
Vol. XX, No. X ACTA AUTOMATICA SINICA Month, 200X

Stability Analysis of Continuous-Time Iterative Learning
Control Systems with Multiple State Delays

MENG De-Yuan1 JIA Ying-Min1 DU Jun-Ping2 YU Fa-Shan3

Abstract This paper presents a stability analysis of the iterative learning control (ILC) problem for continuous-time systems with
multiple state delays, especially when system parameters are subject to polytopic-type uncertainties. Using the two-dimensional (2-D)
analysis approach to ILC, the continuous-discrete Roesser’s type linear systems are employed to describe the entire learning dynamics
of time-delay systems (TDS) with the development of an expanding operator. Based on such Roesser systems, the 2-D system theory
is first used to develop a necessary and sufficient condition for the asymptotic stability of ILC, and then the robust H∞ control theory
is combined to provide a sufficient condition in terms of linear matrix inequalities (LMIs) for the monotonic convergence of ILC. It
shows that learning gains can be determined by solving LMIs, which ensure the control input error converging monotonically to zero
as a function of iteration. Simulation results show that a robust asymptotically stable ILC scheme can become robust monotonically
convergent by adding the P-type learning gains that satisfy a set of LMIs, which can also improve the convergence rate greatly.

Key words Iterative learning control, time-delay systems, monotonic convergence, 2-D system theory, robust H∞ control theory,
linear matrix inequality.

Iterative learning control (ILC) is an effective technique
for such systems that operate repetitively over a finite time
interval [1]. The key feature of ILC is to improve the control
input law iteratively to achieve a perfect tracking by feeding
back the control signals and the associated tracking errors
from previous trials. During the iterative learning process,
the reasonable transient behavior is desirable to practical
applications rather than the asymptotic stability. If an ILC
algorithm converges monotonically, good transients can be
guaranteed [2]. This motivates the development of a class of
ILC algorithms. In [3–7], the authors have considered ILC
algorithms that are shown to be monotonically convergent
from the time and/or frequency domain points of view. The
proposed ILC algorithms in [3–7], however, have been only
applied to linear or nonlinear systems without time delays.

Until now, there is only limited literature that considers
ILC for time-delay systems (TDS) (e.g., [8–13]). However,
TDS exhibit more complicated dynamics and provide more
realistic models appropriating to the true situation, as op-
posed to delay-free systems [14]. Furthermore, to the best
of our knowledge, there is no reference in the literature dis-
cussing the possibility of designing ILC algorithms with the
monotonic convergence for TDS, especially for TDS with
explicit parameter uncertainties.

In contrast to [3–7], this paper addresses uncertain TDS
and makes a contribution to the ILC literature by present-
ing a necessary and sufficient condition for the asymptotic
stability of ILC, and a sufficient condition in terms of linear
matrix inequalities (LMIs) to ensure both boundedness and
monotonic convergence of the control errors in the sense of
the L2-norm. It is worth noting that all conditions derived
benefit from using 2-D Roesser systems. But, different from
the results of ILC based on Roesser systems (e.g., [15–17]),
the result of this paper provides new insights into stability
analysis of the established 2-D error systems, into which the
robust H∞ control theory is incorporated (see, e.g., [18]).
In addition, an expanding operator is introduced based on
the delay operator, which replaces time delays in the proofs
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of ILC stability. Hence, time delays do not play a significant
role any longer, while in contrast, the ratio of the learning
time length to the unit delay plays a crucial role in estab-
lishing the 2-D error systems and implementing LMIs with
the Matlab toolbox, as shown by numerical simulation.

1 ILC system description

1.1 System description

Consider the following continuous-time system with mul-
tiple state delays, which is modeled in the 2-D form of

∂xxx(t, k)

∂t
=

lX

i=0

Aixxx(t− iτ, k) +Buuu(t, k)

yyy(t, k) = Cxxx(t, k)

(1)

where t ∈ [0, T ] is the continuous-time index, k ∈ Z+ is the
discrete-iteration index, xxx(t, k) ∈ Rn is the state, uuu(t, k) ∈
Rr is the control input, and yyy(t, k) ∈ Rq is the output. The
system matrices Ai, i ∈ [0, l], B and C are of appropriate
dimensions, and each delay takes an integral multiple of the
fixed delay time τ . In the following discussion, let us denote
∇ as the pure delay operator, where ∇ : ννν(t, k) 7→ ννν(t−τ, k)
and ννν is a 2-D vector function defined on the time interval
[t − τ, t] for all k ∈ Z+, and for matrices Mi, i ∈ [0, l], let

us denote M(∇) ,
Pl

i=0Mi∇i [14]. Therefore, system (1)
can be rewritten in the compact form of

∂xxx(t, k)

∂t
= A(∇)xxx(t, k) +Buuu(t, k)

yyy(t, k) = Cxxx(t, k).
(2)

The following assumptions on system (1) are imposed:

A1) It is assumed that yyyd(t) is a realizable desired output
trajectory. That is, for any realizable trajectory and
an appropriate initial functionϕϕϕd(t), t ∈ [−lτ, 0], there
exists a unique control input uuud(t) such that

ẋxxd(t) = A(∇)xxxd(t) +Buuud(t)

yyyd(t) = Cxxxd(t)
(3)

with xxxd(t) = ϕϕϕd(t), t ∈ [−lτ, 0].

According to this assumption, let us define the sate, control
input and tracking error vectors as δxxx(t, k) = xxxd(t)−xxx(t, k),
δuuu(t, k) = uuud(t) − uuu(t, k) and eee(t, k) = yyyd(t) − yyy(t, k).
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A2) Assume that the standard ILC initial condition is sat-
isfied, i.e., xxx(t, k) = ϕϕϕd(t) for t ∈ [−lτ, 0] and k ∈ Z+.

A consequence of A2) is that the zero state error is achieved
over the initial time interval [−lτ, 0], i.e., δxxx(t, k) = 0 for all
t ∈ [−lτ, 0] and k ∈ Z+. If this assumption is not satisfied,
then ILC may be thought of as a robust problem on initial
issues [9, 19]. That is, we assume that δxxx(t, k) 6= 0 for all
t ∈ [−lτ, 0], and the objective would be to find the control
input uuu(t, k) that can guarantee the stability of ILC robust
against nonzero initial state errors. A possible way to solve
the problem is to modify the desired trajectory at the initial
stage by making an appropriate interpolation [19].

A3) Parameter Uncertainties Assumptions: It is assumed
that the system matrices Ai, i ∈ [0, l] and B in (1) are
known to lie within the uncertainty polytope Ω where

Ω ,

(
(A0, · · · , Al, B)

˛̨
˛̨(A0, · · · , Al, B)

=

NX

p=1

ςp(A0p, · · · , Alp, Bp); ςp ≥ 0,

NX

p=1

ςp = 1

)
.

(4)

1.2 ILC scheme description

Our objective is to design an iterative scheme to generate
the control input uuu(t, k) such that the system output yyy(t, k)
converges to yyyd(t) and the control input uuu(t, k) monotoni-
cally converges to uuud(t) as k goes to infinity for all t within
the time interval [0, T ].

To realize the above control objective, this paper consid-
ers a PD-type ILC implemented as follows:

• Control input:

uuu(t, k) = ααα(t, k) + βββ(t, k) (5)

• P-type ILC law:

ααα(t, k) = ααα(t, k − 1) + K(∇)δxxx(t, k − 1) (6)

with ααα(t,−1) = 0 and δxxx(t,−1) = 0;

• D-type ILC law:

βββ(t, k) = βββ(t, k − 1) + Γėee(t, k − 1) (7)

with βββ(t,−1) = 0 and ėee(t,−1) = 0.

In the above scheme, ααα(t, k) and βββ(t, k) are r×1 vectors,

Γ is an r × q matrix, ėee(t, k) , ∂eee(t, k)/∂t, and K(∇) ,Pl

i=0Ki∇i, where Ki, i ∈ [0, l] are r × n matrices.

Remark 1 After some simple algebraic manipulations, we
can rewrite the ILC scheme (5)-(7) in the form of

uuu(t, k) = uuu(t, k− 1) + K(∇)δxxx(t, k− 1) + Γėee(t, k− 1). (8)

From (8), it is clear that if one takes K(∇) = 0 (the zero
operator), the typical D-type ILC can be derived, which is

considered for TDS by Li, Chow and Ho [10]. However, only
asymptotic stability of the ILC process is achieved, and the
high-overshoot can be generated [5]. In the following, it will
be shown that adding the P-type ILC law (6) in the control
input (5) helps to achieve monotonic convergence of the ILC
process (in the sense of the control input error converging
monotonically as a function of iteration) to guarantee good
learning transients.

2 2-D analysis approach to ILC

The ILC process of (1), (5)-(7) is essentially a 2-D system
because of two independent indices: time t and iteration k,
which is usually formulated in Roesser systems [10, 12]. In
this section, we develop a new route to achieve the 2-D ILC
dynamics formulation of TDS with Roesser systems. Then,
some lemmas on both stability and robust H∞ performance
related to the Roesser systems are provided.

First of all, an expanding operator is developed based on
the delay operator, which is defined by

ω(∇, j) : ννν(t, k) 7→ νννj(t, k) ,

2
6664

ννν(t, k)
∇ννν(t, k)

...
∇jννν(t, k)

3
7775 .

In particular, ω(∇, 0) is obviously an identity operator.

2.1 2-D system representation

Iterating the ILC scheme (5)-(7) at iterations k and k+1,
we can obtain

δuuu(t, k + 1) = δuuu(t, k) −K(∇)δxxx(t, k) − Γėee(t, k). (9)

Subtracting (2) from (3), we have

∂δxxx(t, k)

∂t
= A(∇)δxxx(t, k) +Bδuuu(t, k). (10)

Since eee(t, k) = Cδxxx(t, k), ėee(t, k) consequently satisfies

ėee(t, k) = CA(∇)δxxx(t, k) +CBδuuu(t, k). (11)

Inserting (11) into (9), we thus get

δuuu(t, k + 1) = − [K(∇) + ΓCA(∇)] δxxx(t, k)

+ (I − ΓCB)δuuu(t, k)
(12)

where I is an identity matrix of appropriate orders. To deal
with the delay operator ∇ in (10) and (12), we introduce an
analysis strategy that considers the time interval [0, T ] in
an ordered way of a time interval with the length of the unit
delay time τ , that is, let [0, T ] , [0, τ )∪[τ, 2τ )∪· · ·∪[lT τ, T ]

with lT τ < T or [0, T ] , [0, τ )∪ [τ, 2τ )∪ · · · ∪ [(lT − 1)τ, T ]

with lT τ = T , where lT , int
`

T

τ

´
and int(·) represents the

integer part of value. Without any loss of generality, only
the latter partition of the time interval [0, T ] is considered1,
and for the sake of the following analysis, we formulate the
considered interval in a unified form of

[0, T ] ∪ (T, (lT + 1)τ ) ,

lT[

j=0

[jτ, (j + 1)τ ). (13)

Next, consider partitions [jτ, (j+1)τ ), j ∈ [0, lT ] separately.

Define two expanding vectors as δxxxj(t, k) , ω(∇, j)δxxx(t, k)
and δuuuj(t, k) , ω(∇, j)δuuu(t, k), and therefore in a compact
form, it follows from using (10) and (12) that

Σj :

"
∂δxxxj(t, k)

∂t
δuuuj(t, k + 1)

#

=

»
Aj Bj

−Kj − ΓjCjAj Ij − ΓjCjBj

– »
δxxxj(t, k)
δuuuj(t, k)

– (14)

1Whatever case is discussed, we will technically extend the def-
initions of δxxx(t, k) and δuuu(t, k) to the time interval (T, (lT + 1)τ),
since (T, (lT + 1)τ) does not work for the ILC stability analysis. In
this sense, the considered time interval for both cases will end up
with the same form as shown in (13).
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where Aj , Bj , Cj , Ij, Kj and Γj are matrices of (j + 1) ×
(j + 1) blocks. If we denote ε , |j − l|, Aj is defined by

Aj =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

2
666666664

A0 A1 · · · Aj−1 Aj

0 A0

. . .
. . . Aj−1

...
. . .

. . .
. . .

...

0
. . .

. . . A0 A1

0 0 · · · 0 A0

3
777777775

, j ≤ l

2
666666666666664

A0 · · · Aε · · · Al · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0
. . . A0

. . . Aε

. . . Al

...
. . .

. . .
. . .

. . .
. . .

...

0
. . . 0

. . . A0

. . . Aε

...
. . .

. . .
. . .

. . .
. . .

...
0 · · · 0 · · · 0 · · · A0

3
777777777777775

, j > l

Kj is defined in the same way with Aj , Bj is defined by

Bj =

2
666666664

B 0 · · · 0 0

0 B
. . .

. . . 0
...

. . .
. . .

. . .
...

0
. . .

. . . B 0
0 0 · · · 0 B

3
777777775

and Cj , Ij and Γj are defined in the same way with Bj .

Remark 2 Using the expanding operator ω(∇, j), the 2-D
system Σj can be developed to disclose the entire learning
dynamics of the ILC system (1), (5)-(7). In [10], a similar
2-D analysis approach has been used to address a class of D-
type ILC systems with multiple state delays, which however
can not clearly provide the accurate 2-D system description
of ILC and only derive a vague 2-D structure using Roesser
models. Moreover, the 2-D systems in [10] can not, in fact,
be determined uniformly over the time interval [0, T ], since
their dimensions vary with the time index t. In contrast to
this, the 2-D systems Σj can be accurately determined for
all j ∈ [0, lT ].

Remark 3 Let χχχ ∈ {δxxx, δuuu}. Note that for any k, we only
care the values of χχχ(t, k) over [0, T ]2. Hence, we technically
assume that χχχ(t, k) = 0 is satisfied for t < 0 and k ∈ Z+,
since χχχ(0, k) = 0 holds for k ∈ Z+. From the definition of
ω(∇, j), it is clear that

χχχj(t, k) =

»
χχχ(t, k)

∇χχχj−1(t, k)

–
.

Obviously, we can derive that ∇χχχj−1(t, k) for t ∈ [jτ, (j +
1)τ ) describes χχχj−1(t, k) for t ∈ [(j − 1)τ, jτ ). Hence, the
dynamics of χχχj(t, k) for t ∈ [jτ, (j + 1)τ ) contain those of
χχχj−1(t, k) for t ∈ [(j−1)τ, jτ ), and consequently are equiv-
alent to those of χχχ(t, k) for t ∈ [0, (j + 1)τ ). In particular,
one has that limk→∞χχχj(t, k) = 0 for t ∈ [jτ, (j + 1)τ ) ⇔
limk→∞χχχ(t, k) = 0 for t ∈ [0, (j+1)τ ) ⇔ limk→∞χχχj(t, k) =
0 for t ∈ [0, (j + 1)τ ).

2Note that for any k, δxxx(t, k) is defined over t ∈ [−lτ, T ]. But,
since δxxx(t, k) = 0 holds for t ∈ [−lτ, 0] and k ∈ Z+, we actually only
care δxxx(t, k) over t ∈ [0, T ].

Remark 4 For the 2-D system Σj in (14), it is developed
over the time interval [jτ, (j + 1)τ ). From Remark 3, it is
clear that Σj can still work for all t ∈ [0, (j + 1)τ ). Over
the time interval [j0τ, (j0 +1)τ ) for all j0 < j and j0 ∈ Z+,
Σj is degenerated to Σj0 in essence. Hence, the initial time
of Σj indicates t = 0 in the following discussion where no
confusion arises. In particular, ΣlT can be used to clearly
describe the whole learning dynamics of the ILC scheme
(5)-(7) over the time interval [0, T ].

2.2 Some lemmas

To derive the stability of 2-D Roesser systems as the only
discrete index goes to infinity, the following lemma is useful
and adopted from the literature.

Lemma 1 (2-D System Theory [10]). Consider a 2-D
continuous-discrete linear system described in the Roesser’s
state-space model of

"
∂ψψψ(t, k)
∂t

ζζζ(t, k + 1)

#
=

»
A11 A12

A21 A22

– »
ψψψ(t, k)
ζζζ(t, k)

–
(15)

where ψψψ(t, k) ∈ Rn and ζζζ(t, k) ∈ Rr are the horizon-
tal state and the vertical state, respectively. If A11, A12,
A21 and A22 are constant matrices of appropriate dimen-
sions, and boundary conditions for system (15) satisfy that
ψψψ(0, k) = 0 holds for all k ∈ Z+ and ζζζ(t, 0) is finite for all

t ∈ [0, T ], then limk→∞

ˆ
ψψψ(t, k)T ζζζ(t, k)T

˜T
= 0 is satisfied

for all t ∈ [0, T ] if and only if (iff) the matrix A22 is stable,
that is, the spectral radius fulfills ρ (A22) < 1, where the
superscript “T” denotes the transpose of matrix.

For any fixed iteration k, the 2-D system (14) can also be
taken as a one-dimensional (1-D) system. That is, δxxxj(t, k)
is the system state, δuuuj(t, k) is the exogenous disturbance
signal, and δuuuj(t, k+1) is the objective function signal to be
attenuated. Hence, to derive the (robust) H∞ performance
of such 1-D systems, the follows lemmas are developed or
directly adopted from the literature.

Lemma 2 (Bounded Real Lemma (BRL) [18]). Consider
the following system

ẋxx(t) = Axxx(t) + B̟̟̟(t)

zzz(t) = Cxxx(t) + D̟̟̟(t), xxx(0) = 0
(16)

where xxx(t) ∈ Rn is the system state, ̟̟̟(t) ∈ Lr
2[0,∞) is the

exogenous disturbance signal, zzz(t) ∈ Rq is the objective
function signal to be attenuated, and A, B, C and D are
constant matrices of appropriate dimensions. Then, system
(16) is asymptotically stable and its H∞-norm is less than
a prescribed scalar γ > 0 iff there exists a positive definite
symmetric matrix P > 0 that satisfies

2
4
ATP + PA PB CT

BTP −γI DT

C D −γI

3
5 < 0. (17)

Lemma 3 (Improved Bounded Real Lemma (IBRL) [18]).
System (16) is asymptotically stable and its H∞-norm is
less than a prescribed scalar γ > 0 iff there exist a positive
definite symmetric matrix Q, a matrix Z and a sufficiently
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small positive scalar ǫ > 0 that satisfy
2
664

Q− Z − ZT ZT + ǫZTAT 0 ZTCT

Z + ǫAZ −Q B 0
0 BT −γǫ−1I ǫ−1DT

CZ 0 ǫ−1D −γǫ−1I

3
775 < 0.

(18)

Lemma 4 If the system matrices of (16) are known to lie
within the following uncertainty polytope

bΩ ,

(
(A,B, C,D)

˛̨
˛̨(A,B, C,D)

=
NX

p=1

ςp(Ap,Bp, Cp,Dp); ςp ≥ 0,
NX

p=1

ςp = 1

)
.

(19)

then the system (16) over bΩ is robust asymptotically stable
and its robust H∞-norm is less than a prescribed scalar
γ > 0 iff there exist positive definite symmetric matrices
Qp, p ∈ [1, N ], a matrix Z and a sufficiently small positive
scalar ǫ > 0 that satisfy

2
664

Qp − Z − ZT ZT + ǫZTAT
p 0 ZTCT

p

Z + ǫApZ −Qp Bp 0
0 BT

p −γǫ−1I ǫ−1DT
p

CpZ 0 ǫ−1Dp −γǫ−1I

3
775

< 0, p ∈ [1, N ].
(20)

Proof. If the set of LMIs in (20) holds, then we denote

Q =
PN

p=1 ςpQp. It can be easily shown that Q is a positive
definite symmetric matrix and can be used as the matrix Q
of the LMI (18) which is required by the system matrices

over bΩ. Using Lemma 3, this proof is immediate. �

Lemma 5 (Schur Complement [18]). Given a symmetric
matrix S with the form S = [Sij ], where S11 ∈ Rr×r, S12 ∈
Rr×(n−r), S22 ∈ R(n−r)×(n−r), then S < 0 iff S11 < 0 and
S22−S21S

−1
11 S12 < 0, or, S22 < 0 and S11−S12S

−1
22 S21 < 0.

Besides the above results of systems theory, the following
property of operator ω(∇, j), ∀j ∈ Z+ is also useful.

Lemma 6 Given a 2-D function ννν(t, k), if, for any k ∈ Z+,
it belongs to the space of square integrable vector functions
over [0,∞) and ννν(t, k) = 0 holds for t ≤ 0, then

‚‚‚νννj(t, k)
‚‚‚

2
=

p
j + 1 ‖ννν(t, k)‖2 (21)

where νννj(t, k) , ω(∇, j)ννν(t, k), ∀j ∈ Z+.

Proof. From the definition of ω(∇, j), ∀j ∈ Z+, we get

‚‚‚νννj(t, k)
‚‚‚

2

2
=

Z
∞

0

“
νννj(t, k)

”T “
νννj(t, k)

”
dt

=

Z
∞

0

jX

m=0

(∇mννν(t, k))T (∇mννν(t, k)) dt

=

jX

m=0

Z
∞

0

∇m
“
νννT(t, k)ννν(t, k)

”
dt

=

jX

m=0

Z
∞

0

νννT(t, k)ννν(t, k)dt

= (j + 1) ‖ννν(t, k)‖2
2

(22)

where the fact that ννν(t, k) = 0 for all t ≤ 0 and k ∈ Z+ is
used. From (22), the proof of (21) is immediate. �

3 Stability conditions of ILC

In this section, we consider the asymptotic stability and
monotonic convergence of ILC separately.

3.1 Asymptotic stability

With Lemma 1 and based on the 2-D system (14), one
can state the following result:

Theorem 1 Let system (1) satisfy Assumptions A1)-A2),
and ILC scheme (5)-(7) be applied. The sate error δxxx(t, k),
the control input error δuuu(t, k) and the tracking error eee(t, k)
converge to zero as k → ∞ for all t within the time interval
[0, T ] iff the learning gain matrix Γ can be designed such
that the matrix I − ΓCB is stable.

Proof. Note that the 2-D system ΣlT in (14) can be con-
sidered over the time interval [0, T ] (see Remark 4), which

satisfies: δxxxlT (0, k) = 0 for all k ∈ Z+ and finite δuuulT (t, 0)
for all t ∈ [0, T ]. Thus, it follows on using Lemma 1 that

lim
k→∞

h
δxxxlT (t, k)

T
δuuulT (t, k)

T
iT

= 0

is satisfied for all t ∈ [0, T ], and therefore (see Remark 3)

lim
k→∞

ˆ
δxxx(t, k)T δuuu(t, k)T

˜T
= 0

is satisfied for all t ∈ [0, T ] iff the matrix I lT −ΓlT ClTBlT

is stable. Since eee(t, k) = Cδxxx(t, k) and I lT −ΓlT ClTBlT is
stable iff I − ΓCB is stable, the proof is immediate. �

Corollary 1 Let system (1) satisfy Assumptions A1)-A3),
and ILC scheme (5)-(7) be applied. The sate error δxxx(t, k),
the control input error δuuu(t, k) and the tracking error eee(t, k)
converge to zero as k → ∞ for all t within the time interval
[0, T ] if the learning gain matrix Γ can be designed such
that maxp∈[1,N] ‖I − ΓCBp‖ < 13.

Proof. Using the fact that B =
PN

p=1 ςpBp, we have

‖I − ΓCB‖ =

‚‚‚‚‚I − ΓC
NX

p=1

ςpBp

‚‚‚‚‚

=

‚‚‚‚‚

NX

p=1

ςp (I − ΓCBp)

‚‚‚‚‚

≤
NX

p=1

ςp ‖I − ΓCBp‖

<

NX

p=1

ςp

= 1.

Hence, ρ (I − ΓCB) ≤ ‖I − ΓCB‖ < 1, namely, the matrix
I − ΓCB is stable. According to Theorem 1, this proof is
immediately completed. �

Remark 5 Theorem 1 implies that the operator K(∇) has
no effect on conditions for the asymptotic stability of ILC,

3‖ · ‖ can be used by picking any kind of matrix norm such as the
∞-norm ‖ · ‖∞.
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and such conditions are independent of the system dynam-
ics appearing in operator A(∇). Note that the stability of
I−ΓCB implies that the matrix CB has full-column rank.
Thus, if gain matrices of the ILC scheme (5)-(7) is selected

as Ki = −ΓCAi, i ∈ [0, l] and Γ =
ˆ
(CB)TCB

˜−1
(CB)T,

then the tracking error can be driven to zero over the whole
time interval [0, T ] only after one learning iteration. This
type of ILC design has been considered by many authors in
the literature [10, 13, 16] to improve the system performance.
To our knowledge, there is no reference in the literature
stating that it is straightforward to derive this type of fast
ILC by adding the pure error terms in the typical D-type
updating law.

In Corollary 1, a sufficient condition is derived for robust
asymptotic stability of ILC when the TDS in (1) are subject
to polytopic-type uncertainties. It shows that checking the
vertex impulse response matrices of a polytope plant is suf-
ficient to determine the stability properties of the polytope
ILC system. To our knowledge, such a robust ILC problem
has never been studied by the 2-D analysis approach.

3.2 Monotonic convergence

Next, the (robust) monotonic convergence of time-delay
ILC systems will be developed by considering Lemmas 2-6.

Theorem 2 Let system (2) satisfy Assumptions A1)-A2),
and ILC scheme (5)-(7) be applied. If there exist a positive
definite symmetric matrix P > 0 and matrices X and Y
such that the following LMI holds with j = lT − 1

2
64
AjT

P + PAj PBj XT + AjT
CjT

Y T

BjT
P −Ij Ij +BjT

CjT
Y T

X + Y CjAj Ij + Y CjBj −Ij

3
75 < 0

(23)
then ‖δxxx(t, k)‖2,[0,T ], ‖δuuu(t, k)‖2,[0,T ] and ‖eee(t, k)‖2,[0,T ] are
bounded for all k ∈ Z+, and limk→∞ ‖δxxx(t, k)‖2,[0,T ] = 0,
limk→∞ ‖eee(t, k)‖2,[0,T ] = 0, and limk→∞ ‖δuuu(t, k)‖2,[0,T ] =
0 (monotonic convergence in the sense of the L2-norm). If
the LMI (23) holds, then learning gain matricesKi, i ∈ [0, l]
and Γ are computed by

Ki = −
ˆ
I 0r×(lT −1)r

˜
X

ˆ
0n×in I 0n×(lT −i−1)n

˜T

Γ = −
ˆ
I 0r×(lT −1)r

˜
Y

ˆ
I 0q×(lT −1)q

˜T
.

(24)

Proof. If the LMI (23) holds and learning gain matrices
Ki, i ∈ [0, l] and Γ are used as in (24), it follows from using
Lemma 2 that ‚‚‚Gj(s)

‚‚‚
∞

< 1 (25)

where Gj(s) is given by

Gj(s) =

»
Aj Bj

−Kj − ΓjCjAj Ij − ΓjCjBj

–

= −
“
Kj + ΓjCjAj

” “
sIj − Aj

”
−1

Bj

+
“
Ij − ΓjCjBj

”
.

(26)

As a consequence of (14), it follows that

δUUU j(s, k + 1) = Gj(s)δUUU j(s, k) (27)

where δUUU j(s, k) , L
ˆ
δuuuj(t, k)

˜
. Hence, using the fact that‚‚δUUU j(s, k)

‚‚
2

=
‚‚δuuuj(t, k)

‚‚
2
, we get

‚‚‚δuuuj(t, k + 1)
‚‚‚

2
≤

‚‚‚Gj(s)
‚‚‚
∞

‚‚‚δuuuj(t, k)
‚‚‚

2
. (28)

Since Lemma 6 results in
‚‚δuuuj(t, k)

‚‚
2

=
√
j + 1 ‖δuuu(t, k)‖2,

(28) leads to

‖δuuu(t, k)‖2 ≤
‚‚‚Gj(s)

‚‚‚
∞

‖δuuu(t, k − 1)‖2

≤
‚‚‚Gj(s)

‚‚‚
k

∞

‖δuuu(t, 0)‖2 .
(29)

Using j = lT−1, system (14), and thereforeGj(s), can work
over [0, T )4 for the ILC system (1), (5)-(7) (see Remark 4).
Note that at the first iteration, i.e., for k = 0, uuu(t, 0) = 0
holds, and thus ‖δuuu(t, 0)‖2,[0,T ] = ‖uuud(t)‖2,[0,T ] is bounded.

Consequently (like [6]), over the finite time interval [0, T ],
one can conclude from (29) that ‖δuuu(t, k)‖2,[0,T ] is bounded

for all k ∈ Z+, and limk→∞ ‖δuuu(t, k)‖2,[0,T ] = 0 (monotonic
convergence in the sense of L2-norm), where (25) is used.

Also, we can derive from (14) that

‖δxxx(t, k)‖2 ≤
‚‚‚‚

“
sIj − Aj

”
−1

Bj

‚‚‚‚
∞

‖δuuu(t, k)‖2

,

‚‚‚Gj
1(s)

‚‚‚
∞

‖δuuu(t, k)‖2

‖eee(t, k)‖2 ≤
‚‚‚‚C

j
“
sIj − Aj

”
−1

Bj

‚‚‚‚
∞

‖δuuu(t, k)‖2

,

‚‚‚Gj
2(s)

‚‚‚
∞

‖δuuu(t, k)‖2 .

(30)

Using Lemma 5, we know that if the LMI (23) holds, then

AjT
P j + P jAj < 0

which together with the Lyapunov theory ensures that the
matrix Aj is exponentially stable. This implies the bound-
edness of

‚‚Gj
1(s)

‚‚
∞

and
‚‚Gj

2(s)
‚‚
∞

. From (30), it thus fol-

lows that ‖δxxx(t, k)‖2,[0,T ] and ‖eee(t, k)‖2,[0,T ] are bounded
for all k ∈ Z+, and limk→∞ ‖δxxx(t, k)‖2,[0,T ] = 0 and
limk→∞ ‖eee(t, k)‖2,[0,T ] = 0. The proof is completed. �

Theorem 3 Let system (2) satisfy Assumptions A1)-A2),
and ILC scheme (5)-(7) be applied. If the learning gain Γ
can be designed such that, for a sufficiently small scalar ǫ >
0, there exist a positive definite symmetric matrix Q > 0
and matrices X and Y satisfying the following LMI with
j = lT − 1

2
64

Q − X − XT
“

X + ǫAjX
”T

0
“

Y − ΓjCjAjX
”T

X + ǫAjX −Q Bj 0

0 BjT
−ǫ−1Ij ǫ−1DjT

Y − ΓjCjAjX 0 ǫ−1Dj −ǫ−1Ij

3
75

< 0
(31)

then ‖δxxx(t, k)‖2,[0,T ], ‖δuuu(t, k)‖2,[0,T ] and ‖eee(t, k)‖2,[0,T ] are
bounded for all k ∈ Z+, and limk→∞ ‖δxxx(t, k)‖2,[0,T ] = 0,
limk→∞ ‖eee(t, k)‖2,[0,T ] = 0, and limk→∞ ‖δuuu(t, k)‖2,[0,T ] =
0 (monotonic convergence in the sense of the L2-norm),
where Dj = Ij − ΓjCjBj . If the LMI (31) holds, learning
gain matrices Ki, i ∈ [0, l] are computed by

Ki = −
ˆ
I 0r×(lT −1)r

˜
Y X−1

×
ˆ
0n×in I 0n×(lT −i−1)n

˜T
.

(32)

4Note that the value T has no effect on the ‖·‖2,[0,T ]-norm. Thus,

we will take the ‖ · ‖2,[0,T ]-norm instead of the ‖ · ‖2,[0,T )-norm in
the proof.
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Proof. The proof is established by considering Lemma
3 and following the lines of the proof of Theorem 2. �

Now, using Theorem 3, one can state the following result
related to the robust monotonic convergence of ILC against
polytopic-type uncertainties:

Corollary 2 Let system (2) satisfy Assumptions A1)-A3),
and ILC scheme (5)-(7) be applied. If the learning gain Γ
can be designed such that, for a sufficiently small scalar
ǫ > 0, there exist positive definite symmetric matrices Qp,
p ∈ [1, N ] and matrices X and Y satisfying the following
LMIs with j = lT − 1

2
64

Qp − X − XT
“

X + ǫAj
pX

”T
0

“

Y − ΓjCjAj
pX

”T

X + ǫAj
pX −Qp Bj

p 0

0 Bj
p

T
−ǫ−1Ij ǫ−1Dj

p

T

Y − ΓjCjAj
pX 0 ǫ−1Dj

p −ǫ−1Ij

3
75

< 0, p ∈ [1, N ]
(33)

then ‖δxxx(t, k)‖2,[0,T ], ‖δuuu(t, k)‖2,[0,T ] and ‖eee(t, k)‖2,[0,T ] are
bounded for all k ∈ Z+, and limk→∞ ‖δxxx(t, k)‖2,[0,T ] = 0,
limk→∞ ‖eee(t, k)‖2,[0,T ] = 0, and limk→∞ ‖δuuu(t, k)‖2,[0,T ] =
0 (monotonic convergence in the sense of the L2-norm),
where Aj

p (respectively, Bj
p) is defined in the same way with

Aj (respectively, Bj), and Dj
p = Ij −ΓjCjBj

p. If the LMIs
in (33) hold, learning gain matrices Ki, i ∈ [0, l] can also
be computed by (32).

Proof. The proof is established by considering Lemma
4 and following the lines of the proof of Theorem 2. �

Remark 6 From Theorems 2-3, it is clear that conditions
for monotonic convergence are very much dependent on the
system dynamics appearing in the operator A(∇). This,
together with Remark 5, implies that the difference between
conditions for monotonic convergence and for asymptotic
stability is large [2]. Using Lemma 5 to LMIs (23) and (31),
we can obtain the stability of I−ΓCB, and hence conditions
for asymptotic stability of ILC are only necessary for those
for monotonic convergence of ILC.

Remark 7 Corollary 2 implies that a stable ILC design of
TDS with polytopic-type uncertainties can become mono-
tonically convergent, and the only requirement is that the
set of LMIs in (33) is satisfied. If this condition holds, then
the operator K(∇) can also be computed. This results from
that the 2-D analysis approach can convert the time-delay
ILC systems into the traditional 1-D input-output systems
of the control input errors between two sequential itera-
tions. Consequently, the monotonic convergence property
of ILC is transformed into the robust H∞ system perfor-
mance, based on which the IBRL [18] can be applied to deal
with the polytopic-type uncertainties.

Remark 8 If one takes τ = 0 in system (1), then following
the same steps of the proofs of Theorem 1 and Corollary 1,
one can prove that conditions for the (robust) asymptotic
stability of ILC still work. It seems that the delays do not
play a significant role in the stability analysis of ILC. Fur-
thermore, it is an interesting fact that the implementations
of the LMIs (23), (31) and (33) depend not on the delay τ
but on lT , i.e., the ratio of the learning time length T to
the delay τ . This results from that the expanding operator
ω(∇, j) covers the ill effect of the delay operator ∇ in the
ILC analysis of the TDS in (1). In particular, Theorems
2-3 and Corollary 2 imply that if lT keeps the same value,
then the same conditions for the monotonic convergence of
ILC can be derived regardless of the values of T and τ .

4 Simulation results

In this simulation test, let us consider the TDS in (1)
with l = 1 and matrices given by

A0 =

»
0 1

−63 −16

–
, A1 =

»
0 0
60 −60

–
, B =

»
0

1 + g

–

and C = [0 1], where g is an uncertain parameter known
to reside in the following polytope:

Ωg =
n
g

˛̨
g = ς1g1 + ς2g2; g1 = −0.5, g2 = 0.5,

ς1 ≥ 0, ς2 ≥ 0, ς1 + ς2 = 1
o
.

Let the system state be xxx(t) = [x1(t) x2(t)]
T and the de-

sired trajectories be described by

xxxd(t) =

»
xd1(t)
xd2(t)

–
=

»
4t3 − 3t4

12t2(1 − t)

–
, t ∈ [0, T ]

and xxxd(t) = 0, t ∈ [−τ, 0]. For different pairs of the delay τ
and learning time T , the following two cases are simulated:

Case I τ = 0.2, T = 1,

Case II τ = 0.3, T = 1.5

where lT = 5 holds in both cases. Asymptotic stability and
monotonic convergence are considered separately.

4.1 Asymptotic stability

For the asymptotic stability, we consider the ILC scheme
(5)-(7) without the P-type law, i.e., taking K(∇) = 0 in (6)
and with the D-type law (7) using Γ = 0.5. From Corollary
1, it follows that max {‖I − ΓCB1‖ , ‖I − ΓCB2‖} = 0.75.
Hence, the ILC system is robust asymptotically stable. Fig-
ure 1 shows the test results, where without any loss of gen-
erality we pick the parameters ς1 = 0.6 and ς2 = 0.4 that
are within the polytope uncertainty Ωg . In the Figure 1, we
describe simulation results of Case I in the upper three fig-
ures and those of Case II in the lower three figures. For each
case, the L2-norms of state errors ||xd1(t) − x1(t, k)||2,[0,T ]

(left), ||xd2(t) − x2(t, k)||2,[0,T ] (middle), and control input
error ||ud(t) − u(t, k)||2,[0,T ] (right) are described. Obvi-
ously, the ILC system is robustly stable. However, the sys-
tem is only asymptotically stable, and from each subfigure,
we observe that even though the ILC system converges as
iteration k increases, large transient growth is generated.

Now, if one tests the LMI (23) with j = lT −1, X = 0 and
Y = −diag{0.5, 0.5, 0.5, 0.5, 0.5}, it is obviously seen that
this LMI is infeasible (in this case, the index tmin = 9.7109
is nonnegative). According to Theorem 2, the monotonic
convergence of ILC can not be guaranteed to prevent large
learning transient growth with such leaning gains.

4.2 Monotonic convergence

For the monotonic convergence, we use the same D-type
learning gain Γ = 0.5 as used in the asymptotic stability
tests. For the operator K(∇) in the P-type ILC law, it can
be determined by solving the set of LMIs in (33) with j = 4
and ǫ = 0.01, which is computed by (as given in (32))

K(∇) = K0 +K1∇, K0 =
ˆ
31.5 8

˜
,K1 =

ˆ
−30 30

˜
.

The set of LMIs in (33) is feasible in this case, since it holds
that tmin = −0.4733. From Corollary 2, it is clear that the
ILC system will be robust monotonically convergent. Fig-
ure 2 shows the test results of such determined ILC scheme
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Figure 1 Asymptotic stability. Left:
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0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Case I

iteration k

||
x d

1

(t
)−

x 1
(t

,k
)|

| 2
,[
0

,T
]

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Case I

iteration k

||
x d

2

(t
)−

x 2
(t

,k
)|

| 2
,[
0

,T
]

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120
Case I

iteration k

||
u

d
(t

)−
u

(t
,k

)|
| 2

,[
0

,T
]

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Case II

iteration k

||
x d

1

(t
)−

x 1
(t

,k
)|

| 2
,[
0

,T
]

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Case II

iteration k

||
x d

2

(t
)−

x 2
(t

,k
)|

| 2
,[
0

,T
]

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250
Case II

iteration k

||
u

d
(t

)−
u

(t
,k

)|
| 2

,[
0

,T
]

Figure 2 Monotonic convergence. Left:
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(5)-(7) in both Cases I and II. As shown in this figure, the
L2-norms of the state errors and control input error decay
monotonically to zero as the learning trial increases. More-
over, the convergence rate is greatly improved, which can
be clearly seen by comparing both Figures 1 and 2.

The simulation tests verify that the LMI approach can be
used to achieve good learning transients of uncertain TDS
by converting an asymptotically stable ILC into a mono-
tonically convergent ILC, in which not the delay operator
but the expanding operator plays a significant role.
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5 Conclusions

In this paper, a PD-type ILC has been discussed for TDS
subject to polytopic-type uncertainties. After the 2-D ILC
error systems are derived, an LMI approach is introduced
to deal with such 2-D systems that disclose a connection be-
tween the control input errors of two sequential iterations.
Hence, this paper considers the asymptotic stability of ILC
by the 2-D system theory and the monotonic convergence of
ILC by the BRL (IBRL). In particular, sufficient LMI con-
ditions are presented which provide criterions to determine
learning gains to achieve the robust monotonic convergence
of ILC. These results have been verified through numerical
simulation tests.

Acknowledgement

The authors would like to acknowledge the anonymous
reviewers for their helpful comments.

References

1 Ahn H S, Chen Y, Moore K L. Iterative learning control:
Brief survey and categorization. IEEE Transactions on Sys-
tems, Man, and Cybernetics-Part C: Applications and Re-
views, 2007, 37(6): 1099–1121

2 Longman R W. Iterative learning control and repetitive con-
trol for engineering practice. International Journal of Con-
trol, 2000, 73(10): 930–954

3 Xu J X, Tan Y. Robust optimal design and convergence
properties analysis of iterative learning control approaches.
Automatica, 2002, 38(11): 1867–1880

4 Norrlof M, Gunnarsson S. Time and frequency domain con-
vergence properties in iterative learning control. Interna-
tional Journal of Control, 2002, 75(14): 1114–1126

5 Ahn H S, Moore K L, Chen Y. Stability analysis of discrete-
time iterative learning control systems with interval uncer-
tainty. Automatica, 2007, 43(5): 892–902

6 Tayebi A. Analysis of two particular iterative learning con-
trol schemes in frequency and time domains. Automatica,
2007, 43(9): 1565–1572

7 Bristow D A, Alleyne A G. Monotonic convergence of iter-
ative learning control for uncertain systems using a time-
varying Q-filter. IEEE Transactions on Automatic Control,
2008, 53(2): 583–585

8 Chen Y, Gong Z, Wen C. Analysis of a high-order iterative
learning control algorithm for uncertain nonlinear systems
with state delays. Automatica, 1998, 34(3): 345–353

9 Sun M, Wang D. Initial conditions issues on iterative learn-
ing control for non-linear systems with time delay. Interna-
tional Journal of Systems Science, 2001, 32(11): 1365–1375

10 Li X D, Chow T W S, Ho J K L. 2-D system theory based
iterative learning control for linear continuous systems with
time delays. IEEE Transactions on Circuits and Systems-I:
Regular Papers, 2005, 52(7): 1421–1430
E-mail: lixd@mail.sysu.edu.cn

11 Li X D, Chow T W S, Ho J K L. Iterative learning control
for a class of nonlinear discrete-time systems with multiple
input delays. International Journal of Systems Science, 2008,
39(4): 361–369

12 Meng D, Jia Y, Du J, Yuan S. Feedback approach to de-
sign fast iterative learning controller for a class of time-delay
systems. IET Control Theory and Applications, 2009, 3(2):
225–238

13 Meng D, Jia Y, Du J, Yu F. Robust design of a class of time-
delay iterative learning control systems with initial shifts.
IEEE Transactions on Circuits and Systems-I: Regular Pa-
pers, 2009, 56(8): 1744–1757
E-mail: dymeng@ss.buaa.edu.cn

14 Richard J P. Time-delay systems:an overview of some re-
cent advances and open problems. Automatica, 2003, 39(10):
1667–1694

15 Geng Z, Carroll R, Xie J. Two-dimensional model and al-
gorithm analysis for a class of iterative learning control sys-
tems. International Journal of Control, 1990, 52(4): 833–862

16 Kurek J E, Zaremba M B. Iterative learning control syn-
thesis based on 2-D system theory. IEEE Transactions on
Automatic Control, 1993, 38(1): 121–125

17 Saab S S. A discrete-time learning control algorithm for a
class of linear time-invariant systems. IEEE Transactions on
Automatic Control, 1995, 40(6): 1138–1142

18 Jia Ying-Min. Robust H∞ Control. Beijing: Science Press,
2007 (in Chinese)
E-mail: ymjia@buaa.edu.cn

19 Sun M, Wang D. Iterative learning control with initial rec-
tifying action. Automatica, 2002, 38(7): 1177–1182


