, we specify the likelihood as

x ∼ N(θ, 1), define T (x) = x as a sufficient statistic for θ (the sample mean) and set the

observed data y = 0. With the prior π(θ) ∝ 1 for convenience, if the weighting function

πε(y|x, θ) is given by (1.2.4), with ρ(T (x), T (y)) = |x − y|, or if πε(y|x, θ) is a Gaussian

density with y ∼ N(x, ε2/3) then respectively

πLF (θ|y) ∝ Φ(ε− θ)− Φ(−ε− θ)
2ε

and πLF (θ|y) = N(0, 1 + ε2/3),

where Φ(·) denotes the standard Gaussian cumulative distribution function. The factor of

3 in the Gaussian kernel density ensures that both uniform and Gaussian kernels have the

same standard deviation. In both cases πLF (θ|y)→ N(0, 1) as ε→ 0.

The two likelihood-free approximations are illustrated in Figure 1.1 which compares the

target π(θ|y) to both forms of πLF (θ|y) for different values of ε. Clearly, as ε gets smaller

then πLF (θ|y) ≈ π(θ|y) becomes a better approximation. Conversely, as ε increases, then

so does the posterior variance in the likelihood-free approximation. There is only a small

difference between using uniform and Gaussian weighting functions in this case.

Suppose now that an alternative vector of summary statistics T̃ (·) also permits unbiased

estimates of θ, but is less efficient than T (·), with a relative efficiency of e ≤ 1. As noted by A.
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N. Pettitt (personal communication), for the above example with the Gaussian kernel density

for πε(y|x, θ), the likelihood-free approximation using T̃ (·) becomes πLF (θ|y) = N(0, 1/e +

ε2/3). The 1/e term can easily be greater than the ε2/3 term, especially as practical interest

is in small ε. This example illustrates that inefficient statistics can often determine the

quality of the posterior approximation, and that this approximation can remain poor even

for ε = 0.

Accordingly, it is common in practice to aim to reduce ε as low as is computationally

feasible. However, in certain circumstances, it is not clear that doing so will result in a

better approximation to π(θ|y) than for a larger ε. This point is illustrated in Section 1.4.4.

1.3 Likelihood-free MCMC samplers

A Metropolis-Hastings sampler may be constructed to target the augmented likelihood-free

posterior πLF (θ, x|y) (given by 1.2.1) without directly evaluating the intractable likelihood

(Marjoram et al., 2003). Consider a proposal distribution for this sampler with the factori-

sation

q[(θ, x), (θ′, x′)] = q(θ, θ′)π(x′|θ′).

That is, when at a current algorithm state (θ, x), a new parameter vector θ′ is drawn from

a proposal distribution q(θ, θ′), and conditionally on θ′ a proposed dataset x′ is generated

from the model x′ ∼ π(x|θ′). Following standard arguments, to achieve a Markov chain

with stationary distribution πLF (θ, x|y), we enforce the detailed-balance (time-reversibility)

condition

πLF (θ, x|y)P [(θ, x), (θ′, x′)] = πLF (θ′, x′|y)P [(θ′, x′), (θ, x)] (1.3.1)

where the Metropolis-Hastings transition probability is given by

P [(θ, x), (θ′, x′)] = q[(θ, x), (θ′, x′)]α[(θ, x), (θ′, x′)].
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Table 1.2: The likelihood-free MCMC algorithm, generalised from Marjoram et al. (2003).

LF-MCMC Algorithm

1. Initialise (θ0, x0) and ε. Set t = 0.

At step t:
2. Generate θ′ ∼ q(θt, θ) from a proposal distribution.
3. Generate x′ ∼ π(x|θ′) from the model given θ′.

4. With probability min{1, πε(y|x
′,θ′)π(θ′)q(θ′,θt)

πε(y|xt,θt)π(θt)q(θt,θ′)
} set (θt+1, xt+1) = (θ′, x′)

otherwise set (θt+1, xt+1) = (θt, xt).
5. Increment t = t+ 1 and go to 2.

The probability of accepting a move from (θ, x) to (θ′, x′) within the Metropolis-Hastings

framework is then given by min{1, α[(θ, x), (θ′, x′)]}, where

α[(θ, x), (θ′, x′)] =
πLF (θ′, x′|y)q[(θ′, x′), (θ, x)]

πLF (θ, x|y)q[(θ, x), (θ′, x′)]

=
πε(y|x′, θ′)π(x′|θ′)π(θ′)

πε(y|x, θ)π(x|θ)π(θ)

q(θ′, θ)π(x|θ)
q(θ, θ′)π(x′|θ′)

(1.3.2)

=
πε(y|x′, θ′)π(θ′)q(θ′, θ)

πε(y|x, θ)π(θ)q(θ, θ′)
.

Note that the intractable likelihoods do not need to be evaluated in the acceptance proba-

bility calculation (1.3.2), leaving a computationally tractable expression which can now be

evaluated. Without loss of generality we may assume that min{1, α[(θ′, x′), (θ, x)]} = 1, and

hence the detailed-balance condition (1.3.1), is satisfied since

πLF (θ, x|y)P [(θ, x), (θ′, x′)] = πLF (θ, x|y)q[(θ, x), (θ′, x′)]α[(θ, x), (θ′, x′)]

=
πLF (θ, x|y)q(θ, θ′)π(x′|θ′)πε(y|x′, θ′)π(θ′)q(θ′, θ)

πε(y|x, θ)π(θ)q(θ, θ′)

=
πε(y|x, θ)π(x|θ)π(θ)q(θ, θ′)π(x′|θ′)πε(y|x′, θ′)π(θ′)q(θ′, θ)

πε(y|x, θ)π(θ)q(θ, θ′)

= πε(y|x′, θ′)π(x′|θ′)π(θ′)q(θ′, θ)π(x|θ)

= πLF (θ′, x′|y)P [(θ′, x′), (θ, x)].
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The MCMC algorithm targetting πLF (θ, x|y), adapted from Marjoram et al. (2003), is

listed in Table 1.2. The sampler generates the Markov chain sequence (θt, xt) for t ≥ 0,

although in practice, it is only necessary to store the vectors of summary statistics T (xt)

and T (x′) at any stage in the algorithm. This is particularly useful when the auxiliary

datasets xt are large and complex.

An interesting feature of this sampler is that its acceptance rate is directly related to

the value of the true likelihood function π(y|θ′) at the proposed vector θ′ (Sisson et al.,

2007). This is most obviously seen when using the uniform kernel weighting function (1.2.4),

as proposed moves to (θ′, x′) can only be accepted if ρ(T (x′), T (y)) ≤ ε, and this occurs

with a probability in proportion to the likelihood. For low ε values this can result in very

low acceptance rates, particularly in the tails of the distribution, thereby affecting chain

mixing in regions of low posterior density. See Section 1.4.5 for an illustration. However

the LF-MCMC algorithm offers improved acceptance rates over rejection sampling-based

likelihood-free algorithms (Marjoram et al., 2003).

We now examine a number of variations on the basic LF-MCMC algorithm which have

been proposed either to improve sampler performance, or to examine model goodness-of-fit.

1.3.1 Marginal space samplers

Given the definition of πLF (θ|y) in (1.2.2), an unbiased pointwise estimate of the marginal

posterior distribution is available through Monte Carlo integration as

πLF (θ|y) ≈ π(θ)

S

S∑
s=1

πε(y|xs, θ) (1.3.3)

where x1, . . . , xS are independent draws from the model π(x|θ) (Marjoram et al., 2003; Peters

et al., 2008; Ratmann et al., 2009; Reeves and Pettitt, 2005; Sisson et al., 2007; Toni et al.,

2009; Wegmann et al., 2009). This then permits an MCMC sampler to be constructed directly

targetting the likelihood-free marginal posterior πLF (θ|y). In this setting, the probability of
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accepting a proposed move from θ to θ′ ∼ q(θ, θ′) is given by min{1, α(θ, θ′)} where

α(θ, θ′) =
πLF (θ′|y)q(θ′, θ)

πLF (θ|y)q(θ, θ′)
≈

1
S

∑
s πε(y|x′

s, θ′)π(θ′)q(θ′, θ)
1
S

∑
s πε(y|xs, θ)π(θ)q(θ, θ′)

(1.3.4)

where x′1, . . . , x′S ∼ π(x|θ′). As the Monte Carlo approximation (1.3.3) becomes more

accurate as S increases, the performance and acceptance rate of the marginal likelihood-free

sampler will gradually approach that of the equivalent standard MCMC sampler.

However, the above ratio of two unbiased likelihood estimates is only unbiased as S →∞.

Hence, the above sampler will only approximately target πLF (θ|y) for large S, which makes

it highly inefficient. However, note that estimating α(θ, θ′) with S = 1 exactly recovers

(1.3.2), the acceptance probability of the MCMC algorithm targetting πLF (θ, x|y). That

is, the marginal space likelihood-free sampler with S = 1 is precisely the likelihood-free

MCMC sampler in Table 1.2. As the sampler targetting πLF (θ, x|y) also provides unbiased

estimates of the marginal πLF (θ|y), it follows that the likelihood-free sampler targetting

πLF (θ|y) directly is also unbiased in practice (Sisson et al., 2008). A similar argument for

S > 1 can also be made, as outlined below.

An alternative augmented likelihood-free posterior distribution is given by

πLF (θ, x1:S|y) ∝ πε(y|x1:S, θ)π(x1:S|θ)π(θ)

:=

[
1

S

S∑
s=1

πε(y|xs, θ)

][
S∏
s=1

π(xs|θ)]

]
π(θ),

where x1:S = (x1, . . . , xS) represents s = 1, . . . , S replicate auxiliary datasets xs ∼ π(x|θ).
This posterior, generalised from Del Moral et al. (2008), is based on the more general ex-

pected auxiliary variable approach of Andrieu et al. (2008), where the summation form

of πε(y|x1:S, θ) describes this expectation. The resulting marginal posterior πSLF (θ|y) =∫
YS πLF (θ, x1:S, θ|y)dx1:S is the same for all S, namely πSLF (θ|y) = πLF (θ|y).

The motivation for this form of posterior is that that a sampler targetting πLF (θ, x1:S|y),

for S > 1, will possess improved sampler performance compared to an equivalent sampler

targetting πLF (θ, x|y), through a reduction in the variability of the Metropolis-Hastings
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acceptance probability. With the natural choice of proposal density given by

q[(θ, x1:S), (θ′, x′1:S)] = q(θ, θ′)
S∏
s=1

π(x′s|θ′),

where x′1:S = (x′1, . . . , x′S), the acceptance probability of a Metropolis-Hastings algorithm

targetting πLF (θ, x1:S|y) reduces to

α[(θ, x1:S), (θ′, x′1:S)] =
1
S

∑
s πε(y|x′

s, θ′)π(θ′)q(θ′, θ)
1
S

∑
s πε(y|xs, θ), π(θ)q(θ, θ′)

. (1.3.5)

This is the same acceptance probability (1.3.4) as a marginal likelihood-free sampler tar-

getting πLF (θ|y) directly, using S Monte Carlo draws to estimate πLF (θ|y) pointwise, via

(1.3.3). Hence, both marginal and augmented likelihood-free samplers possess identical mix-

ing and efficiency properties. The difference between the two is that the marginal sampler

acceptance probability (1.3.4) is approximate for finite S, whereas the augmented sampler

acceptance probability (1.3.5) is exact. However, clearly the marginal likelihood-free sampler

is, in practice, unbiased for all S ≥ 1. See Sisson et al. (2008) a for more detailed analysis.

1.3.2 Error-distribution augmented samplers

In all likelihood-free MCMC algorithms, low values of ε result in slowly mixing chains through

low acceptance rates. However, it also provides a potentially more accurate posterior approx-

imation πLF (θ|y) ≈ π(θ|y). Conversely, MCMC samplers with larger ε values may possess

improved chain mixing and efficiency, although at the expense of a poorer posterior ap-

proximation (e.g. Figure 1.1). Motivated by a desire for improved sampler efficiency while

realising low ε values, Bortot et al. (2007) proposed augmenting the likelihood-free posterior

approximation to include ε, so that

πLF (θ, x, ε|y) ∝ πε(y|x, θ)π(x|θ)π(θ)π(ε).

Accordingly, ε is treated as a tempering parameter in the manner of simulated tempering

(Geyer and Thompson, 1995), with larger and smaller values respectively corresponding to
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“hot” and “cold” tempered posterior distributions. The density π(ε) is a pseudo-prior, which

serves only to influence the mixing of the sampler through the tempered distributions. Bortot

et al. (2007) suggested using a distribution which favours small ε values for accuracy, while

permitting large values to improve chain acceptance rates. The approximation to the true

posterior π(θ|y) is then given by

πELF (θ|y) =

∫
E

∫
Y
πLF (θ, x, ε|y)dxdε

where ε ∈ E ⊆ R+. Sampler performance aside, this approach permits an a posteriori

evaluation of an appropriate value ε = ε∗ such that πELF (θ|y) with E = [0, ε∗] provides an

acceptable approximation to π(θ|y).

An alternative error-distribution augmented model was proposed by Ratmann et al. (2009)

with the aim of diagnosing model mis-specification for the observed data y. For the vector

of summary statistics T (x) = (T1(x), . . . , TR(x)), the discrepancy between the model π(x|θ)
and the observed data is given by τ = (τ1, . . . , τR), where τr = Tr(x)−Tr(y), for r = 1, . . . , R,

is the error under the model in reproducing the r-th element of T (·). The joint distribution

of model parameters and model errors is defined as

πLF (θ, x1:S, τ |y) ∝ πε(y|τ, x1:S, θ)π(x1:S|θ)π(θ)π(τ)

:= min
r
ξ̂r(τr|y, x1:S, θ)π(x1:S|θ)π(θ)π(τ), (1.3.6)

where the univariate error distributions

ξ̂r(τr|y, x1:S, θ) =
1

Sεr

S∑
s=1

K

(
τr − [Tr(x

s)− Tr(y)]

εr

)
(1.3.7)

are constructed from smoothed kernel density estimates of model errors, estimated from S

auxiliary datasets x1, . . . , xS, and where π(τ) =
∏

r π(τr), the joint prior distribution for the

model errors, is centered on zero, reflecting that the model is assumed plausible a priori. The

terms minr ξ̂r(τr|y, x, θ) and π(τ) take the place of the weighting function πε(y|τ, x1:S, θ). The

minimum of the univariate densities ξ̂r(τr|y, x, θ) is taken over the R model errors to reflect

the most conservative estimate of model adequacy, while also reducing the computation on
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the multivariate τ to its univariate component margins. The smoothing bandwidths εr of

each summary statistic Tr(·) are dynamically estimated during sampler implementation as

twice the interquartile range of Tr(x
s)− Tr(y), given x1, . . . , xS.

Assessment of model adequacy can then be based on πLF (τ |y) =
∫

Θ

∫
YS πLF (θ, x1:S, τ |y)dx1:Sdθ,

the posterior distribution of the model errors. If the model is adequately specified then

πLF (τ |y) should be centered on the zero vector. If this is not the case then the model is

mis-specified. The nature of the departure of πLF (τ |y) from the origin e.g. via one or more

summary statistics Tr(·), may indicate the manner in which the model is deficient. See e.g.

Wilkinson (2008) for further assessment of model errors in likelihood-free models.

1.3.3 Potential alternative MCMC samplers

Given the variety of MCMC techniques available for standard Bayesian inference, there are

a number of currently unexplored ways in which these might be adapted to improve the

performance of likelihood-free MCMC samplers.

For example, within the class of marginal space samplers (Section 1.3.1), the number of

Monte Carlo draws S determines the quality of the estimate of πLF (θ|y) (c.f. 1.3.3). A

standard implementation of the delayed-rejection algorithm (Tierney and Mira, 1999) would

permit rejected proposals based on poor but computationally cheap posterior estimates (i.e.

using low-moderate S), to generate more accurate but computationally expensive second-

stage proposals (using large S), thereby adapting the computational overheads of the sampler

to the required performance.

Alternatively, coupling two or more Markov chains targetting πLF (θ, x|y), each utilising

a different ε value, would achieve improved mixing in the “cold” distribution (i.e. the chain

with the lowest ε) through the switching of states between neighbouring (in an ε sense)

chains (Pettitt, 2006). This could be particularly useful in multi-modal posteriors. While

this flexibility is already available with continuously varying ε in the augmented sampler

targetting πLF (θ, x, ε|y) (Bortot et al. (2007), Section 1.3.2), there are benefits to constructing

samplers from multiple chain sample-paths.
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Finally, likelihood-free MCMC samplers have to date focused on tempering distributions

based on varying ε. While not possible in all applications, there is clear scope for a class

of algorithms based on tempering on the number of observed datapoints from which the

summary statistics T (·) are calculated. Lower numbers of datapoints will produce greater

variability in the summary statistics, in turn generating wider posteriors for the parameters

θ, but with lower computational overheads required to generate the auxiliary data x.

1.4 A practical guide to likelihood-free MCMC

In this Section we examine various practical aspects of likelihood-free computation under a

simple worked analysis. For observed data y = (y1, . . . , y20) consider two candidate models:

yi ∼ Exponential(λ) and yi ∼ Gamma(k, ψ), where model equivalence is obtained under

k = 1, ψ = 1/λ. Suppose that the sample mean and standard deviation of y are available

as summary statistics T (y) = (ȳ, sy) = (4, 1), and that interest is in fitting each model and

in establishing model adequacy. Note that the summary statistics T (·) are sufficient for λ

but not for (k, ψ), where they form moment-based estimators. For the following we consider

flat priors π(λ) ∝ 1, π(k, ψ) ∝ 1 for convenience. The true posterior distribution under the

Exponential(λ) model is λ|y ∼ Gamma(21, 80).

1.4.1 An exploratory analysis

An initial exploratory investigation of model adequacy is illustrated in Figure 1.2, which

presents scatterplots of summary statistics versus summary statistics, and summary statistics

versus parameter values under each model. Images are based on 2000 parameter realisations

λ, k, ψ ∼ U(0, 20) followed by summary statistic generation under each model parameter.

Horizontal and vertical lines denote the values of the observed summary statistics T (y).

From the plots of sample means against standard deviations, T (y) is clearly better rep-

resented by the Gamma than the Exponential model. The observed summary statistics (i.e.

the intersection of horizontal and vertical lines) lie in regions of relatively lower prior predic-
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Figure 1.2: Scatterplots of summary statistics T (x) = (x̄, sx) and parameter values λ, k, ψ
under both Exponential(λ) and Gamma(k, ψ) models, based on 2000 realisations λ, k, ψ ∼
U(0, 20). Horizontal and vertical lines denote observed summary statistics T (y) = (4, 1).

Circles denote the MLE of λ̂ = 1/ȳ = 1/4 under the Exponential model. Crosses denote

method of moments estimators k̂ = ȳ2/s2
y = 16 and ψ̂ = s2

y/ȳ = 1/4 under the Gamma
model.
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tive density under the Exponential model, compared to the Gamma. That is, a priori, the

statistics T (y) appear more probable under the more complex model.

Consider the plots of λ−1 versus T (x) under the Exponential model. The observed statis-

tics T (y) individually impose competing requirements on the Exponential parameter. An

observed sample mean of ȳ = 4 indicates that λ−1 is most likely in the approximate range

[3, 5] (indicated by those λ−1 values where the horizontal line intersects with the density).

However, the sample standard deviation sy = 1 independently suggests that λ−1 is most

likely in the approximate range [0.5, 1.5]. If either x̄ or sx were the only summary statistic,

then only one of these ranges are appropriate, and the observed data would be considerably

more likely under the Exponential model. However, the relative model fits and model ade-

quacies of the Exponential and Gamma can only be evaluated by using the same summary

statistics on each model. (Otherwise, the model with the smaller number of summary statis-

tics will be considered the most likely model, simply because it is more probable to match

fewer statistics.) As a result, the competing constraints on λ through the statistics x̄ and

sy are so jointly improbable under the Exponential model that simulated and observed data

will rarely coincide, making T (y) very unlikely under this model. This is a strong indicator

of model inadequacy.

In contrast, the plots of k and ψ against T (x) under the Gamma model indicate no

obvious restrictions on the parameters based on T (y), suggesting that this model is flexible

enough to have generated the observed data with relatively high probability. Note that from

these marginal scatterplots, it is not clear that these statistics are at all informative for the

model parameters. This indicates the importance of parameterisation for visualisation, as

alternatively considering method of moments estimators as summary statistics (k̂, ψ̂), where

k̂ = x̄2/s2
x and ψ̂ = s2

x/x̄, will result in strong linear relationships between (k, ψ) and (k̂, ψ̂).

Of course, in practice direct unbiased estimators are rarely known.
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1.4.2 The effect of ε

We now implement the LF-MCMC algorithm (Table 1.2) targetting the Exponential(λ)

model, with an interest in evaluating sampler performance for different ε values. Recall that

small ε is required to obtain a good likelihood-free approximation to the intractable posterior

πLF (θ|y) ≈ π(θ|y) (see Figure 1.1), where now θ = λ. However, implementing the sampler

with low ε can be problematic in terms of initialising the chain and in achieving convergence

to the stationary distribution.

An initialisation problem may occur when using weighting functions πε(y|x, θ) with com-

pact support, such as the uniform kernel (1.2.4) defined on [−ε, ε]. Here, initial chain values

(θ0, x0) are required such that πε(y|x0, θ0) 6= 0 in the denominator of the acceptance proba-

bility at time t = 1 (Table 1.2). For small ε, this is unlikely to be the case for the first such

parameter vector tried. Two näıve strategies are to either repeatedly generate x0 ∼ π(x|θ0),

or similarly repeatedly generate θ0 ∼ π(θ) and x0 ∼ π(x|θ0), until πε(y|x0, θ0) 6= 0 is achieved.

However, the former strategy may never terminate unless θ0 is located within a region of

high posterior density. The latter strategy may never terminate if the prior is diffuse with

respect to the posterior. Relatedly, Markov chain convergence can be very slow for small

ε when moving through regions of very low density, for which generating x′ ∼ π(x|θ′) with

T (x′) ≈ T (y) is highly improbable.

One strategy to avoid these problems is to augment the target distribution from πLF (θ, x|y)

to πLF (θ, x, ε|y) (Bortot et al., 2007), permitting a time-variable ε to improve chain mixing

(see Section 1.3 for discussion on this and other strategies to improve chain mixing). A

simpler strategy is to implement a specified chain burn-in period, defined by a monotonic

decreasing sequence εt+1 ≤ εt, initialised with large ε0, for which εt = ε remains constant at

the desired level for t ≥ t∗, beyond some (possibly random) time t∗ (e.g. ?). For example,

consider the linear sequence εt = max{ε0 − ct, ε} for some c > 0. However, the issue here is

in determining the rate at which the sequence approaches the target ε: if c is too large, then

εt = ε before (θt, xt) has reached a region of high density; if c is too small, then the chain

mixes well but is computationally expensive through a slow burn in.
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One self-scaling option for the uniform weighting function (1.2.4) would be to define

ε0 = ρ(T (x0), T (y)), and given the proposed pair (θ′, x′) at time t, propose a new ε value as

ε′′ = max{ε,min{ε′, εt−1}} (1.4.1)

where ε′ = ρ(T (x′), T (y)) > 0 is the distance between observed and simulated summary

statistics. If the proposed pair (θ′, x′) are accepted then set εt = ε′′, else set εt = εt−1. That

is, the proposed ε′′ is dynamically defined as the smallest possible value that results in a non-

zero weighting function πεt(y|x′, θ′) in the numerator of the acceptance probability, without

going below the target ε, and while decreasing monotonically. If the proposed move to (θ′, x′)

is accepted, the value ε′′ is accepted as the new state, else the previous value εt−1 is retained.

Similar approaches could be taken with non-uniform weighting functions πε(y|x, θ).

Four trace plots of λt and εt for the Exponential(λ) model are illustrated in Figure 1.3

(a,b), using the above procedure. All Markov chains were initialised at λ0 = 10 with target

ε = 3, proposals were generated via λ′ ∼ N(λt−1, 1) and the distance measure

ρ(T (x), T (y)) =
{

[T (x)− T (y)]>Σ−1[T (x)− T (y)]
}1/2

(1.4.2)

is given by Mahalanobis distance. The covariance matrix Σ = Cov(T (y)) is estimated by

the sample covariance of 1000 summary vectors T (x) generated from π(x|λ̂) conditional on

λ̂ = 0.25 the maximum likelihood estimate. All four chains converge to the high density

region at λ = 0.25 quickly, although at different speeds as the sampler takes different routes

through parameter space. Mixing during burn-in is variable between chains, although overall

convergence to εt = 3 is rapid. The requirement of tuning the rate of convergence, beyond

specifying the final tolerance ε, is clearly circumvented.

Figure 1.3 (c,d) also illustrates the performance of the LF-MCMC sampler, post-convergence,

based on four chains of length 100,000, each with different target ε. As expected (see dis-

cussion in Section 1.3), smaller ε results in lower acceptance rates. In Figure 1.3 (c), ε = 4.5

(bottom trace), 4, 3.5 and 3 (top) result in post-convergence (of εt) mean acceptance rates

of 12.2%, 6.1%, 2.9% and 1.1% respectively. Conversely, precision (and accuracy) of the

posterior marginal distribution for λ increases with decreasing ε as seen in Figure 1.3 (d).
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Figure 1.3: Performance of the LF-MCMC sampler for the Exponential(λ) model. [Top
plots] Trace plots of (a) λt and (b) εt for four chains using the self-scaling {εt} sequence
given by (1.4.1). The MLE of λ is 0.25 and the target ε is 3. [Bottom plots] (c) Jittered
trace plots of λt with different target ε = 4.5 (bottom), 4, 3.5 and 3 (top). (d) Posterior
density estimates of λ for the same chains based on a chain length of 100,000 iterations.
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In practice, a robust procedure to identify a suitable target ε for the likelihood-free

MCMC sampler is not yet available. Wegmann et al. (2009) implement the LF-MCMC

algorithm with a large ε value to enhance chain mixing, and then perform a regression-

based adjustment (Beaumont et al., 2002; Blum and Francois, 2009) to improve the final

posterior approximation. Bortot et al. (2007) implement the LF-MCMC algorithm target-

ting the augmented posterior πLF (θ, x, ε|y) (see Section 1.3.2), and examine the changes

in πELF (θ|y) =
∫
E

∫
Y πLF (θ, x, ε|y)dxdε, with E = [0, ε∗], for varying ε∗. The final choice of

ε∗ is the largest value for which reducing ε∗ further produces no obvious improvement in

the posterior approximation. This procedure may be repeated manually through repeated

LF-MCMC sampler implementations at different fixed ε values (Tanaka et al., 2006). Re-

gardless, in practice ε is often reduced as low as possible such that computation remains

within acceptable limits.

1.4.3 The effect of the weighting function

The optimal form of kernel weighting function πε(y|x, θ) for a given analysis is unclear at

present. While the uniform weighting function (1.2.4) is the most common in practice –

indeed, many likelihood-free methods have this kernel written directly into the algorithm

(sometimes implicitly) – it seems credible that alternative forms may offer improved poste-

rior approximations for given computational overheads. Some support for this is available

through recently observed links between the likelihood-free posterior approximation πLF (θ|y)

and non-parametric smoothing (Blum, 2009).

Here we evaluate the effect of the weighting function πε(y|x, θ) on posterior accuracy

under the Exponential(λ) model, as measured by the one-sample Kolmogorov-Smirnov dis-

tance between the likelihood-free posterior sample and the true Gamma(21,80) posterior. To

provide fair comparisons, we evaluate posterior accuracy as a function of computational over-

heads, measured by the mean post-convergence acceptance rate of the LF-MCMC sampler.

The following results are based on posterior samples consisting of 1000 posterior realisations

obtained by recording every 1000th chain state, following a 10,000 iteration burn-in period.

Figures are constructed by averaging the results of 25 sampler replications under identical
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Figure 1.4: Performance of the LF-MCMC sampler for the Exponential(λ) model under vary-
ing kernel weighting functions: (a) Mahalanobis distance between T (x) and T (y) evaluated
on uniform, Epanechnikov and triangle kernel functions; (b) Mahalanobis, scaled Euclidean
and Euclidean distance between T (x) and T (y) evaluated on the uniform kernel function.
Sampler performance is measured in terms of accuracy (y-axis: one-sample Kolmogorov-
Smirnov test statistic evaluated between likelihood-free posterior sample and true posterior)
versus computational overheads (x-axis: mean sampler acceptance probability).

conditions, for a range of ε values.

Figure 1.4 (a) shows the effect of varying the form of the kernel weighting function based

on the Mahalanobis distance (1.4.2). There appears little obvious difference in the accuracy

of the posterior approximations in this example. However, it is credible to suspect that

non-uniform weighting functions may be superior in general (e.g. Blum (2009); Peters et al.

(2008)). This is more clearly demonstrated in Section 1.4.5. The slight worsening in the

accuracy of the posterior approximation, indicated by the upturn for low ε in Figure 1.4 (a),

will be examined in more detail in Section 1.4.4.

Regardless of its actual form, the weighting function πε(y|x, θ) should take the distribu-

tion of the summary statistics T (·) into consideration. Fan et al. (2010) note that using

a Euclidean distance measure (given by (1.4.2) with Σ = I, the identity matrix) within

(say) the uniform weighting function (1.2.4), ignores the scale and dependence (correlation)

structure of T (·), accepting sampler moves if T (y) is within a circle of size ε centered on
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T (x), rather than within an ellipse defined by Σ = Cov(T (y)). In theory, the form of the

distance measure does not matter as in the limit ε → 0 any effect of the distance measure

ρ is removed from the posterior πLF (θ|y) i.e. T (x) = T (y) regardless of the form of Σ. In

practice however, with ε > 0, the distance measure can have a strong effect on the quality

of the likelihood-free posterior approximation πLF (θ|y) ≈ π(θ|y).

Using the uniform weighting function, Figure 1.4 (b) demonstrates the effect of using

Mahalanobis distance (1.4.2), with Σ given by estimates of Cov(T (y)), diag(Cov(T (y)))

(scaled Euclidean distance) and the identity matrix I (Euclidean distance). Clearly, for a

fixed computational overhead (x-axis), greater accuracy is attainable by standardising and

orthogonalising the summary statistics. In this sense, Mahalanobis distance represents an

approximate standardisation of the distribution of T (y)|θ̃ at an appropriate point θ̃ following

indirect inference arguments (Jiang and Turnbull, 2004). As Cov(T (y)) may vary with θ,

Fan et al. (2010) suggest using an approximate MAP estimate of θ, so that θ̃ resides in a

region of high posterior density. The assumption is then that Cov(T (y)) varies little over

the region of high posterior density.

1.4.4 The choice of summary statistics

Likelihood-free computation is based on the reproduction of observed statistics T (y) under

the model. If the T (y) are sufficient for θ, then the true posterior π(θ|y) can be recovered

exactly as ε → 0. If dim(T (y)) is large (e.g. Bortot et al. (2007)), then likelihood-free

algorithms become computationally inefficient through the need to reproduce large numbers

of summary statistics (Blum, 2009). However, low-dimensional, non-sufficient summary

vectors produce less efficient estimators of θ, and so generate wider posterior distributions

πLF (θ|y) than using sufficient statistics (see Section 1.2.3). Ideally, low-dimensional and

near-sufficient T (y) are the preferred option.

Unfortunately, it is usually difficult to know which statistics are near-sufficient in practice.

A brute-force strategy to address this issue is to repeat the analysis, while sequentially in-

creasing the number of summary statistics each time (in order of their perceived importance),



24 CHAPTER 1. LIKELIHOOD-FREE MCMC

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

Epsilon

K
S

 s
ta

tis
tic

●

●

●

●

●

●

●

●
●

●●●

0 1 2 3 4
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

(b)

Epsilon

K
S

 s
ta

tis
tic

●●●●●●●●●●●●●●

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

Epsilon

K
S

 s
ta

tis
tic

●
●

● ●
●

●

●

●

●

Figure 1.5: Likelihood-free posterior accuracy of the Exponential(λ) model as a function of
ε for differing summary statistics: (a) T (y) = ȳ; (b) T (y) = sy; (c) T (y) = (ȳ, sy). Pos-
terior accuracy (y-axis) is measured by one-sample Kolmogorov-Smirnov (KS) test statistic
evaluated between likelihood-free posterior sample and true posterior. Points and vertical
lines represent KS statistic means and ranges based on 25 sampler replicates at fixed ε lev-
els. Crosses in panel (b) denote KS statistic evaluated with respect to a Gamma(21,20)
distribution.

until no further changes to πLF (θ|y) are observed (Marjoram et al., 2003). See also Joyce

and Marjoram (2008). If the extra statistics are uninformative, the quality of approximation

will remain the same, but the sampler will be less efficient. However, simply enlarging the

number of informative summary statistics is not necessarily the best way to improve the

likelihood-free approximation πLF (θ|y) ≈ π(θ|y), and in fact may worsen the approximation

in some cases.

An example of this is provided by the present Exponential(λ) model, where either of

the two summary statistics T (y) = (ȳ, sy) = (4, 1) alone is informative for λ (and indeed,

ȳ is sufficient), as we expect that λ ≈ 1/ȳ ≈ 1/sy under any data generated from this

model. In this respect, however, the observed values of the summary statistics provide

conflicting information for the model parameter (see Section 1.4.1). Figure 1.5 examines

the effect of this, by evaluating the accuracy of the likelihood-free posterior approximation

πLF (θ|y) ≈ π(θ|y) as a function of ε under different summary statistic combinations. As

before, posterior accuracy is measured via the one-sample Kolmogorov-Smirnov test statistic

with respect to the true Gamma(21,80) posterior.

With T (y) = ȳ, panel (a) demonstrates that accuracy improves as ε decreases, as expected.
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For panel (b), with T (y) = sy (dots), the resulting πLF (θ|y) posterior is clearly different

from the true posterior for all ε. Of course, the limiting posterior as ε → 0 is (very)

approximately Gamma(21,20), resulting from an Exponential model with λ = 1/sy = 1,

rather than Gamma(21,80) resulting from an Exponential model with λ = 1/ȳ = 1/4.

The crosses in panel (b) denote the Kolmogorov-Smirnov test statistic with respect to the

Gamma(21,20) distribution, which indicates that πLF (θ|y) is roughly consistent with this

distribution as ε decreases. That the Gamma(21,20) is not the exact limiting density (i.e.

the KS statistic does not tend to zero as ε→ 0) stems from the fact that sy is not a sufficient

statistic for λ, and is less then fully efficient.

In panel (c) with T (y) = (ȳ, sy), which contains an exactly sufficient statistic (i.e. ȳ), the

accuracy of πLF (θ|y) appears to improve with decreasing ε, and then actually worsens before

improving again. This would appear to go against the generally accepted principle, that for

sufficient statistics, decreasing ε will always improve the approximation πLF (θ|y) ≈ π(θ|y).

Of course, the reality here is that both of these competing statistics are pulling the likelihood

free posterior in different directions, with the consequence that the limiting posterior as

ε → 0 will be some combination of both Gamma distributions, rather than the presumed

(and desired) Gamma(21,80).

This observation leads to the uncomfortable conclusion that model comparison through

likelihood-free posteriors with a fixed vector of summary statistics T (y), will ultimately

compare distortions of those models which are overly simplified with respect to the true

data generation process. This remains true even when using sufficient statistics and for

ε→ 0.

1.4.5 Improving mixing

Recall that the acceptance rate of the LF-MCMC algorithm (Table 1.2) is directly related

to the value of the true likelihood π(y|θ′) at the proposed vector θ′ (Section 1.3). While

this is a necessary consequence of likelihood-free computation, it does imply poor sampler

performance in regions of low probability, as the Markov chain sample-path may persist in
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Figure 1.6: Aspects of LF-MCMC sampler performance: [Top plots] Trace plots of (a) k and
(b) ψ parameters under the Gamma model, for varying numbers of auxiliary datasets S = 1
(lower traces), 10, 25 and 50 (upper traces) using ε = 2 and the uniform kernel function
πε(y|x, θ). [Bottom plots] Distribution of sojourn lengths of parameter k above (c) κ = 45
and (d) κ = 50 for varying numbers of auxiliary datasets. Boxplot shading indicates uniform
(white) or Gaussian (grey) kernel functions πε(y|x, θ). The Gaussian kernel sampler used
ε = 2/

√
3 to ensure a comparable standard deviation with the uniform kernel sampler.

distributional tails for long periods of time due to low acceptance probabilities (Sisson et al.,

2007). An illustration of this shown in Figure 1.6 (a, b: lowest light grey lines), which

displays the marginal sample paths of k and ψ under the Gamma(k, ψ) model, based on

5000 iterations of a sampler targetting π(θ, x|y) with ε = 2 and using the uniform kernel

function πε(y|x, θ). At around 1400 iterations the sampler becomes stuck in the tail of the

posterior for the following 700 iterations, with very little meaningful movement.

A simple strategy to improve sampler performance in this respect is to increase the number

of auxiliary datasets S generated under the model, either by targetting the joint posterior

πLF (θ, x1:S|y) or the marginal posterior πLF (θ|y) with S ≥ 1 Monte Carlo draws (see Section
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1.3.1). This approach will reduce the variability of the acceptance probability (1.3.4), and

allow the Markov chain acceptance rate to approach that of a sampler targetting the true

posterior π(θ|y). The trace plots in Figure 1.6 (a,b) (bottom to top) correspond to chains

implementing S = 1, 10, 20 and 50 auxiliary dataset generations per likelihood evaluation.

Visually, there is some suggestion that mixing is improved as S increases. Note however,

that for any fixed S, the LF-MCMC sampler may still become stuck if the sampler explores

sufficiently far into the distributional tail.

Figure 1.6 (c,d) investigates this idea from an alternative perspective. Based on 2 million

sampler iterations, the lengths of sojourns that the k parameter spent above a fixed threshold

κ were recorded. A sojourn length is defined as the consecutive number of iterations in which

the parameter k remains above κ. Intuitively, if likelihood-free samplers tend to persist in

distributional tails, the length of the sojourns will be much larger for the worse performing

samplers. Figure 1.6 (c,d) shows the distributions of sojourn lengths for samplers with

S = 1, 10, 25 and 50 auxiliary datasets, with κ = 45 (panel c) and κ = 50 (panel d). Boxplot

shading indicates use of the uniform (white) or Gaussian (grey) weighting function πε(y|x, θ).

A number of points are immediately apparent. Firstly, chain mixing is poorer the further

into the tails the sampler explores. This is illustrated by the increased scale of the sojourn

lengths for κ = 50 compared to κ = 45. Secondly, increasing S by a small amount substan-

tially reduces chain tail persistence. As S increases further, the Markov chain performance

approaches that of a sampler directly targetting the true posterior π(θ|y), and so less per-

formance gains are observed by increasing S beyond a certain point. Finally, there is strong

evidence to suggest that LF-MCMC algorithms using weighting kernel functions πε(y|x, θ)
that do not generate large numbers of zero-valued likelihoods will possess superior perfor-

mance to those which do. Here use of the Gaussian weighting kernel clearly outperforms the

uniform kernel in all cases. In summary, it would appear that the choice of kernel weighting

function πε(θ|y) has a larger impact on sampler performance than the number of auxiliary

datasets S.
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Gamma Model: ττ1

ττ1: sample mean
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Gamma Model: ττ2

ττ2: sample standard deviation
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Figure 1.7: Marginal likelihood-free posterior distributions πLF (τ |y) of the error-distribution
augmented model (1.3.6), under the Exponential (top plots) and Gamma (bottom plots)
models. Plots are based on 50,000 sampler iterations.
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1.4.6 Evaluating model mis-specification

In order to evaluate the adequacy of both Exponential and Gamma models in terms of their

support for the observed data T (y) = (ȳ, sy), we fit the error-distribution augmented model

(1.3.6) given by

πLF (θ, x1:S, τ |y) := min
r
ξ̂r(τr|y, x1:S, θ)π(x1:S|θ)π(θ)π(τ),

as described in Section 1.3.2 (Ratmann et al., 2009). The vector τ = (τ1, τ2) with τr =

Tr(x)− Tr(y) for r = 1, 2, describes the error under the model in reproducing the observed

summary statistics T (y). The marginal likelihood-free posterior πLF (τ |y) should be centered

on the zero vector for models which can adequately account for the observed data.

We follow Ratmann et al. (2009) in specifying K in (1.3.7) as a biweight (quartic) kernel

with an adaptive bandwidth εr determined by twice the interquartile range of Tr(x
s)−Tr(y)

given x1:S = (x1, . . . , xS). The prior on the error τ is determined as π(τ) =
∏

r π(τr), where

π(τr) = exp(−|τr|/δr)/(2δr) with δ1 = δ2 = 0.75 for both Exponential and Gamma models.

Based on 50,000 sampler iterations using S = 50 auxiliary datasets, the resulting bivariate

posterior πLF (τ |y) is illustrated in Figure 1.7 for both models. From these plots, the errors τ

under the Gamma model (bottom plots) are clearly centered on the origin, with 50% marginal

high-density regions given by τ1|y ∼ [−0.51, 0.53] and τ2|y ∼ [−0.44, 0.22] (Ratmann et al.,

2009). However for the Exponential model (top plots), while the marginal 50% high density

regions τ1|y ∼ [−0.32, 1.35] and τ2|y ∼ [−0.55, 0.27] also both contain zero, there is some

indication of model mis-specification as the joint posterior error distribution τ |y is not fully

centered on the zero vector. Based on this assessment, and recalling the discussion on the

exploratory analysis in Section 1.4.1, the Gamma model would appear to provide a better

overall fit to the observed data.
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1.5 Discussion

In the early 1990’s, the introduction of accessible Markov chain Monte Carlo samplers pro-

vided the catalyst for a rapid adoption of Bayesian methods and inference as credible tools in

model-based research. Twenty years later, the demand for computational techniques capable

of handling the types of models inspired by complex hypotheses has resulted in new classes

of simulation-based inference, that are again expanding the applicability and relevance of

the Bayesian paradigm to new levels.

While the focus of the present article centers on Markov chain-based, likelihood-free

simulation, alternative methods to obtain samples from πLF (θ|y) have been developed, each

with their own benefits and drawbacks. While MCMC-based samplers can be more efficient

than rejection sampling algorithms, the tendency of sampler performance to degrade in

regions of low posterior density (see Section 1.4.5; Sisson et al. (2007)) can be detrimental

to sampler efficiency. One class of methods, based on the output of a rejection sampler with

a high ε value (for efficiency), uses standard multivariate regression methods to estimate

the relationship between the summary statistics T (x) and parameter vectors θ (Beaumont

et al., 2002; Blum and Francois, 2009; Marjoram and Tavaré, 2006). The idea is then

to approximately transform the sampled observations from (θ, T (x)) to (θ∗, T (y)) so that

the adjusted likelihood-free posterior πLF (θ, x|y) → πLF (θ∗, y|y) ≈ π(θ|y) is an improved

approximation. Further attempts to improve sampler efficiency over MCMC-based methods

have resulted in the development of likelihood-free sequential Monte Carlo and sequential

importance sampling algorithms (Beaumont et al., 2009; Del Moral et al., 2008; Peters et al.,

2008; Sisson et al., 2007; Toni et al., 2009). Several authors have reported that likelihood-

free sequential Monte Carlo approaches can outperform their MCMC counterparts (McKinley

et al., 2009; Sisson et al., 2007).

There remain many open research questions in likelihood-free Bayesian inference. These

include how to select and incorporate the vectors of summary statistics T (·), how to perform

posterior simulation in the most efficient manner, and which form of joint likelihood-free

posterior models and kernel weighting functions admit the most effective marginal approxi-

mation to the true posterior πLF (θ|y) ≈ π(θ|y). Additionally, the links to existing bodies of



1.5. DISCUSSION 31

research, including non-parametrics (Blum, 2009) and indirect inference (Jiang and Turnbull,

2004), are at best poorly understood.

Finally, there is an increasing trend towards using likelihood-free inference for model

selection purposes (Grelaud et al., 2009; Toni et al., 2009). While this is a natural extension

of inference for individual models, the analysis in Section 1.4.4 urges caution and suggests

that further research is needed into the effect of the likelihood-free approximation both

within models and on the marginal likelihoods πLF (y) =
∫
Y πLF (θ|y)dθ upon which model

comparison is based.
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