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Chapter 1

Reversible Jump Markov chain Monte

Carlo

Yanan Fan and Scott A. Sisson

1.1 Introduction

The reversible jump Markov chain Monte Carlo sampler (Green, 1995) provides a general

framework for Markov chain Monte Carlo (MCMC) simulation in which the dimension of the

parameter space can vary between iterates of the Markov chain. The reversible jump sampler

can be viewed as an extension of the Metropolis-Hastings algorithm onto more general state

spaces.

To understand this in a Bayesian modelling context, suppose that for observed data x we

have a countable collection of candidate models M = {M1,M2, . . .} indexed by a parameter

k ∈ K. The index k can be considered as an auxiliary model indicator variable, such that

Mk′ denotes the model where k = k′. Each model Mk has an nk-dimensional vector of

unknown parameters, θk ∈ Rnk , where nk can take different values for different models
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2 CHAPTER 1. REVERSIBLE JUMP MCMC

k ∈ K. The joint posterior distribution of (k, θk) given observed data, x, is obtained as

the product of the likelihood, L(x | k, θk), and the joint prior, p(k, θk) = p(θk | k)p(k),

constructed from the prior distribution of θk under model Mk, and the prior for the model

indicator k (i.e. the prior for model Mk). Hence the joint posterior is

π(k, θk | x) =
L(x | k, θk)p(θk | k)p(k)

∑

k′∈K

∫

Rn
k′
L(x | k′, θ′

k′)p(θ
′
k′ | k

′)p(k′)dθ′
k′
. (1.1.1)

The reversible jump algorithm uses the joint posterior distribution in Equation (1.1.1) as the

target of a Markov chain Monte Carlo sampler over the state space Θ =
⋃

k∈K({k} × Rnk),

where the states of the Markov chain are of the form (k, θk), the dimension of which can

vary over the state space. Accordingly, from the output of a single Markov chain sampler,

the user is able to obtain a full probabilistic description of the posterior probabilities of

each model having observed the data, x, in addition to the posterior distributions of the

individual models.

This article aims to provide an overview of the reversible jump sampler. We will outline

the sampler’s theoretical underpinnings, present the latest and most popular techniques for

enhancing algorithm performance, and discuss the analysis of sampler output. Through the

use of numerous worked examples it is hoped that the reader will gain a broad appreciation

of the issues involved in multi-model simulation, and the confidence to implement reversible

jump samplers in the course of their own studies.

1.1.1 From Metropolis-Hastings to reversible jump

The standard formulation of the Metropolis-Hastings algorithm (Hastings, 1970) relies on

the construction of a time-reversible Markov chain via the detailed balance condition. This

condition means that moves from state θ to θ′ are made as often as moves from θ′ to θ

with respect to the target density. This is a simple way to ensure that the equilibrium

distribution of the chain is the desired target distribution. The extension of the Metropolis-

Hastings algorithm to the setting where the dimension of the parameter vector varies is more

challenging theoretically, however the resulting algorithm is surprisingly simple to follow.
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For the construction of a Markov chain on a general state space Θ with invariant or

stationary distribution π, the detailed balance condition can be written as

∫

(θ,θ′)∈A×B

π(dθ)P (θ, dθ′) =

∫

(θ,θ′)∈A×B

π(dθ′)P (θ′, dθ) (1.1.2)

for all Borel sets A × B ⊂ Θ, where P is a general Markov transition kernel (e.g. Green

(2001)).

As with the standard Metropolis-Hastings algorithm, Markov chain transitions from a

current state θ = (k, θ′
k) ∈ A in model Mk are realised by first proposing a new state

θ′ = (k′, θk′) ∈ B in model Mk′ from a proposal distribution q(θ, θ′). The detailed balance

condition (1.1.2) is enforced through the acceptance probability, where the move to the

candidate state θ′ is accepted with probability α(θ, θ′). If rejected, the chain remains at the

current state θ in model Mk. Under this mechanism (Green, 2001, 2003), Equation (1.1.2)

becomes

∫

(θ,θ′)∈A×B

π(θ | x)q(θ, θ′)α(θ, θ′)dθdθ′ =

∫

(θ,θ′)∈A×B

π(θ′ | x)q(θ′, θ)α(θ′, θ)dθdθ′,

(1.1.3)

where the distributions π(θ | x) and π(θ′ | x) are posterior distributions with respect to

model Mk and Mk′ respectively.

One way to enforce Equation (1.1.3) is by setting the acceptance probability as

α(θ, θ′) = min

{

1,
π(θ | x)q(θ, θ′)

π(θ′ | x)q(θ′, θ)

}

, (1.1.4)

where α(θ′, θ) is similarly defined. This resembles the usual Metropolis-Hastings acceptance

ratio (Green, 1995; Tierney, 1998). It is straightforward to observe that this formulation

includes the standard Metropolis-Hastings algorithm as a special case.

Accordingly, a reversible jump sampler with N iterations is commonly constructed as:

Step 1: Initialise k and θk at iteration t = 1.

Step 2: For iteration t ≥ 1 perform
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– Within-model move: with a fixed model k, update the parameters θk according to

any MCMC updating scheme.

– Between-models move: simultaneously update model indicator k and the parame-

ters θk according to the general reversible proposal/acceptance mechanism (Equa-

tion 1.1.4).

Step 3: Increment iteration t = t + 1. If t < N , go to Step 2.

1.1.2 Application areas

Statistical problems in which the number of unknown model parameters is itself unknown

are extensive, and as such the reversible jump sampler has been implemented in analyses

throughout a wide range of scientific disciplines over the last 15 years. Within the statistical

literature, these predominantly concern Bayesian model determination problems (Sisson,

2005). Some of the commonly recurring models in this setting are described below.

Change-point models: One of the original applications of the reversible jump sampler

was in Bayesian change-point problems, where both the number and location of change-

points in a system is unknown a priori. For example, Green (1995) analysed mining

disaster count data using a Poisson process with the rate parameter described as a

step function with an unknown number and location of steps. Fan and Brooks (2000)

applied the reversible jump sampler to model the shape of prehistoric tombs, where the

curvature of the dome changes an unknown number of times. Figure 1.1(a) shows the

plot of depths and radii of one of the tombs from Crete in Greece. The data appear to

be piecewise log-linear, with possibly two or three change-points.

Figure 1.1 near here.

Finite mixture models: Mixture models are commonly used where each data observation

is generated according to some underlying categorical mechanism. This mechanism is

typically unobserved, so there is uncertainty regarding which component of the resulting
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mixture distribution each data observation was generated from, in addition to uncer-

tainty over the number of mixture components. A mixture model with k components

for the observed data x takes the form

f(x|θk) =

k
∑

j=1

wjfj(x | φj) (1.1.5)

with θk = (φ1, . . . ,φk), where wj is the weight of the j
th mixture component fj , whose

parameter vector is denoted by φj , and where
∑k

j=1wj = 1. The number of mixture

components, k, is also unknown.

Figure 1.1(b) illustrates the distribution of enzymatic activity in the blood for 245 indi-

viduals. Richardson and Green (1997) analysed these data using a mixture of Normal

densities to identify subgroups of slow or fast metabolizers. The multi-modal nature of

the data suggests the existence of such groups, but the number of distinct groupings is

less clear. Tadesse et al. (2005) extend this Normal mixture model for the purpose of

clustering high-dimensional data.

Variable selection: The problem of variable selection arises when modelling the relation-

ship between a response variable, Y , and p potential explanatory variables x1, . . . xp.

The multi-model setting emerges when attempting to identify the most relevant sub-

sets of predictors, making it a natural candidate for the reversible jump sampler. For

example, under a regression model with Normal errors we have

Y = Xγβγ + ǫ with ǫ ∼ N(0, σ2I) (1.1.6)

where γ = (γ1, . . . , γp) is a binary vector indexing the subset of x1, . . . xp to be included

in the linear model, Xγ is the design matrix whose columns correspond to the indexed

subset given by γ, and βγ is the corresponding subset of regression coefficients. For

examples and algorithms in this setting and beyond see e.g. George and McCulloch

(1993), Smith and Kohn (1996) and Nott and Leonte (2004).

Non-parametrics: Within Bayesian non-parametrics, many authors have successfully ex-

plored the use of the reversible jump sampler as a method to automate the knot selection

process when using a P -th order spline model for curve fitting (Denison et al., 1998;
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DiMatteo et al., 2001). Here, a curve f is estimated by

f(x) = α0 +

P
∑

j=1

αjx
j +

k
∑

i=1

ηi(x− κi)
P
+, x ∈ [a, b] (1.1.7)

where z+ = max(0, z) and κi, i = 1, . . . , k, represent the locations of k knot points

(Hastie and Tibshirani, 1990). Under this representation, fitting the curve consists of

estimating the unknown number of knots k, the knot locations κi and the corresponding

regression coefficients αj and ηi, for j = 0, . . . , P and i = 1, . . . , k.

Time series models: In the modelling of temporally dependent data, x1, . . . xT , multiple

models naturally arise under uncertainty over the degree of dependence. For example,

under a k-th order autoregressive process

Xt =
k
∑

τ=1

aτXt−τ + ǫt with t = k + 1, . . . , T (1.1.8)

with ǫt ∼ WN(0, σ2), the order, k, of the autoregression is commonly unknown, in

addition to the coefficients aτ . Brooks et al. (2003c), Ehlers and Brooks (2003) and

Vermaak et al. (2004) each detail descriptions on the use of reversible jump samplers

for this class of problems.

The reversible jump algorithm has had a compelling influence in the statistical and main-

stream scientific research literatures. In general, the large majority of application areas have

tended to be computationally or biologically related (Sisson, 2005). Accordingly a large

number of developmental and application studies can be found in the signal processing lit-

erature and the related fields of computer vision and image analysis. Epidemiological and

medical studies also feature strongly.

This article is structured as follows: In Section 1.2 we present a detailed description of

how to implement the reversible jump sampler and review methods to improve sampler per-

formance. Section 1.3 examines post-simulation analysis, including label switching problems

when identifiability is an issue, and convergence assessment. In Section 1.4 we review related

sampling methods in the statistical literature, and conclude with discussion on possible fu-
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ture research directions for the field. Other useful reviews of reversible jump MCMC can be

found in Green (2003) and Sisson (2005).

1.2 Implementation

In practice, the construction of proposal moves between different models is achieved via the

concept of “dimension matching”. Most simply, under a general Bayesian model determi-

nation setting, suppose that we are currently in state (k, θk) in model Mk, and we wish to

propose a move to a state (k′, θ′
k′) in model Mk′, which is of a higher dimension, so that

nk′ > nk. In order to “match dimensions” between the two model states, a random vector

u of length dk→k′ = nk′ −nk is generated from a known density qdk→k′
(u). The current state

θk and the random vector u are then mapped to the new state θ′
k′ = gk→k′(θk,u) through a

one-to-one mapping function gk→k′ : R
nk ×Rdk → Rnk′ . The acceptance probability of this

proposal, combined with the joint posterior expression of Equation (1.1.1) becomes

α[(k, θk), (k
′, θ′

k′)] = min

{

1,
π(k′, θ′

k′ | x)q(k
′ → k)

π(k, θk | x)q(k → k′)qdk→k′
(u)

∣

∣

∣

∣

∂gk→k′(θk,u)

∂(θk,u)

∣

∣

∣

∣

}

, (1.2.1)

where q(k → k′) denotes the probability of proposing a move from model Mk to model

Mk′, and the final term is the determinant of the Jacobian matrix, often referred to in the

reversible jump literature simply as the Jacobian. This term arises through the change of

variables via the function gk→k′, which is required when used with respect to the integral

equation (1.1.3). Note that the normalisation constant in Equation (1.1.1) is not needed

to evaluate the above ratio. The reverse move proposal, from model Mk′ to Mk is made

deterministically in this setting, and is accepted with probability

α[(k′, θ′
k′), (k, θk)] = α[(k, θk), (k

′, θ′
k′)]

−1.

More generally, we can relax the condition on the length of the vector u by allowing dk→k′ ≥

nk′ − nk. In this case, non-deterministic reverse moves can be made by generating a dk′→k-

dimensional random vector u′ ∼ qdk′→k
(u′), such that the dimension matching condition,

nk+dk→k′ = nk′ +dk′→k, is satisfied. Then a reverse mapping is given by θk = gk′→k(θ
′
k′,u

′),



8 CHAPTER 1. REVERSIBLE JUMP MCMC

such that θk = gk′→k(gk→k′(θk,u),u
′) and θ′

k′ = gk→k′(gk′→k(θ
′
k′,u

′),u). The corresponding

acceptance probability to Equation (1.2.1) then becomes

α[(k, θk), (k
′, θ′

k′)] = min

{

1,
π(k′, θ′

k′ | x)q(k
′ → k)qdk′→k

(u′)

π(k, θk | x)q(k → k′)qdk→k′
(u)

∣

∣

∣

∣

∂gk→k′(θk,u)

∂(θk,u)

∣

∣

∣

∣

}

. (1.2.2)

Example: Dimension matching

Consider the illustrative example given in Green (1995) and Brooks (1998). Suppose that

model M1 has states (k = 1, θ1 ∈ R1) and model M2 has states (k = 2, θ2 ∈ R2). Let

(1, θ∗) denote the current state in M1 and (2, (θ(1), θ(2))) denote the proposed state in M2.

Under dimension matching, we might generate a random scalar u, and let θ(1) = θ∗ + u and

θ(2) = θ∗ − u, with the reverse move given deterministically by θ∗ = 1
2
(θ(1) + θ(2)).

Example: Moment matching in a finite mixture of univariate Normals

Under the finite mixture of univariate Normals model, the observed data, x, has density

given by Equation (1.1.5), where the j-th mixture component fj(x | φj) = φ(x | µj, σj) is

the N(µj , σj) density. For between-model moves, Richardson and Green (1997) implement

a split (one component into two) and merge (two components into one) strategy which

satisfies the dimension matching requirement. (See Dellaportas and Papageorgiou (2006)

for an alternative approach.)

When two Normal components j1 and j2 are merged into one, j∗, Richardson and Green

(1997) propose a deterministic mapping which maintains the 0th, 1st and 2nd moments:

wj∗ = wj1 + wj2

wj∗µj∗ = wj1µj1 + wj2µj2

wj∗(µ
2
j∗ + σ2

j∗) = wj1(µ
2
j1
+ σ2

j1
) + wj2(µ

2
j2
+ σ2

j2
).

(1.2.3)
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The split move is proposed as

wj1 = wj∗ ∗ u1, wj2 = wj∗ ∗ (1− u1)

µj1 = µj∗ − u2σj∗

√

wj2

wj1

µj2 = µj∗ + u2σj∗

√

wj1

wj2

σ2
j1 = u3(1− u2

2)σ
2
j∗

wj∗

wj1

σ2
j2

= (1− u3)(1− u2
2)σ

2
j∗

wj∗

wj2

,

(1.2.4)

where the random scalars u1, u2 ∼ Beta(2, 2) and u3 ∼ Beta(1, 1). In this manner, dimension

matching is satisfied, and the acceptance probability for the split move is calculated according

to Equation (1.2.1), with the acceptance probability of the reverse merge move given by the

reciprocal of this value.

1.2.1 Mapping functions and proposal distributions

While the ideas behind dimension matching are conceptually simple, their implementation

is complicated by the arbitrariness of the mapping function gk→k′ and the proposal distri-

butions, qdk→k′
(u), for the random vectors u. Since mapping functions effectively express

functional relationships between the parameters of different models, good mapping functions

will clearly improve sampler performance in terms of between-model acceptance rates and

chain mixing. The difficulty is that even in the simpler setting of nested models, good re-

lationships can be hard to define, and in more general settings, parameter vectors between

models may not be obviously comparable.

The only additional degree of freedom to improve between-model proposals is by choos-

ing the form and parameters of the proposal distribution qdk→k′
(u). However, there are no

obvious criteria to guide this choice. Contrast this to within-model, random-walk Metropolis-

Hastings moves on a continuous target density, whereby proposed moves close to the current

state can have an arbitrarily large acceptance probability, and proposed moves far from

the current state have low acceptance probabilities. This concept of “local” moves may be

partially translated on to model space (k ∈ K): proposals from θk in model Mk to θ′
k′ in
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model Mk′ will tend to have larger acceptance probabilities if their likelihood values are

similar i.e. L(x | k, θk) ≈ L(x | k′, θ′
k′). For example, in the analysis of Bayesian mixture

models, Richardson and Green (1997) propose “birth/death” and “split/merge” mappings

of mixture components for the between-model move, while keeping other components un-

changed. Hence the proposed moves necessarily will have similar likelihood values to the

current state. However, in general the notion of “local” move proposals does not easily ex-

tend to the parameter vectors of different models, unless considering simplified settings (e.g.

nested models). In the general case, good mixing properties are achieved by the alignment

of regions of high posterior probability between models.

Notwithstanding these difficulties, reversible jump MCMC is often associated with poor

sampler performance. However, failure to realise acceptable sampler performance should

only be considered a result of poorly constructed between-model mappings or inappropri-

ate proposal distributions. It should even be anticipated that implementing a multi-model

sampler may result in improved chain mixing, even when the inferential target distribution

is a single model. In this case, sampling from a single model posterior with an “overly-

sophisticated” machinery is loosely analogous with the extra performance gained with aug-

mented state space sampling methods. For example, in the case of a finite mixture of Normal

distributions, Richardson and Green (1997) report markedly superior sampler mixing when

conditioning on there being exactly three mixture components, in comparison with the out-

put generated by a fixed-dimension sampler. George et al. (1999) similarly obtain improved

chain performance in a single model, by performing “birth-then-death” moves simultane-

ously so that the dimension of the model remains constant. Green (2003) presents a short

study on which inferential circumstances determine whether the adoption of a multi-model

sampler may be beneficial in this manner. Conversely, Han and Carlin (2001) provide an

argument to suggest that multi-model sampling may have a detrimental effect on efficiency.

1.2.2 Marginalisation and augmentation

Depending on the aim or the complexity of a multi-model analysis, it may be that use of re-

versible jump MCMC would be somewhat heavy-handed, when reduced- or fixed-dimensional
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samplers may be substituted. In some Bayesian model selection settings, between-model

moves can be greatly simplified or even avoided if one is prepared to make certain prior

assumptions, such as conjugacy or objective prior specifications. In such cases, it may be

possible to analytically integrate out some or all of the parameters θk in the posterior distri-

bution (1.1.1), reducing the sampler either to fixed dimensions, e.g. on model space k ∈ K

only, or to a lower-dimensional set of model and parameter space (Berger and Pericchi, 2001;

DiMatteo et al., 2001; George and McCulloch, 1993; Tadesse et al., 2005). In lower dimen-

sions, the reversible jump sampler is often easier to implement, as the problems associated

with mapping function specification are conceptually simpler to resolve.

Example: Marginalisation in variable selection

In Bayesian variable selection for Normal linear models (Equation 1.1.6), the vector γ =

(γ1, . . . , γp) is treated as an auxiliary (model indicator) variable, where

γi =







1 if predictor xi is included in the regression

0 otherwise.

Under certain prior specifications for the regression coefficients β and error variance σ2, the

β coefficients can be analytically integrated out of the posterior. A Gibbs sampler directly

on model space is then available for γ (George and McCulloch, 1993; Nott and Green, 2004;

Smith and Kohn, 1996).

Example: Marginalisation in finite mixture of multivariate Normal models

Within the context of clustering, the parameters of the Normal components are usually not of

interest. Tadesse et al. (2005) demonstrate that by choosing appropriate prior distributions,

the parameters of the Normal components can be analytically integrated out of the posterior.

The reversible jump sampler may then run on a much reduced parameter space, which is

simpler and more efficient.

In a general setting, Brooks et al. (2003c) proposed a class of models based on augmenting

the state space of the target posterior with an auxiliary set of state-dependent variables, vk,

so that the state space of π(k, θk, vk | x) = π(k, θk | x)τk(vk) is of constant dimension for

all models Mk ∈ M. By updating vk via a (deliberately) slowly mixing Markov chain, a
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temporal memory is induced that persists in the vk from state to state. In this manner, the

motivation behind the auxiliary variables is to improve between-model proposals, in that

some memory of previous model states is retained. Brooks et al. (2003c) demonstrate that

this approach can significantly enhance mixing compared to an unassisted reversible jump

sampler. Although the fixed dimensionality of (k, θk, vk) is later relaxed, there is an obvious

analogue with product space sampling frameworks (Carlin and Chib, 1995; Godsill, 2001).

See Section 1.4.2.

An alternative augmented state space modification of standard MCMC is given by Liu et al.

(2001). The dynamic weighting algorithm augments the original state space by a weight-

ing factor, which permits the Markov chain to make large transitions not allowable by the

standard transition rules, subject to the computation of the correct weighting factor. Infer-

ence is then made by using the weights to compute importance sampling estimates rather

than simple Monte Carlo estimates. This method can be used within the reversible jump

algorithm to facilitate cross-model jumps.

1.2.3 Centering and order methods

Brooks et al. (2003c) introduce a class of methods to achieve the automatic scaling of the

proposal density, qdk→k′
(u), based on “local” move proposal distributions, which are centered

around the point of equal likelihood values under current and proposed models. Under

this scheme, it is assumed that local mapping functions gk→k′ are known. For a proposed

move from (k, θk) in Mk to model Mk′, the random vector “centering point” ck→k′(θk) =

gk→k′(θk,u), is defined such that for some particular choice of proposal vector u, the current

and proposed states are identical in terms of likelihood contribution i.e. L(x | k, θk) = L(x |

k′, ck→k′(θk)). For example, if Mk is an autoregressive model of order k (Equation 1.1.8) and

Mk′ is an autoregressive model of order k′ = k+1, and if ck→k′(θk) = gk→k′(θk, u) = (θk, u)

(e.g. a local “birth” proposal), then we have u = 0 and ck→k′ = (θk, 0), as L(x | k, θk) =

L(x | k′, (θk, 0)).

Given the centering constraint on u, if the scaling parameter in the proposal qdk→k′
(u)
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is a scalar, then the 0th-order method (Brooks et al., 2003c) proposes to choose this scaling

parameter such that the acceptance probability α[(k, θk), (k
′, ck→k′(θk))] of a move to the

centering point ck→k′(θk) in model Mk′ is exactly one. The argument is then that move

proposals close to ck→k′(θk) will also have a large acceptance probability.

For proposal distributions, qdk→k′
(u), with additional degrees of freedom, a similar method

based on a series of nth-order conditions (for n ≥ 1), requires that for the proposed move,

the nth derivative (with respect to u) of the acceptance probability equals the zero vector at

the centering point ck→k′(θk):

∇nα[(k, θk), (k
′, ck→k′(θk))] = 0. (1.2.5)

That is, the m unknown parameters in the proposal distribution qdk→k′
(u) are determined

by solving the m simultaneous equations given by (1.2.5) with n = 1, . . . , m. The idea

behind the nth-order method is that the concept of closeness to the centering point under

the 0th-order method is relaxed. By enforcing zero derivatives of α[(k, θk), (k
′, ck→k′(θk))],

the acceptance probability will become flatter around ck→k′(θk). Accordingly this allows

proposals further away from the centering point to still be accepted with a reasonably high

probability. This will ultimately induce improved chain mixing.

With these methods, proposal distribution parameters are adapted to the current state

of the chain, (k, θk), rather than relying on a constant proposal parameter vector for all

state transitions. It can be shown that for a simple two model case, the nth-order conditions

are optimal in terms of the capacitance of the algorithm (Lawler and Sokal, 1988). See also

Ehlers and Brooks (2003) for an extension to a more general setting, and Ntzoufras et al.

(2003) for a centering method in the context of linear models.

One caveat with the centering schemes is that they require specification of the between

model mapping function gk→k′, although these methods compensate for poor choices of map-

ping functions by selecting the best set of parameters for the given mapping. Recently,

Ehlers and Brooks (2008) suggest the posterior conditional distribution π(k′,u | θk) as the

proposal for the random vector u, side-stepping the need to construct a mapping function.

In this case, the full conditionals must either be known, or need to be approximated.
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Example: The 0th-order method for an autoregressive model

Brooks et al. (2003c) considers the AR model with unknown order k (Equation 1.1.8), as-

suming Gaussian noise ǫt ∼ N(0, σ2
ǫ ) and a uniform prior on k where k = 1, 2, . . . kmax.

Within each model Mk, independent N(0, σ2
a) priors are adopted for the AR coefficients

aτ , τ = 1, . . . , k, with an inverse gamma prior for σ2
ǫ . Suppose moves are made from

model Mk to model Mk′ such that k′ = k + 1. The move from θk to θ′
k′ is achieved

by generating a random scalar u ∼ q(u) = N(0, 1), and defining the mapping function as

θ′
k′ = gk→k′(θk, u) = (θk, σu). The centering point ck→k′(θk) then occurs at the point u = 0,

or θ′
k′ = (θk, 0).

Under the mapping gk→k′, the Jacobian is σ, and the acceptance probability (Equa-

tion 1.2.1) for the move from (k, θk) to (k′, ck→k′(θk)) is given by α[(k, θk), (k
′, (θk, 0))] =

min(1, A) where

A =
π(k′, (θk, 0) | x)q(k

′ → k)σ

π(k, θk | x)q(k → k′)q(0)
=

(2πσ2
a)

−1/2q(k′ → k)σ

q(k → k′)(2π)−1/2
.

Note that since the likelihoods are equal at the centering point, and the priors common to

both models cancel in the posterior ratio, A is only a function of the prior density for the

parameter ak+1 evaluated at 0, the proposal distributions and the Jacobian. Hence we solve

A = 1 to obtain

σ2 = σ2
a

(

q(k → k′)

q(k′ → k)

)2

.

Thus in this case, the proposal variance is not model parameter (θk) or data (x) dependent.

It depends only on the prior variance, σa, and the model states, k, k′.

Example: The second-order method for moment matching

Consider the moment matching in a finite mixture of univariate Normals example of Section

1.2. The mapping functions gk′→k and gk→k′ are respectively given by Equations (1.2.3) and

(1.2.4), with the random numbers u1, u2 and u3 drawn from independent Beta distributions

with unknown parameter values, so that qpi,qi(ui): ui ∼ Beta(pi, qi), i = 1, 2, 3.

Consider the split move, Equation (1.2.4). To apply the second order method of Brooks et al.

(2003c), we first locate a centering point, ck→k′(θk), achieved by setting u1 = 1, u2 = 0 and
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u3 ≡ u1 = 1 by inspection. Hence, at the centering point, the two new (split) components

j1 and j2 will have the same location and scale as the j∗ component, with new weights

wj1 = wj∗ and wj2 = 0 and all observations allocated to component j1. Accordingly this will

produce identical likelihood contributions. Note that to obtain equal variances for the split

proposal, substitute the expressions for wj1 and wj2 into those for σ2
j1 = σ2

j2 .

Following Richardson and Green (1997), the acceptance probability of the split move

evaluated at the centering point is then proportional (with respect to u) to

logA[(k, θk), (k
′, ck→k′(θk))] ∝

lj1 log(wj1) + lj2 log(wj2)−
lj1
2
log(σ2

j1
)−

lj2
2
log(σ2

j2
)− 1

2σ2

j1

∑lj1
l=1(yl − µj1)

2

− 1
2σ2

j2

∑lj2
l=1(yl − µj2)

2 + (δ − 1 + lj1) log(wj1) + (δ − 1 + lj2) log(wj2)

−{1
2
κ[(µj1 − ξ)2 + (µj2 − ξ)2]} − (α + 1) log(σ2

j1
σ2
j2
)− β(σ−2

j1
+ σ−2

j2
)

− log[qp1,q1(u1)]− log[qp2,q2(u2)]− log[qp3,q3(u3)] + log(|µj1 − µj2|)

+ log(σ2
j1
) + log(σ2

j2
)− log(u2)− log(1− u2

2)− log(u3)− log(1− u3),

(1.2.6)

where lj1 and lj2 respectively denote the number of observations allocated to components j1

and j2, and where δ, α, β, ξ and κ are hyperparameters as defined by Richardson and Green

(1997).

Thus, for example, to obtain the proposal parameter values p1 and q1 for u1, we solve the

first- and second-order derivatives of the acceptance probability (1.2.6) with respect to u1.

This yields

∂ logα[(k, θk), (k
′, ck→k′(θk))]

∂u1
=

δ + 2lj1 − p1
u1

+
q1 − δ − 2lj2
(1− u1)

∂2 logα[(k, θk), (k
′, ck→k′(θk))]

∂u2
1

= −
δ + 2lj1 − p1

u2
1

+
q1 − δ − 2lj2
(1− u1)2

.

Equating these to zero and solving for p1 and q1 at the centering points (with lj1 = lj∗ and

lj2 = 0) gives p1 = δ + 2lj∗ and q1 = δ. Thus the parameter p1 depends on the number of

observations allocated to the component being split. Similar calculations to the above give

solutions for p2, q2, p3 and q3.
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1.2.4 Multi-step proposals

Green and Mira (2001) introduce a procedure for learning from rejected between-model pro-

posals based on an extension of the splitting rejection idea of Tierney and Mira (1999). After

rejecting a between-model proposal, the procedure makes a second proposal, usually under

a modified proposal mechanism, and potentially dependent on the value of the rejected pro-

posal. In this manner, a limited form of adaptive behaviour may be incorporated into the

proposals. The procedure is implemented via a modified Metropolis-Hastings acceptance

probability, and may be extended to more than one sequential rejection (Trias et al., 2009).

Delayed-rejection schemes can reduce the asymptotic variance of ergodic averages by reduc-

ing the probability of the chain remaining in the same state (Peskun, 1973; Tierney, 1998),

however there is an obvious trade-off with the extra move construction and computation

required.

For clarity of exposition, in the remainder of this section we denote the current state of

the Markov chain in model Mk by x = (k, θk), and the first and second stage proposed

states in model Mk′ by y and z. Let y = g
(1)
k→k′(x,u1) and z = g

(2)
k→k′(x,u1,u2) be the

mappings of the current state and random vectors u1 ∼ q
(1)
dk→k′

(u1) and u2 ∼ q
(2)
dk→k′

(u2)

into the proposed new states. For simplicity, we again consider the framework where the

dimension of model Mk is smaller than that of model Mk′ (i.e. nk′ > nk) and where the

reverse move proposals are deterministic. The proposal from x to y is accepted with the

usual acceptance probability

α1(x,y) = min

{

1,
π(y)q(k′ → k)

π(x)q(k → k′)q
(1)
dk→k′

(u1)

∣

∣

∣

∣

∣

∂g
(1)
k→k′(x,u1)

∂(x,u1)

∣

∣

∣

∣

∣

}

.

If y is rejected, detailed balance for the move from x to z is preserved with the acceptance

probability

α2(x, z) = min

{

1,
π(z)q(k′ → k)[1− α1(y

∗, z)−1]

π(x)q(k → k′)q
(1)
dk→k′

(u1)q
(2)
dk→k′

(u2)[1− α1(x,y)]

∣

∣

∣

∣

∣

∂g
(2)
k→k′(x,u1,u2)

∂(x,u1,u2)

∣

∣

∣

∣

∣

}

,

where y∗ = g
(1)
k→k′(z,u1). Note that the second stage proposal z = g

(2)
k→k′(x,u1,u2) is
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permitted to depend on the rejected first stage proposal y (a function of x and u1).

In a similar vein, Al-Awadhi et al. (2004) also acknowledge that an initial between-model

proposal x′ = gk→k′(x,u) may be poor, and seek to adjust the state x′ to a region of higher

posterior probability before taking the decision to accept or reject the proposal. Specifically,

Al-Awadhi et al. (2004) propose to initially evaluate the proposed move to x′ in model Mk′

through a density π∗(x′) rather than the usual π(x′). The authors suggest taking π∗ to be

some tempered distribution π∗ = πγ, γ > 1, such that the modes of π∗ and π are aligned.

The algorithm then implements κ ≥ 1 fixed-dimension MCMC updates, generating states

x′ → x1 → . . . → xκ = x∗, with each step satisfying detailed balance with respect to π∗.

This provides an opportunity for x∗ to move closer to the mode of π∗ (and therefore π) than

x′. The move from x in model Mk to the final state x∗ in model Mk′ (with density π(x∗))

is finally accepted with probability

α(x,x∗) = min

{

1,
π(x∗)π∗(x′)q(k′ → k)

π(x)π∗(x∗)q(k → k′)qdk→k′
(u)

∣

∣

∣

∣

∂gk→k′(x,u)

∂(x,u)

∣

∣

∣

∣

}

.

The implied reverse move from model Mk′ to model model Mk is conducted by taking the

κ moves with respect to π∗ first, followed by the dimension changing move.

Various extensions can easily be incorporated into this framework, such as using a se-

quence of π∗ distributions, resulting in a slightly modified acceptance probability expression.

For instance, the standard simulated annealing framework, Kirkpatrick (1984), provides

an example of a sequence of distributions which encourage moves towards posterior mode.

Clearly the choice of the distribution π∗ can be crucial to the success of this strategy. As

with all multi-step proposals, increased computational overheads are traded for potentially

enhanced between-model mixing.

1.2.5 Generic samplers

The problem of efficiently constructing between-model mapping templates, gk→k′, with as-

sociated random vector proposal densities, qdk→k′
, may be approached from an alternative
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perspective. Rather than relying on a user-specified mapping, one strategy would be to move

towards a more generic proposal mechanism altogether. A clear benefit of generic between-

model moves is that they may be equally be implemented for non-nested models. While the

ideal of “black-box” between-model proposals are an attractive ideal, they currently remain

on the research horizon. However, a number of automatic reversible jump MCMC samplers

have been proposed.

Green (2003) proposed a reversible jump analogy of the random-walk Metropolis sampler

of Roberts (2003). Suppose that estimates of the first and second order moments of θk

are available, for each of a small number of models, k ∈ K, denoted by µk and BkB
⊤
k

respectively, where Bk is an nk × nk matrix. In proposing a move from (k, θk) to model

Mk′, a new parameter vector is proposed by

θ′
k′ =



























µk′ +Bk′
[

RB−1
k (θk − µk)

]nk′

1
if nk′ < nk

µk′ +Bk′RB−1
k (θk − µk) if nk′ = nk

µk′ +Bk′R





B−1
k (θk − µk)

u



 if nk′ > nk

where [ · ]m1 denotes the first m components of a vector, R is a orthogonal matrix of order

max{nk, nk′}, and u ∼ qnk′−nk
(u) is an (nk′ − nk)-dimensional random vector (only utilised

if nk′ > nk, or when calculating the acceptance probability of the reverse move from model

Mk′ to model Mk if nk′ < nk). If nk′ ≤ nk, then the proposal θ′
k′ is deterministic and the

Jacobian is trivially calculated. Hence the acceptance probability is given by

α[(k, θk), (k
′, θ′

k′)] =
π(k′, θ′

k′|x)

π(k, θk|x)

q(k′ → k)

q(k → k′)

|Bk′|

|Bk|
×















qnk′−nk
(u) for nk′ < nk

1 for nk′ = nk

1/qnk′−nk
(u) for nk′ > nk

.

Accordingly, if the model-specific densities π(k, θk|x) are uni-modal with first and second

order moments given by µk and BkB
⊤
k , then high between-model acceptance probabilities

may be achieved. (Unitary acceptance probabilities are available if the π(k, θk|x) are exactly

Gaussian). Green (2003), Godsill (2003) and Hastie (2004) discuss a number of modifications

to this general framework, including improving efficiency and relaxing the requirement of
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unimodal densities π(k, θk|x) to realise high between-model acceptance rates. Naturally,

the required knowledge of first and second order moments of each model density will restrict

the applicability of these approaches to moderate numbers of candidate models if these

require estimation (e.g. via pilot chains).

With a similar motivation to the above, Papathomas et al. (2009) propose the multivariate

Normal as proposal distribution for θ′
k′ in the context of linear regression models, so that

θ′
k′ ∼ N(µk′|θk

,Σk′|θk
). The authors derive estimates for the mean µk′|θk

and covariance

Σk′|θk
such that the proposed values for θ′

k′ will on average produce similar conditional

posterior values under model Mk′ as the vector θk under model Mk. In particular, consider

the Normal linear model in Equation (1.1.6), re-writing the error covariance as V , assuming

equality under the two models such that Vk = Vk′ = V . The parameters of the proposal

distribution for θ′
k′ are then given by

µk′|θk
= (X⊤

γ′V −1Xγ′)−1X⊤
γ′V −1{Y +B−1V −1/2(Xγθk − PkY )}

Σk′|θk
= Qk′,k′ −Qk′,k′Q

−1
k′,kQk,kQ

−1
k,k′Qk′,k′ + cInk′

where γ and γ′ are indicators corresponding to modelsMk andMk′, B = (V+Xγ′Σk′|θk
X⊤

γ′)−1/2,

Pk = Xγ(X
⊤
γ V

−1Xγ)
−1X⊤

γ V
−1, Qk,k′ = (X⊤

γ V
−1Xγ′)−1, In is the n× n identity matrix and

c > 0. Intuitively, the mean of this proposal distribution may be interpreted as the maximum

likelihood estimate of θ′
k′ for model Mk′, plus a correction term based on the distance of

the current chain state θk to the mode of the posterior density in model Mk. The mapping

between θ′
k′ and θk and the random number u is given by

θ′
k′ = µk′|θk

+Σ
1/2
k′|θk

u

where u ∼ N(0, Ink′
). Accordingly the Jacobian corresponding to Equation (1.2.2) is given by

∣

∣

∣
Σ

1/2
k′|θk

∣

∣

∣

∣

∣

∣
Σ

1/2
k|θk′

∣

∣

∣
. Under this construction, the value c > 0 is treated as a tuning parameter for

the calibration of the acceptance probability. Quite clearly, the parameters of the between-

model proposal do not require a priori estimation, and they adapt to the current state of

the chain. The authors note that in some instances, this method produces similar results

in terms of efficiency as Green (2003). One caveat is that the calculations at each proposal
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stage involve several inversions of matrices which can be computationally costly when the

dimension is large. In addition, the method is theoretically justified for Normal linear models,

but can be applied to non-Normal models when transformation of data to Normality is

available, as demonstrated in Papathomas et al. (2009).

Fan et al. (2009) propose to construct between-model proposals based on estimating con-

ditional marginal densities. Suppose that it is reasonable to assume some structural similar-

ities between the parameters θk and θ′
k′ of models Mk and Mk′ respectively. Let c indicate

the subset of the vectors θk = (θc
k, θ

−c
k ) and θ′

k′ = (θc
k′, θ

−c
k′ ) which can be kept constant

between models, so that θc
k′ = θc

k. The remaining r-dimensional vector θ−c
k′ is then sampled

from an estimate of the factorisation of the conditional posterior of θ−c
k′ = (θ1k′, . . . , θ

r
k′) under

model Mk′:

π(θ−c
k′ | θc

k′,x) ≈ π̂1(θ
1
k′ | θ

2
k′ , . . . , θ

r
k′, θ

c
k′,x) . . . π̂r−1(θ

r−1
k′ | θrk′, θ

c
k′,x)π̂r(θ

r
k′ | θ

c
k′,x).

The proposal θ−c
k′ is drawn by first estimating π̂r(θ

r
k′ | θ

c
k′,x) and sampling θrk′, and by then

estimating π̂r−1(θ
r−1
k′ | θrk′, θ

c
k′,x) and sampling θr−1

k′ , conditioning on the previously sampled

point, θrk′ , and so on. Fan et al. (2009) construct the conditional marginal densities by

using partial derivatives of the joint density, π(k′, θ′
k′ | x), to provide gradient information

within a marginal density estimator. As the conditional marginal density estimators are

constructed using a combination of samples from the prior distribution and gridded values,

they can be computationally expensive to construct, particularly if high-dimensional moves

are attempted e.g. θ−c
k′ = θ′

k′. However, this approach can be efficient, and also adapts to

the current state of the sampler.

1.3 Post simulation

1.3.1 Label switching

The so-called “label switching” problem occurs when the posterior distribution is invariant

under permutations in the labelling of the parameters. This results in the parameters having
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identical marginal posterior distributions. For example, in the context of a finite mixture

model (Equation 1.1.5), the parameters of each mixture component, φj , are unidentifiable

under a symmetric prior. This causes problems in the interpretation of the MCMC output.

While this problem is general, in that it is not restricted to the multi-model case, as many

applications of the reversible jump sampler encounter this type of problem, we discuss some

methods of overcoming this issue below.

The conceptually simplest method of circumventing nonidentifiability is to impose artifi-

cial constraints on the parameters. For example, if µj denotes the mean of the j-th Gaussian

mixture component, then one such constraint could be µ1 < . . . < µk (Richardson and Green,

1997). However, the effectiveness of this approach is not always guaranteed (Jasra et al.,

2005). One of the main problems with such constraints is that they are often artificial, be-

ing imposed for inferential convenience rather than as a result of genuine knowledge about

the model. Furthermore, suitable constraints can be difficult or almost impossible to find

(Fruhwirth-Schnatter, 2001).

Alternative approaches to handling nonidentifiability involve the post-processing of MCMC

output. Stephens (2000b) gives an inferential method based on the relabelling of components

with respect to the permutation which minimises the posterior expected loss. Celeux et al.

(2000), Hurn et al. (2003) and Sisson and Hurn (2004) adopt a fully decision-theoretic ap-

proach, where for every posterior quantity of interest, an appropriate (possibly multi-model)

loss function is constructed and minimised. Each of these methods can be computationally

expensive.

1.3.2 Convergence assessment

Under the assumption that an acceptably efficient method of constructing a reversible jump

sampler is available, one obvious pre-requisite to inference is that the Markov chain converges

to its equilibrium state. Even in fixed dimension problems, theoretical convergence bounds

are in general difficult or impossible to determine. In the absence of such theoretical results,

convergence diagnostics based on empirical statistics computed from the sample path of
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multiple chains are often the only available tool. An obvious drawback of the empirical

approach is that such diagnostics invariably fail to detect a lack of convergence when parts

of the target distribution are missed entirely by all replicate chains. Accordingly, these are

necessary rather than sufficient indicators of chain convergence (see Mengersen et al. (1999)

and Cowles and Carlin (1996) for comparative reviews under fixed dimension MCMC).

The reversible jump sampler generates additional problems in the design of suitable em-

pirical diagnostics, since most of these depend on the identification of suitable scalar statistics

of the parameters sample paths. However, in the multi-model case, these statistics may no

longer retain the same interpretation. In addition, convergence is not only required within

each of a potentially large number of models, but also across models with respect to posterior

model probabilities.

One obvious approach would be the implementation of independent sub-chain assess-

ments, both within-models and for the model indicator k ∈ K. With focus purely on

model selection, Brooks et al. (2003b) propose various diagnostics based on the sample-

path of the model indicator, k, including non-parametric hypothesis tests such as the χ2 and

Kolmogorov-Smirnov tests. In this manner, distributional assumptions of the models (but

not the statistics) are circumvented at the price of associating marginal convergence of k

with convergence of the full posterior density.

Brooks and Giudici (2000) propose the monitoring of functionals of parameters which re-

tain their interpretations as the sampler moves between models. The deviance is suggested

as a default choice in the absence of superior alternatives. A two-way ANOVA decompo-

sition of the variance of such a functional is formed over multiple chain replications, from

which the potential scale reduction factor (PSRF) (Gelman and Ruben, 1992) can be con-

structed and monitored. Castelloe and Zimmerman (2002) extend this approach firstly to

an unbalanced (weighted) two-way ANOVA, to prevent the PRSF being dominated by a

few visits to rare models, with the weights being specified in proportion to the frequency of

model visits. Castelloe and Zimmerman (2002) also extend their diagnostic to the multivari-

ate (MANOVA) setting on the observation that monitoring several functionals of marginal

parameter subsets is more robust than monitoring a single statistic. This general method is
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clearly reliant on the identification of useful statistics to monitor, but is also sensitive to the

extent of approximation induced by violations of the ANOVA assumptions of independence

and normality.

Sisson and Fan (2007) propose diagnostics when the underlying model can be formulated

in the marked point process framework (Diggle, 1983; Stephens, 2000a). For example, a

mixture of an unknown number of univariate normal densities (Equation 1.1.5) can be rep-

resented as a set of k events ξj = (wj, µj, σ
2
j ), j = 1, . . . , k, in a region A ⊂ R

3. Given a

reference point v ∈ A, in the same space as the events ξj (e.g. v = (ω, µ, σ2)), then the

point-to-nearest-event distance, y, is the distance from the point (v) to the nearest event

(ξj) in A with respect to some distance measure. One can evaluate distributional aspects

of the events {ξj}, through y, as observed from different reference points v. A diagnostic

can then be constructed based on comparisons between empirical distribution functions of

the distances y, constructed from Markov chain sample-paths. Intuitively, as the Markov

chains converge, the distribution functions for y constructed from replicate chains should be

similar.

This approach permits the direct comparison of full parameter vectors of varying dimen-

sion and, as a result, naturally incorporates a measure of across model convergence. Due to

the manner of their construction, Sisson and Fan (2007) are able to monitor an arbitrarily

large number of such diagnostics. However, while this approach may have some appeal, it is

limited by the need to construct the model in the marked point process setting. Common

models which may be formulated in this framework include finite mixture, change point and

regression models .

Example: Convergence assessment for finite mixture univariate Normals

We consider the reversible jump sampler of Richardson and Green (1997) implementing a

finite mixture of Normals model (Equation 1.1.5) using the enzymatic activity dataset (Fig-

ure 1.1(b)). For the purpose of assessing performance of the sampler, we implement five

independent sampler replications of length 400,000 iterations.

Figure 1.2 (a,b) illustrates the diagnostic of Brooks et al. (2003b) which provides a test for

between-chain convergence based on posterior model probabilities. The pairwise Kolmogorov-
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Smirnov and χ2 (all chains simultaneously) tests assume independent realisations. Based on

the estimated convergence rate, Brooks et al. (2003b), we retain every 400th iteration to ob-

tain approximate independence. The Kolmogorov-Smirnov statistic cannot reject immediate

convergence, with all pairwise chain comparisons well above the critical value of 0.05. The

χ2 statistic cannot reject convergence after the first 10,000 iterations.

Figure 1.2 (c) illustrates the two multivariate PSRF’s of Castelloe and Zimmerman (2002)

using the deviance as the default statistic to monitor. The solid line shows the ratio of

between- and within-chain variation; the broken line indicates the ratio of within-model

variation, and the within-model, within-chain variation. The mPSRF’s rapidly approach 1,

suggesting convergence, beyond 166,000 iterations. This is supported by the independent

analysis of Brooks and Giudici (2000) who demonstrate evidence for convergence of this

sampler after around 150,000 iterations, although they caution that their chain lengths of

only 200,000 iterations were too short for certainty.

Figure 1.2 (d), adapted from Sisson and Fan (2007), illustrates the PSRF of the distances

from each of 100 randomly chosen reference points to the nearest model components, over the

five replicate chains. Up to around 100,000 iterations, between-chain variation is still reduc-

ing; beyond 300,000 iterations, differences between the chains appear to have stabilised. The

intervening iterations mark a gradual transition between these two states. This diagnostic

appears to be the most conservative of those presented here.

Figure 1.2 near here.

This example highlights that empirical convergence assessment tools often give varying

estimates of when convergence may have been achieved. As a result, it may be prudent to

follow the most conservative estimates in practice. While it is undeniable that the benefits

for the practitioner in implementing reversible jump sampling schemes are immense, it is

arguable that the practical importance of ensuring chain convergence is often overlooked.

However, it is also likely that current diagnostic methods are insufficiently advanced to

permit a more rigourous default assessment of sampler convergence.
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1.3.3 Estimating Bayes Factors

One of the useful by-products of the reversible jump sampler, is the ease with which Bayes

factors can be estimated. Explicitly expressing marginal or predictive densities of x under

model Mk as

mk(x) =

∫

Rnk

L(x|k, θk)p(θk | k)dθk,

the normalised posterior probability of model Mk is given by

p(k | x) =
p(k)mk(x)

∑

k′∈K p(k′)mk′(x)
=

(

1 +
∑

k′ 6=k

p(k′)

p(k)
Bk′,k

)−1

,

where Bk′,k = mk′(x)/mk(x) is the Bayes factor of model Mk′ to Mk, and p(k) is the

prior probability of model Mk. For a discussion of Bayesian model selection techniques, see

Chipman et al. (2001), Berger and Pericchi (2001), Kass and Raftery (1995), Ghosh and Samanta

(2001), Berger and Pericchi (2004), Barbieri and Berger (2004). A usual estimator of the

posterior model probability, p(k | x), is given by the proportion of chain iterations the

reversible jump sampler spent in model Mk.

However, when the number of candidate models |M| is large, the use of reversible jump

MCMC algorithms to evaluate Bayes factors raises issues of efficiency. Suppose that model

Mk accounts for a large proportion of posterior mass. In attempting a between-model

move from model Mk, the reversible jump algorithm will tend to persist in this model and

visit others models rarely. Consequently, estimates of Bayes factors based on model-visit

proportions will tend to be inefficient (Bartolucci and Scaccia, 2003; Han and Carlin, 2001).

Bartolucci et al. (2006) propose enlarging the parameter space of the models under com-

parison with the same auxiliary variables, u ∼ qdk→k′
(u) and u′ ∼ qdk′→k

(u′) (see Equation

1.2.2), defined under the between-model transitions, so that the enlarged spaces, (θk,u) and

(θk′,u
′), have the same dimension. In this setting, an extension to the Bridge estimator for

the estimation of the ratio of normalising constants of two distributions (Meng and Wong,

1996) can be used, by integrating out the auxiliary random process (i.e. u and u′) involved

in the between-model moves. Accordingly, the Bayes factor of model Mk′ to Mk can be
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estimated using the reversible jump acceptance probabilities as

B̂k′,k =

∑Jk
j=1 α

(j)[(k, θk), (k
′, θ′

k′)]/Jk
∑Jk′

j=1 α
(j)[(k′, θ′

k′), (k, θk)]/Jk′

where α(j)[(k, θk), (k
′, θ′

k′)] is the acceptance probability (Equation 1.2.2) of the j-th attempt

to move from model Mk to Mk′, and where Jk and Jk′ are the number of proposed moves

from model Mk to Mk′ and vice versa during the simulation. Further manipulation is

required to estimate Bk′,k if the sampler does not jump between modelsMk andMk′ directly

(Bartolucci et al., 2006). This approach can provide a more efficient way of postprocessing

reversible jump MCMC with minimal computational effort.

1.4 Related multi-model sampling methods

Several alternative multi-model sampling methods are available. Some of these are closely

related to the reversible jump MCMC algorithm, or include reversible jump as a special case.

1.4.1 Jump diffusion

Before the development of the reversible jump sampler, Grenander and Miller (1994) pro-

posed a sampling strategy based on continuous time jump-diffusion dynamics. This process

combines jumps between models at random times, and within-model updates based on a

diffusion process according to a Langevin stochastic differential equation indexed by time, t,

satisfying

dθt
k = dBt

k +
1

2
∇ log π(θt

k)dt

where dBt
k denotes an increment of Brownian motion, and ∇ the vector of partial derivatives.

This method has found some application in signal processing and other Bayesian analyses

(Miller et al., 1995; Phillips and Smith, 1996), but has in general been superceded by the

more accessible reversible jump sampler. In practice, the continuous-time diffusion must be

approximated by a discrete-time simulation. If the time-discretisation is corrected for via
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a Metropolis-Hastings acceptance probability, the jump-diffusion sampler actually results in

an implementation of reversible jump MCMC (Besag, 1994).

1.4.2 Product space formulations

As an alternative to samplers designed for implementation on unions of model spaces,

Θ =
⋃

k∈K({k},R
nk), a number “super-model” product-space frameworks have been de-

veloped, with a state space given by Θ∗ = ⊗k∈K({k},R
nk). This setting encompasses all

model spaces jointly, so that a sampler needs to simultaneously track θk for all k ∈ K. The

composite parameter vector, θ∗ ∈ Θ∗, consisting of a concatenation of all parameters un-

der all models, is of fixed-dimension, thereby circumventing the necessity of between-model

transitions. Clearly, product-space samplers are limited to situations where the dimension

of θ∗ is computationally feasible. Carlin and Chib (1995) propose a posterior distribution

for the composite model parameter and model indicator given by

π(k, θ∗ | x) ∝ L(x | k, θ∗
Ik
)p(θ∗

Ik
| k)p(θ∗

I−k
| θ∗

Ik
, k)p(k),

where Ik and I−k are index sets respectively identifying and excluding the parameters θk

from θ∗. Here Ik ∩Ik′ = ∅ for all k 6= k′, so that the parameters for each model are distinct.

It is easy to see that the term p(θ∗
I−k

| θ∗
Ik
, k), called a “psudo-prior” by Carlin and Chib

(1995), has no effect on the joint posterior π(k, θ∗
Ik

| x) = π(k, θk | x), and its form

is usually chosen for convenience. However, poor choices may affect the efficiency of the

sampler (Godsill, 2003; Green, 2003).

Godsill (2001) proposes a further generalisation of the above by relaxing the restriction

that Ik∩Ik′ = ∅ for all k 6= k′. That is, individual model parameter vectors are permitted to

overlap arbitrarily, which is intuitive for, say, nested models. This framework can be shown

to encompass the reversible jump algorithm, in addition to the setting of Carlin and Chib

(1995). In theory this allows for direct comparison between the three samplers, although this

has not yet been fully examined. However, one clear point is that the information contained

within θ∗
I−k

would be useful in generating efficient between-model transitions when in model
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Mk, under a reversible jump sampler. This idea is exploited by Brooks et al. (2003c).

1.4.3 Point process formulations

A different perspective on the multi-model sampler is based on spatial birth-and-death

processes (Preston, 1977; Ripley, 1977). Stephens (2000a) observed that particular multi-

model statistical problems can be represented as continuous time, marked point processes

(Geyer and Møller, 1994). One obvious setting is finite mixture modelling (Equation 1.1.5)

where the birth and death of mixture components, φj, indicate transitions between models.

The sampler of Stephens (2000a) may be interpreted as a particular continuous time, limiting

version of a sequence of reversible jump algorithms (Cappé et al., 2003).

A number of illustrative comparisons of the reversible jump, jump-diffusion, product space

and point process frameworks can be found in the literature. See, for example, Andrieu et al.

(2001), Dellaportas et al. (2002), Carlin and Chib (1995), Godsill (2003, 2001), Cappé et al.

(2003) and Stephens (2000a).

1.4.4 Multi-model optimisation

The reversible jump MCMC sampler may be utilised as the underlying random mechanism

within a stochastic optimisation framework, given its ability to traverse complex spaces

efficiently (Andrieu et al., 2000; Brooks et al., 2003a). In a simulated annealing setting, the

sampler would define a stationary distribution proportional to the Boltzmann distribution

BT (k, θk) ∝ exp{−f(k, θk)/T},

where T ≥ 0 and f(k, θk), is a model-ranking function to be minimised. A stochastic

annealing framework will then decrease the value of T according to some schedule while

using the reversible jump sampler to explore function space. Assuming adequate chain

mixing, as T → 0 the sampler and the Boltzmann distribution will converge to a point

mass at (k∗, θ∗
k∗) = argmax f(k, θk). Specifications for the model-ranking function may
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include the AIC or BIC (King and Brooks, 2004; Sisson and Fan, 2009), the posterior model

probability (Clyde, 1999) or a non-standard loss function defined on variable-dimensional

space (Sisson and Hurn, 2004) for the derivation of Bayes rules.

1.4.5 Population MCMC

The population Markov chain Monte Carlo method (Liang and Wong, 2001; Liu, 2001) may

be extended to the reversible jump setting (Jasra et al., 2007). Motivated by simulated an-

nealing (Geyer and Thompson, 1995), N parallel reversible jump samplers are implemented

targetting a sequence of related distributions {πi}, i = 1, . . . , N , which may be tempered

versions of the distribution of interest, π1 = π(k, θk | x). The chains are allowed to in-

teract, in that the states of any two neighbouring (in terms of the tempering parameter)

chains may be exchanged, thereby improving the mixing across the population of samplers

both within and between models. Jasra et al. (2007) demonstrate superior convergence rates

over a single reversible jump sampler. For samplers that make use of tempering or parallel

simulation techniques, Gramacy et al. (2009) propose efficient methods of utilising samples

from all distributions (i.e. including those not from π1) using importance weights, for the

calculation of given estimators.

1.4.6 Multi-model sequential Monte Carlo

The idea of running multiple samplers over a sequence of related distributions may also con-

sidered under a sequential Monte Carlo (SMC) framework (Del Moral et al., 2006). Jasra et al.

(2008) propose implementing N separate SMC samplers, each targetting a different subset

of model-space. At some stage the samplers are allowed to interact and are combined into

a single sampler. This approach permits more accurate exploration of models with lower

posterior model probabilities than would be possible under a single sampler. As with pop-

ulation MCMC methods, the benefits gained in implementing N samplers must be weighed

against the extra computational overheads.
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1.5 Some discussion and future directions

Given the degree of complexity associated with the implementation of reversible jump

MCMC, a major focus for future research is in designing simple, yet efficient samplers, with

the ultimate goal of automation. Several authors have provided new insight on the reversible

jump sampler which may contribute towards achieving such goals. For example, Keith et al.

(2004) present a generalised Markov sampler, which includes the reversible jump sampler as a

special case. Petris and Tardella (2003) demonstrate a geometric approach for sampling from

nested models, formulated by drawing from a fixed-dimension auxiliary continuous distribu-

tion on the largest model subspace, and then using transformations to recover model-specific

samples. Walker (2009) has recently provided a Gibbs sampler alternative to the reversible

jump MCMC, using auxiliary variables. Additionally, as noted by Sisson (2005), one does

not need to work only with reversible Markov chains, and that non-reversible chains may

offer opportunities for sampler improvement (Diaconis et al., 2000; Mira and Geyer, 2000;

Neal, 2004).

An alternative way of increasing sampler efficiency would be to explore the ideas intro-

duced in adaptive MCMC. As with standard MCMC, any adaptations must be implemented

with care – transition kernels dependent on the entire history of the Markov chain can only be

used under diminishing adaptation conditions (Haario et al., 2001; Roberts and Rosenthal,

2009). Alternative schemes permit modification of the proposal distribution at regeneration

times, when the next state of the Markov chain becomes completely independent of the past

(Brockwell and Kadane, 2005; Gilks et al., 1998). Under the reversible jump framework,

regeneration can be naturally achieved by incorporating an additional model, from which

independent samples can be drawn. Under any adaptive scheme, however, how best to

make use of historical chain information remains an open question. Additionally, efficiency

gains through adaptations should naturally outweigh the costs of handling chain history and

modification of the proposal mechanisms.

Finally, two areas remain under-developed in the context of reversible jump simulation.

The first of these is perfect simulation, which provides an MCMC framework for produc-

ing samples exactly from the target distribution, circumventing convergence issues entirely
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(Propp and Wilson, 1996). Some tentative steps have been made in this area (Brooks et al.,

2006; Møller and Nicholls, 1999). Secondly, while the development of “likelihood-free” MCMC

has received much recent attention (Sisson and Fan (2010), this volume), implementing the

sampler in the multi-model setting remains a challenging problem, in terms of both compu-

tational efficiency and bias of posterior model probabilities.
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Figure 1.1: Examples of (a) change-point modelling and (b) mixture models. Plot (a): With the Stylos tombs
dataset (crosses), a piecewise log-linear curve can be fitted between unknown change-points. Illustrated are 2 (solid
line) and 3 (dashed line) change-points. Plot (b): The histogram of the enzymatic activity dataset suggests clear
groupings of metabolizers, although the number of such groupings is not clear.
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Figure 1.2: Convergence assessment for the enzymatic activity dataset. Plots (a) Kolmogorov-Smirnov and (b)
χ
2 tests of Brooks et al. (2003b). Horizontal line denotes an α = 0.05 significance level for test of different sampling

distributions. Plots (c) multivariate PSRF’s of Castelloe and Zimmerman (2002) and (d) PSRFv’s of Sisson and Fan
(2007). Horizontal lines denote the value of each statistic under equal sampling distributions.
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