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Abstract
This paper is devoted to a study of timelike ruled surfaces in three dimensional

Minkowski space obtained by a spacelike straight line moving along a timelike curve.
The central point, the curve of striction and the distribution parameter of a timelike
ruled surface in Minkowski 3-space are considered, and some theorems relating to
their structure are obtained. In addition, some results about developable timelike
ruled surfaces are also given.

Introduction

A surface in the 3-dimensional Minkowski space IR3
1 = (IR3, dx2 + dy2 − dz2) is

called a timelike surface if the induced metric on the surface is a Lorentz metric [1]. If
the tangent vector at every point of a given curve in IR3

1 is a spacelike vector (timelike
vector), then the given curve is called a spacelike curve (timelike curve) [2].

A ruled surface is a surface swept out by a straight line ` moving along a curve α .
The various positions of the generating line ` are called the rulings of the surface. Such
a surface, thus, has a parametrization in ruled form

ϕ(t, v) = α(t) + vZ(t),

where we call α the base curve and Z the director vector of ` . If the tangent plane is
constant along a fixed ruling, then the ruled surface is called a developable surface. All
other ruled surfaces are called skew surfaces. If there exists a common perpendicular to
two preceding rulings of a skew surface, then the foot of the common perpendicular on
the main ruling is called a central point. The locus of the central points is called the
curve of striction. If there is a curve which meets perpendicularly each one of the rulings,
then this curve is called an orthogonal trajectory of the ruled surface. In IR3

1 , we define
the exterior product of vectors by W ∧ V = −(iV iW dx ∧ dy ∧ dz)# , where iW denotes
the interior product with respect to W and # stands for the operation of raisign indices
by the metric dx2 + dy2 − dz2 . Here we choose the sign � − � so that ∂x ∧ ∂y = ∂z
holds.

The notation and fundamental concepts used in this study are the same as in [3].
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1. Timelike Ruled Surfaces

Let

α : I → IR3
1

t→ α(t) = (α1(t), α2(t), α3(t))

where {0} ⊂ I , be a differentiable timelike curve in Minkowski 3-space parameterized by
arc-length. The tangent vector field of α will be denoted by T .

A spacelike straight line,

` : IR→ IR3
1

v → `(v) = (α1(t) + va1(t), α2(t) + va2(t), α3(t) + va3(t)),

where the scalars ai(t) ∈ IR for all 1 ≤ i ≤ 3, are the components of the director vector
at the point α(t), can be chosen so that the director vector of ` and the tangent vector
of α are linearly independent at every point of the curve α .

As ` moves along α it generates a ruled surface given by the parametrization
(I × IR, ϕ), where

ϕ : I × IR→ IR3
1

(t, v)→ ϕ(t, v) = (α1(t) + va1(t), α2(t) + va2(t), α3(t) + va3(t)),

which can be obtained in the Minkowski 3-space. This ruled surface will be denoted
by M . An orthonormal base {T, X} of χ(M), the space of tangent vector fields of
M , can be obtained; thus, N = T ∧ X where N is the unit normal vector field of M .
Hence, {X, N, T} is an orthonormal frame field along α in IR3

1 . Let D be the Levi-Civita
connection on IR3

1 . The variation formulae of this system along α in IR3
1 are

DTX = cN + aT

DTN = −cX + bT

DTT = aX + bN,

where a = −〈T, DTX〉 = −T [〈T, X〉] + 〈DT T, X〉 = 〈DT T, X〉 , etc.

B =

 0 c a
−c 0 b

a b 0


is a skew-adjoint matrix, since BT = −εBε , where

ε =

 1 0 0
0 1 0
0 0 −1

 .
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In view of the parametrization ϕ(t, v) = α(t) + vX(t) we have

E = 〈∂ϕ

∂t
,
∂ϕ

∂t
〉 = −(1 + av)2 + c2v2, F = 〈∂ϕ

∂t
,
∂ϕ

∂v
〉 = 0, G = 〈∂ϕ

∂v
,
∂ϕ

∂v
〉 = 1.

The induced metric on the ruled surface is a Lorentz metric in the case where E
is negative.

min
{
− 1

a− c
,− 1

a + c

}
and max

{
− 1

a − c
,− 1

a + c

}
are roots of E , where c2 − a2 = 〈DTX, DTX〉 .
Note that:

1) If DTX is a timelike vector field, then

−∞ < v < min
{
− 1

a − c
,− 1

a + c

}
or max

{
− 1

a − c
,− 1

a + c

}
< v <∞.

2) If DTX is a spacelike vector field, then

min
{
− 1

a − c
,− 1

a + c

}
< v < max

{
− 1

a − c
,− 1

a + c

}
.

3) Let DTX be the null vector field on IR3
1 .

If a > 0, then v < − 1
2a , and if a < 0, then v > − 1

2a .

Therefore, in all three cases above, the domain of the parameter v is not the whole
of IR but is one of the above intervals. Let us denote the domain of v by J . If we fix the
parameter v in J , then the curve

ϕv : I × {v} →M

(t, v)→ ϕv(t, v) = α(t) + vX(t)

can be obtained on M . The tangent vector field of this curve is

A = (1 + av)T + cvN.
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2. Developable Timelike Ruled Surfaces

Let M be a timelike ruled surface. Along any ruling of M , if all of the tangent
planes of M are the same (coincide) then we call M as a developable surface.

Theorem 1. Let M be a timelike ruled surface. The tangent planes along any ruling of
M coincide if and only if c = 0 .

Proof. Trivial. 2

Now, we will a criterion for timelike ruled surfaces to be developable in IR3
1 .

Corollary 1. The timelike ruled surface M is developable if and only if c = 0 .

Lemma 1. c = −det(T, X, DTX) for the timelike ruled surface M .

3. Position Vector of a Central Point

If the distance between the central point and the base curve of a skew timelike
ruled surface is u , then the position vector α(t) can be expressed in the form

α(t, u) = α(t) + uX(t),

where α(t) is the position vector of the base curve and X(t) is the director vector
belonging to the ruling. The parameter u can be expressed in terms of the position
vector of the base curve and the directed vector of the ruling. Take three neighbouring
rulings of a timelike ruled surface such that the first and second are X(t) and X(t)+dX(t)
respectively. Let P, P ′ and Q, Q′ be the feet on the rulings of the common perpendicular
to two neighbouring rulings. The common perpendicular to X(t) and X(t) + dX(t) is
X(t) ∧ dX(t).

Q'

X(t)+dX(t)

X(t)

P

P'

α

α

III
II
I

Q'

Figure 1.
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The vector ~PQ coincides with the vector ~PP ′ in the limiting position, and ~PQ
will be the tangent vector to the curve of striction. Thus, we have 〈DTX, ~PQ〉 = 0.
Therefore, we get

u = − 〈T, DTX〉
〈DTX, DTX〉 =

a

c2 − a2
.

Hence the curve of striction is given by

α(t) = α(t)− 〈T, DTX〉
〈DTX, DTX〉X(t) (1)

where 〈DTX, DTX〉 6= 0. u = a
c2−a2 is constant since 〈dαdt , X〉 = 0.

Theorem 2. The curve of striction α does not depend on the choice of the base curve
α for the skew timelike surface.

Proof. Let β be another base curve of the skew timelike surface; that is, let, for all
(t, v),

ϕ(t, v) = α(t) + vX(t) = β(t) + sX(t)

for some function s = s(v). Then from (1) we obtain

α(t) − β(t) = α(t) − β(t) −
〈T − dβ

dt , DTX〉
〈DTX, DTX〉 X(t) = 0

since 〈X, DTX〉 = 0. This proves our claim. 2

Theorem 3. Let M be a skew timelike surface. The point ϕ(t, v0) on the ruling through
the point α(t) is the central point if and only if DTX is a normal vector of the tangent
plane at ϕ(t, v0) .

Proof. Let DTX be a normal of the tangent plane at ϕ(t, v0) on the ruling through
α(t). Thus 〈DTX, A〉 = 0. Hence, we get v0 = a

c2−a2 . Therefore, ϕ(t, v0) is the central
point of M .

Conversely, let ϕ(t, v0) be the central point on the ruling through α(t). Then, we
have 〈DTX, A〉 = −a + (−a2 + c2)v = 0.

On the other hand, 〈DTX, X〉 = 0. Therefore, DTX is a normal vector of the
tangent plane at ϕ(t, v0). 2

DTX is a spacelike vector at the central point since DTX is a normal vector of
the tangent plane at the central point. Thus, 〈DTX, DTX〉 = −a2 + c2 > 0.
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Theorem 4. The curve of striction of a skew timelike surface

α(t) = α(t) +
a

c2 − a2
X(t)

is a timelike curve.
Proof. Straightforward calculation. 2

Theorem 5. Assume that M is a timelike ruled surface in IR3
1 . There exists a unique

orthogonal trajectory of M through each point of M .

Proof. Let

ϕ : I × J → IR3
1

(t, v)→ ϕ(t, v) = α(t) + vZ(t),

be a parametrization of M . An orthogonal trajectory of M is given by

β : Ĩ →M

s→ β(s) = α(s) + f(s)Z(s),

where 〈Z(s), Z(s)〉 = 1. We may assume that Ĩ ⊂ I . Since

〈dβ(s)
ds

, Z(s)〉 = 0,

we obtain

f(s) = −
∫
〈dα(s)

ds
, Z(s)〉ds + h,

where h is a real constant. Hence h = f(s0)− F (s0), where

F (s) = −
∫
〈dα(s)

ds
, Z(s)〉ds.

Therefore the orthogonal trajectory of M through the point P0 is unique. Thus,
we have Ĩ = I since the orthogonal trajectory of M meets each one of the rulings of M .

2

Theorem 6. Suppose that M is a skew timelike surface. The longest distance between
two rulings is the distance measured only on the curve of striction which is one of the
orthogonal trajectories.
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Proof. Fixing two rulings, say for t1 < t2 , we compute the length j(v) of an orthogonal
trajectory between these two rulings by

j(v) =
∫ t2

t1

‖A‖dt =
∫ t2

t1

√
|〈A, A〉|dt =

∫ t2

t1

[(a2 − c2)v2 + 2av + 1]1/2 dt.

To find the value of s which maximizes j(v), we use ∂j(v)
∂v = 0 which gives v = a

c2−a2 .
This completes the proof. 2

4. The Distribution Parameter of a Timelike Ruled Surface

Let the curve of striction be the base curve of a timelike ruled surface. Then u = 0;
that is, a

c2−a2 = 0. Thus, we have a = 0. Hence, DTX and N are linearly dependent;
that is, λDTX = N where DTX = aT + cN and N = T ∧X = dα

dt
∧X . Thus, we obtain

λ =
〈T ∧X, DTX〉
〈DTX, DTX〉 = −det(T, X, DTX)

〈DTX, DTX〉 . (2)

λ is called the distribution parameter of the timelike ruled surface, and is denoted by λ
or PX . Note that 〈DTX, DTX〉 6= 0 since DTX is a timelike vector field.

Theorem 7. A timelike ruled surface is a developable surface if and only if the distri-
bution parameter is zero.
Proof. Straightforward. 2

Theorem 8. Let M be a timelike ruled surface in IR3
1 . Each one of the rulings of M

is an asymptotic line and a geodesic in M .
Proof. Each one of the rulings is geodesic in IR3

1 since each one of the rulings is a
straight line in IR3

1 . Thus, we have DXX = 0. The Gaussian curvature is

DXX = DXX + 〈S(X), X〉N

where D is the Levi-Civita connection on M , and S is the shape operator of M derived
from N . Furthermore, (DXX) ∈ χ(M) and (〈S(X), X〉N) ∈ χ⊥(M) [2]. Since M is a
timelike surface; that is, M has a nondegenerate metric, and we can write

χ(IR3
1) = χ(M) ⊕ χ⊥(M) and χ(M) ∩ χ⊥(M) = {0}.

Then, we obtain
DXX = 0 and 〈S(X), X〉 = 0.

This completes the proof of the theorem. 2
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Theorem 9. Let M be a timelike ruled surface in IR3
1 . Then the Gaussian curvature

function K(p) satisfies
K(p) ≥ 0,

at each point p ∈M .
Proof. Let X be the spacelike vector field of the rulings through the point p ∈M . An
orthogonal base {X, Y } of χ(M) can be obtained in which Y is a timelike vector field.
The matrix corresponding to the shape operator of M derived from N is

S =
[
〈S(X), X〉 −〈S(X), Y 〉
〈S(Y ), X〉 −〈S(Y ), Y 〉

]
Hence, the Gaussian curvature

K = det S = (〈S(X), Y 〉)2

can be obtained from Theorem 8 since S is self-adjoint. Thus, K(p) ≥ 0 for each point
p ∈ M . 2

Lemma 2. Assume that M is a timelike ruled surface. Let the unit tangent vector field
of the base curve, the unit tangent vector field (director vector) of the rulings and the
unit normal vector field of M be T, X, N , respectively. Then,

T ∧X = N,

T ∧N = −X,

X ∧N = −T.

Proof. Straightforward calculation. 2

Theorem 10. Let M be a skew timelike surface. The Gaussian curvature function has
its minimum value at the central point on each one the rulings.
Proof. {A0, X} is an orthonormal base of χ(M), where

A0 =
A

‖A‖ =
(1 + av)T + cvN

[(a2 − c2)v2 + 2av + 1]1/2
.

Denote the normal vector of M at ϕ(t, v) by Ñ = Nϕ(t,v) . Thus,

Ñ = A0 ∧X =
1
‖A‖{cvT + (1 + av)N}
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from Lemma 2, and 〈Ñ , Ñ〉 = 1. Therefore, the Gaussian curvature is

K = (〈S(A0), X〉)2.

On the other hand,

S(A0) = −DA0Ñ = − 1
‖A‖

{[(
1
‖A‖

)•
(cv) +

ċv

‖A‖ +
b(1 + av)
‖A‖

]
T

− c

‖A‖X +
[(

1
‖A‖

)•
(1 + av) +

ȧv

‖A‖ +
bcv

‖A‖

]
N

}
,

where (·) denotes the derivative with respect to the parameter. Thus, we obtain

K(t, v) =
c2

[(c2 − a2)v2 − 2av − 1]2
. (3)

Hence, we have
∂K(t, v)

∂v
= −4c2[(c2 − a2)v − a]

[〈A, A〉]3 .

Thus, v = a
c2−a2 gives us the minimum of K(t, v) since

∂2K(t, v)
∂2v

∣∣∣∣
v= a

c2−a2

> 0.

The Gaussian curvature has its minimum value at the central point on each of the rulings
since the central point corresponds to the value v = a

c2−a2 . 2

Theorem 11. Let M be a timelike ruled surface. Then M is developable if and only if
the Gaussian curvature function of M is zero.

Proof. This follows easily from (3) and Corollary 1. 2

Theorem 12. The distribution parameter of a timelike ruled surface depends only on
the rulings.

Proof. We obtain Kmin = (c2−a2)2

c2 if we write v = a
c2−a2 in (3). Thus, we get

Kmin = c2 =
(

1
PX

)2
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from (2), since a = 0 at the central point. Therefore, we have

PX =
1√

Kmin
.

2

The value of Kmin is unique along a ruling. Therefore, the value of the distribution
parameter is unique along a ruling; that is, the distribution parameter depends only on
the rulings.

An important theorem concerning the central point of any skew surface in 3-
dimensional Euclidean space was given by Chasles in 1839. Next, we will give a cor-
responding theorem for any skew timelike surface in IR3

1 .

Theorem 13. Let M be a skew timelike surface, and let θ be the angle between the
normal vector at a point of a ruling and the normal vector at the central point of this ruling,
then tan θ is proportional to the distance between these two points, and the coefficient of
proportionality is the inverse of the distribution parameter.

Proof. If v = 0, this gives the central point on a particular ruling; that is, if we take
our orthogonal curve α through this central point, then DTX is the normal vector at
v = 0, whence a = 0. Thus, the distribution parameter is PX = 1

c , and the normal Nv

along the ruling is given by

N(v) =
N + cvT√
1− c2v2

.

On the other hand, N and NV are unit spacelike vectors. Therefore, we obtain

〈N, NV 〉 =
1√

1− c2v2
.

Thus, we get

cos θ =
1√

1−
(

v
PX

)2
.

Hence, we have tan θ = v
PX

. 2

Corollary 2. The tangent plane turns evenly through 180◦ along a ruling for −1
c

< v <
1
c

in a skew timelike surface.

Proof. Let `p be a ruling through the central point p , and let Np and Nq be the normal
vectors at p and q , respectively. If the angle between Np and Nq is θ and the distance
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between p and q is v , then tan θ = v
PX

from Theorem 13. Since DTX is a spacelike
vector at the central point, we get

min
{
−1

c
,
1
c

}
< v < max

{
−1

c
,
1
c

}
.

If v = 0, then the distance between p and q is zero. Hence, p = q . Thus, we get θ = 0.
If 0 < v < max{−1

c ,
1
c} then we get 0 < θ ≤ π

2 . If min{−1
c ,

1
c} < v < 0 then we have

−π2 ≤ θ < 0. 2

Example 1. (The helicoid of the 2nd kind). This is a timelike ruled surface parametrized
by,

ϕ(t, v) =
(
−
(

κ

κ2 − τ2
+ v

)
ch
√

κ2 − τ2t,
τ t√

κ2 − τ2
, −

(
κ

κ2 − τ2
+ v

)
sh
√

κ2 − τ2t

)
,

[4], where κ and τ are the curvature and the torsion of α respectively, and |κ| > |τ | .
The base curve α : I ⊂ IR→ IR3

1 , where I is an open interval, such that

α(t) =
(
−
(

κ

κ2 − τ2

)
ch
√

κ2 − τ2t,
τ t√

κ2 − τ2
, −

(
κ

κ2 − τ2

)
sh
√

κ2 − τ2t

)
∀ t ∈ I

is a timelike curve since 〈dadt ,
da
dt 〉 = −1, and each one of its rulings is a spacelike line.

Now,

v < min
{
− 1

κ− τ
,− 1

κ + τ

}
or v > max

{
− 1

κ− τ
,− 1

κ + τ

}
since DTX is a timelike vector field. Furthermore, det(T, X, DTX) = −τ . The helicoid
of the 2nd kind is developable if and only if τ = 0.

Example 2. (The helicoid of the 1st kind). This is a timelike ruled surface parametrized
by,

ϕ(t, v) =
((

κ

τ2 − κ2
− v

)
cos
√

τ2 − κ2t,

(
κ

τ2 − κ2
− v

)
sin
√

τ2 − κ2t,
τ t√

τ2 − κ2

)
,

[4], where |τ | > |κ| . The base curve α : I ⊂ IR → IR3
1 , where I is an open interval, such

that

α(t) =
((

κ

τ2 − κ2

)
cos
√

τ2 − κ2t,

(
κ

τ2 − κ2

)
sin
√

τ2 − κ2t,
τ t√

τ2 − κ2

)
∀t ∈ I

is a timelike curve, and each one of its rulings is a spacelike line. Now,

min
{
−1

κ − τ
,
−1

κ + τ

}
< v < max

{
−1

κ− τ
,
−1

κ + τ

}
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since DTX is a spacelike vector field. The curve of striction is given by

α(t) = α(t) +
κ

τ2 − κ2
X(t),

and α(t) is a timelike curve. Furthermore, det(T, X, DTX) = τ . The helicoid of the 1st
kind is developable if and only if τ = 0. Thus, the distribution parameter of the helicoid
of the 1st kind is PX = − τ

τ2−κ2 .

Figure 2. The helicoid of the 2 nd kind Figure 3. The helicoid of the 1st kind

Example 3. (The conjugate surface of Enneper of the 2nd kind). This is a timelike
ruled surface parametrized by,

ϕ(t, v) =
(

κt2

2
+ v,

−κτt3

6
− τtv,

κ2t3

6
+ t + κvt

)
,

[4], where |κ| = |τ | 6= 0. The base curve α : I ⊂ IR → IR3
1 , where I is an open interval,

such that

α(t) =
(

κt2

2
,
−κτt3

6
,
κ2t3

6
+ t

)
∀ t ∈ I

is a timelike curve, and each one of its rulings is a spacelike line. Now,

v > − 1
2κ

if κ > 0

v < − 1
2κ

if κ < 0
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since DTX is the null vector field. Furthermore, det(T, X, DTX) = −τ . The conjugate
surface of Enneper of the 2nd kind is developable if and only if τ = 0.

Figure 4. The conjugate surface of Enneper of the 2nd kind

Example 4. This is timelike ruled surface parametrized by,

ϕ(t, v) = α(t) + vX(t) = (0, 0, t) + v(t, 0, 0),

[4]. The base curve is a timelike curve, and each one of its rulings is a spacelike line. This
ruled surface is developable.
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