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Abstract
This paper is devoted to a study of timelike ruled surfaces in three dimensional
Minkowski space obtained by a spacelike straight line moving along a timelike curve.
The central point, the curve of striction and the distribution parameter of a timelike
ruled surface in Minkowski 3-space are considered, and some theorems relating to
their structure are obtained. In addition, some results about developable timelike
ruled surfaces are also given.

Introduction

A surface in the 3-dimensional Minkowski space R? = (R?, dz? + dy? — dz?) is
called a timelike surface if the induced metric on the surface is a Lorentz metric [1]. If
the tangent vector at every point of a given curve in ]Ri’ is a spacelike vector (timelike
vector), then the given curve is called a spacelike curve (timelike curve) [2].

A ruled surface is a surface swept out by a straight line ¢ moving along a curve «.
The various positions of the generating line ¢ are called the rulings of the surface. Such
a surface, thus, has a parametrization in ruled form

p(t,v) = alt) + vZ(t),

where we call o the base curve and Z the director vector of ¢. If the tangent plane is
constant along a fixed ruling, then the ruled surface is called a developable surface. All
other ruled surfaces are called skew surfaces. If there exists a common perpendicular to
two preceding rulings of a skew surface, then the foot of the common perpendicular on
the main ruling is called a central point. The locus of the central points is called the
curve of striction. If there is a curve which meets perpendicularly each one of the rulings,
then this curve is called an orthogonal trajectory of the ruled surface. In ]Ri’, we define
the exterior product of vectors by W AV = —(iyiwdx A dy A dz)#, where iy denotes
the interior product with respect to W and # stands for the operation of raisign indices
by the metric da? + dy* — dz?. Here we choose the sign < — > so that 9, A 9, = 9,
holds.

The notation and fundamental concepts used in this study are the same as in [3].
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1. Timelike Ruled Surfaces
Let

«: I — ]Ri’
t— a(t) = (a1(t), as(t), as(t))

where {0} C I, be a differentiable timelike curve in Minkowski 3-space parameterized by
arc-length. The tangent vector field of a will be denoted by T'.
A spacelike straight line,

(: R—-R}
v —L(v) = (a1(t) + vai(t), az(t) + vaz(t), as(t) + vas(t)),

where the scalars a;(t) € R for all 1 <i < 3, are the components of the director vector
at the point «(t), can be chosen so that the director vector of ¢ and the tangent vector
of a are linearly independent at every point of the curve «.

As ¢ moves along « it generates a ruled surface given by the parametrization
(I xR, ), where

Y IxR— R}
(t,v) = ¢(t,v) = (a1(t) + vai(t), az(t) + vaz(t), as(t) + vas(t)),

which can be obtained in the Minkowski 3-space. This ruled surface will be denoted
by M. An orthonormal base {T,X} of x(M), the space of tangent vector fields of
M, can be obtained; thus, N =T A X where N is the unit normal vector field of M .
Hence, {X, N, T} is an orthonormal frame field along o in R?. Let D be the Levi-Civita
connection on ]Ri’. The variation formulae of this system along « in ]Ri’ are

DrX = ¢N+aTl
DrN = —cX +0bT
DrT = aX +bN,

where a = —(T,DrX) = —T[(T, X)] + (DrT, X) = (DT, X), etc.

0 ¢ a
B=) - 0 b
a b 0
is a skew-adjoint matrix, since BT = —eBe, where
1 0 0
e=10 1 0
0 0 -1
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In view of the parametrization ¢(t,v) = a(t) + vX(t) we have

dp D¢

Op Oy Op Oy
(22, %, )=0, G=(52,%%

2 2. 2
- _(1+ + F= (=X = =
(14 av)” + %7, 5 B v’ v

)

The induced metric on the ruled surface is a Lorentz metric in the case where E

is negative.
. 1 1 1 1
min ¢ — , — and maxq — , —
a—c a-+c a—c a-+c

are roots of E, where ¢ —a® = (Dr X, DrX).
Note that:

1) If DpX is a timelike vector field, then

1 1 1 1
—00 < v <minq — , — or max9q — , — < v < o0.
{ a—c a—i—c} { a—c a—i—c}

2) If DrX is a spacelike vector field, then
. 1 1 1 1
min 4§ — , — <v<maxy — , — .
{ a—c  a+ c} { a—c  a+ c}

3) Let Dy X be the null vector field on R}.

Ifa>0,thenU<—2La,andifa<0,thenv>—i.

Therefore, in all three cases above, the domain of the parameter v is not the whole
of R but is one of the above intervals. Let us denote the domain of v by J. If we fix the
parameter v in J, then the curve

Dy - Ix{v}—-M
(t,v) = pu(t,v) = alt) + vX(t)

can be obtained on M. The tangent vector field of this curve is

A= (14 av)T 4 cvN.
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2. Developable Timelike Ruled Surfaces

Let M be a timelike ruled surface. Along any ruling of M, if all of the tangent
planes of M are the same (coincide) then we call M as a developable surface.

Theorem 1. Let M be a timelike ruled surface. The tangent planes along any ruling of
M coincide if and only if ¢c=0.

Proof. Trivial. O

Now, we will a criterion for timelike ruled surfaces to be developable in R?.
Corollary 1. The timelike ruled surface M is developable if and only if ¢ =0.

Lemma 1. ¢ = —det(T, X, DrX) for the timelike ruled surface M.

3. Position Vector of a Central Point

If the distance between the central point and the base curve of a skew timelike
ruled surface is @, then the position vector @(t) can be expressed in the form

a(t,u) = a(t) +uX(t),

where «(t) is the position vector of the base curve and X(t) is the director vector
belonging to the ruling. The parameter @ can be expressed in terms of the position
vector of the base curve and the directed vector of the ruling. Take three neighbouring
rulings of a timelike ruled surface such that the first and second are X (¢) and X (¢)+dX (¢)
respectively. Let P, P’ and Q, Q' be the feet on the rulings of the common perpendicular
to two neighbouring rulings. The common perpendicular to X (t) and X (t) + dX(¢) is
X({)NdX(t).

[of

i X()+dX (1)

X(t)

Figure 1.
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The vector P_Q coincides with the vector PP’ in the limiting position, and P_Q
will be the tangent vector to the curve of striction. Thus, we have (DX, P@) = 0.
Therefore, we get
(T, DrX) a

YT T DrX, DrX)  2—a2

Hence the curve of striction is given by

a(0) = alt) - e X )

where (DX, DrX 0. W= =% is constant since (22 X) =0.
(& a

Theorem 2. The curve of striction & does not depend on the choice of the base curve
a for the skew timelike surface.

Proof. Let B be another base curve of the skew timelike surface; that is, let, for all

(t,v),
o(t,v) = a(t) + vX(t) = 6(t) + sX(t)

for some function s = s(v). Then from (1) we obtain

N = (T — % DrX)
£) —B(t) = alt) — Bt) — ——d T2 x 1y =
()~ Bt) = a(t) - 8(0) - A X ()
since (X, DyX) = 0. This proves our claim. O

Theorem 3. Let M be a skew timelike surface. The point ¢(t,vo) on the ruling through
the point «(t) is the central point if and only if DrX is a normal vector of the tangent
plane at p(t,vg) .
Proof. Let DrX be a normal of the tangent plane at ¢(t,v9) on the ruling through
a(t). Thus (D7 X, A) = 0. Hence, we get vg = 2. Therefore, ©(t,v0) is the central
point of M .

Conversely, let ¢(t,vg) be the central point on the ruling through a(t). Then, we
have (DrX, A) = —a+ (—a®? + c*)v = 0.

On the other hand, (DyrX,X) = 0. Therefore, DrX is a normal vector of the
tangent plane at ¢(t, vg). O

D7 X is a spacelike vector at the central point since D7 X is a normal vector of
the tangent plane at the central point. Thus, (DrX, DrX) = —a® + ¢ > 0.
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Theorem 4. The curve of striction of a skew timelike surface

alt) = a(t) + ﬁxm

1s a timelike curve.

Proof. Straightforward calculation. O

Theorem 5. Assume that M is a timelike ruled surface in Bi’. There exists a unique
orthogonal trajectory of M through each point of M .

Proof. Let
Y IxJ—R3
(t,v) = @(t,v) = alt) +vZ(t),
be a parametrization of M. An orthogonal trajectory of M is given by
0 I—-M
s = B(s) = a(s) + f(s)Z(s),

where (Z(s), Z(s)) = 1. We may assume that I C I. Since

(@ 2oy =0,

we obtain

1) == [(22 Zpas+n,

where h is a real constant. Hence h = f(sg) — F(so), where

F(s) = _/<d2‘l(55), Z(s))ds.

Therefore the orthogonal trajectory of M through the point Py is unique. Thus,
we have I = I since the orthogonal trajectory of M meets each one of the rulings of M .
O

Theorem 6. Suppose that M is a skew timelike surface. The longest distance between
two rulings is the distance measured only on the curve of striction which is one of the
orthogonal trajectories.
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Proof. Fixing two rulings, say for t; < ta, we compute the length j(v) of an orthogonal
trajectory between these two rulings by

to to to
j(v)z/ HAHdt:/ \/|(A,A)|dt:/ (a2 — 2)o? + 2a0 + 1]1/2 dt.
t t1

1 t1

To find the value of s which maximizes j(v), we use 8%(:) = 0 which gives v = &%

This completes the proof. O

4. The Distribution Parameter of a Timelike Ruled Surface

Let the curve of striction be the base curve of a timelike ruled surface. Then w = 0;
that is, z%— = 0. Thus, we have a = 0. Hence, DrX and N are linearly dependent;
that is, AD7X = N where DX =aT+cN and N =TAX = %/\X. Thus, we obtain

TAX,DrX) det(T, X, DrX)

{
A= (DrX,DrX)  (DrX,DrX) (2)

A is called the distribution parameter of the timelike ruled surface, and is denoted by A
or Px. Note that (DrX, DrX) # 0 since DrX is a timelike vector field.

Theorem 7. A timelike ruled surface is a developable surface if and only if the distri-
bution parameter is zero.

Proof. Straightforward. O

Theorem 8. Let M be a timelike ruled surface in Bi’. Each one of the rulings of M
s an asymptotic line and a geodesic in M .

Proof. Each one of the rulings is geodesic in R? since each one of the rulings is a
straight line in IR%. Thus, we have Dx X = 0. The Gaussian curvature is

DxX = DxX + (S(X), X)N

where D is the Levi-Civita connection on M, and S is the shape operator of M derived
from N. Furthermore, (DxX) € x(M) and ((S(X), X)N) € x*(M) [2]. Since M is a
timelike surface; that is, M has a nondegenerate metric, and we can write

X(R}) = x(M) @ x"(M) and x(M)nx*(M)={0}.

Then, we obtain .
DxX =0 and (S(X),X)=0.

This completes the proof of the theorem. O
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Theorem 9. Let M be a timelike ruled surface in IRS. Then the Gaussian curvature
function K(p) satisfies
K(p) =0,

at each point p € M .

Proof. Let X be the spacelike vector field of the rulings through the point p € M. An
orthogonal base {X,Y} of x(M) can be obtained in which Y is a timelike vector field.
The matrix corresponding to the shape operator of M derived from N is

(S(X),X)  —(5(X),Y)

=1 (s(v), x) —(5(v),Y)

Hence, the Gaussian curvature
K =detS = ({(S(X),Y))?

can be obtained from Theorem 8 since S is self-adjoint. Thus, K(p) > 0 for each point
peE M. O

Lemma 2. Assume that M is a timelike ruled surface. Let the unit tangent vector field
of the base curve, the unit tangent vector field (director vector) of the rulings and the
unit normal vector field of M be T, X, N, respectively. Then,

TANX = N,
TAN = -—-X,
XAN = -T.
Proof. Straightforward calculation. O

Theorem 10. Let M be a skew timelike surface. The Gaussian curvature function has
its minimum value at the central point on each one the rulings.

Proof. {Ap, X} is an orthonormal base of x(M), where

A (14 av)T 4 cvN

Ag=—— = :
" IAL T [(@® = @) + 200 + 1)1

Denote the normal vector of M at ¢(t,v) by N = Ny (t,v)- Thus,

1

N=AAX =
(| Al

{cvT + (1 4+ av)N}

40



TURGUT & HACISALIHOGLU

from Lemma 2, and (N, N) = 1. Therefore, the Gaussian curvature is
K = ((S(40), X))*.

On the other hand,

c 1\ av bcv
——X—l—[(—) (1+av)+—+—]N},
(| Al (| Al Al (Al

where () denotes the derivative with respect to the parameter. Thus, we obtain

02

K(t,v) = [(c2 — a2)v? — 2av — 12’

Hence, we have
OK (t,v) 4c%[(c? — a®)v — a

ow [(A, A)]3

Thus, v = =% gives us the minimum of K(¢,v) since
Cce—a

O?K(t,v)

0?v |, __a

> 0.

c2 a2

The Gaussian curvature has its minimum value at the central point on each of the rulings
since the central point corresponds to the value v = % . O

Theorem 11. Let M be a timelike ruled surface. Then M is developable if and only if
the Gaussian curvature function of M is zero.

Proof. This follows easily from (3) and Corollary 1. O

Theorem 12. The distribution parameter of a timelike ruled surface depends only on
the rulings.

2 2\2
Proof. We obtain K, = % if we write v = %= in (3). Thus, we get

a2
2
1
Kmin: S —
‘ (PX>
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from (2), since a = 0 at the central point. Therefore, we have

The value of Ky, is unique along a ruling. Therefore, the value of the distribution
parameter is unique along a ruling; that is, the distribution parameter depends only on
the rulings.

An important theorem concerning the central point of any skew surface in 3-
dimensional Euclidean space was given by Chasles in 1839. Next, we will give a cor-
responding theorem for any skew timelike surface in ]Rf.

Theorem 13. Let M be a skew timelike surface, and let 6 be the angle between the
normal vector at a point of a ruling and the normal vector at the central point of this ruling,
then tan @ is proportional to the distance between these two points, and the coefficient of
proportionality is the inverse of the distribution parameter.

Proof. If v = 0, this gives the central point on a particular ruling; that is, if we take
our orthogonal curve « through this central point, then DrX is the normal vector at
v =0, whence a = 0. Thus, the distribution parameter is Px = %, and the normal N,
along the ruling is given by

N + T

V1= 2?2

On the other hand, N and Ny are unit spacelike vectors. Therefore, we obtain

Nv) =

1
N,Ny) = ———.
( v) V1—c2v?
Thus, we get
1
cosf = .
L \2
- (%)
Hence, we have tanf = %. O

Corollary 2. The tangent plane turns evenly through 180° along a ruling for —% <v <

% in a skew timelike surface.

Proof. Let ¢, be aruling through the central point p, and let IV, and N, be the normal
vectors at p and g, respectively. If the angle between N, and N, is § and the distance
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between p and ¢ is v, then tanf = P“—;( from Theorem 13. Since DrX is a spacelike
vector at the central point, we get

. { 1 1} { 1 1}
mmnq——,—p<v<maxq——,— ¢.
c c c c

If v =0, then the distance between p and ¢ is zero. Hence, p = ¢q. Thus, we get § = 0.

If 0 < v <max{—% 1} then we get 0 < 6 < Z. If min{—2,1} < v < 0 then we have

c)

-5 <0<0. O

Example 1. (The helicoid of the 2nd kind). This is a timelike ruled surface parametrized
by,

K Tt K
‘P(t,v)=<— <m+v>ch K? — 72, T —<m+v> sh /@2—7'2t>,

[4], where k and 7 are the curvature and the torsion of « respectively, and |s| > |7].
The base curve a: I C R — ]Ri’, where I is an open interval, such that

K Tt K
Oé(t) = (- (m) chy/ k2 — T2t, W, - (m) shy/ K2 —T2t> Vtel

is a timelike curve since (92 94) — 1 and each one of its rulings is a spacelike line.

dt> dt
Now,

{ o) (=)
v <min-s — , — or v >max-< — , —
K—T K-+T K—T KA+T
since DX is a timelike vector field. Furthermore, det(T, X, DrX) = —7. The helicoid
of the 2nd kind is developable if and only if 7 = 0.

Example 2. (The helicoid of the 1st kind). This is a timelike ruled surface parametrized
by,

K K Tt
I O 2 _ .2 _r : 2 _ 24 0
p(t,v) = ((7'2 — U> cos V12 — K2t, (7'2 3 U> sin /72 — Kk2t, o /@2> ,

[4], where |7| > |k|. The base curve o : I € R — R?, where I is an open interval, such
that

_ k 2 _ .2 K : 22 Tt
a(t)-((TQ_K2>cos 72 — K2, =3 ) sinVT K2t, p— Vtel

is a timelike curve, and each one of its rulings is a spacelike line. Now,

. —1 —1 —1 —1
min , < v < max ,
K—T K+T K—T K+T
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since DX is a spacelike vector field. The curve of striction is given by

and @(t) is a timelike curve. Furthermore, det(T, X, D7 X) = 7. The helicoid of the 1st
kind is developable if and only if 7 = 0. Thus, the distribution parameter of the helicoid
of the 1st kind is Px = ——=

— K2

Figure 2. The helicoid of the 2 nd kind Figure 3. The helicoid of the 1st kind

Example 3. (The conjugate surface of Enneper of the 2nd kind). This is a timelike
ruled surface parametrized by,

Kt? — kTt K23
o(t,v) = — +v, —— — Ttv, e +t+rvt),

2 6
[4], where |k| = |7| # 0. The base curve o : I € R — R?, where I is an open interval,
such that ) 5 9.3
Kt* —kKT1® K°t
=, 2 4t) Vitel
a(t) ( 2 6 6 >
is a timelike curve, and each one of its rulings is a spacelike line. Now,
.
v>—— if k>0
2K

1 .
v< —— if k<O
2K
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since Dy X is the null vector field. Furthermore, det(7, X, Dy X) = —7. The conjugate
surface of Enneper of the 2nd kind is developable if and only if 7 = 0.

Figure 4. The conjugate surface of Enneper of the 2nd kind

Example 4. This is timelike ruled surface parametrized by,
o(t,v) = at) + vX(t) = (0,0,t) + v(t,0,0),

[4]. The base curve is a timelike curve, and each one of its rulings is a spacelike line. This
ruled surface is developable.
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