文章编号: 1004-0609(2009)08-1462-06

三价铁源对碳热还原法制备 LiFePO₄/C 结构和 性能的影响

钟美娥,周志晖,周震涛

(华南理工大学 材料科学与工程学院, 广州 510640)

摘 要: 以有机(柠檬酸铁)和无机(Fe₂O₃ 或 Fe₃O₄)三价铁混合物为铁源,以有机铁源中的有机酸根为碳源和还原 剂,通过固相-碳热还原法制备 LiFePO₄/C 正极材料,考察无机三价铁源对正极材料结构和性能的影响。采用 XRD、 SEM 和恒流充放电测试等方法对正极材料的结构、表观形貌及电化学性能进行研究。结果表明:以 Fe₂O₃ 为无机 三价铁源合成的 LiFePO₄/C 材料的晶相单一、晶粒尺寸较小、电化学性能较好,以 0.1*C* 放电时,其第三次放电比 容量达 136 mA·h/g,循环 20 周后基本无衰减;而由 Fe₃O₄ 为铁源制得的材料中含有其它杂质相,晶粒尺寸较大, 电化学性能较差,以 0.1*C* 放电倍率放电时,其第三次放电比容量仅为 118 mA·h/g,循环 20 周后衰减近 17%。 关键词: LiFePO₄; 锂离子电池; 正极材料; 碳热还原法; 三价铁源 **中图分类号:** TM 912.9 **文献标识码:** A

Effects of Fe³⁺ sources on structure and properties of LiFePO₄/C prepared by carbothermal reduction method

ZHONG Mei-e, ZHOU Zhi-hui, ZHOU Zhen-tao

(College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China)

Abstract: LiFePO₄/C cathale material were synthesized by solid state-carbothermal reduction method using organic (citrate ferric) and inorganic (Fe₂O₃ or Fe₃O₄) trivalent iron compounds as iron precursors and using the organic acid radical in organic iron precursor as both reducing agent and carbon source. The influences of inorganic Fe³⁺ sources on the structures and performances of the material were investigated. The structure, morphology and electrochemical properties of LiFePO₄/C were analyzed by XRD, SEM and galvanostatic charge-discharge method, respectively. The results indicate that the sample synthesized by Fe₂O₃ has fine particle size, single crystal structure and excellent electrochemical performances, the third discharge capacity remains 136 mA/h·g at 0.1*C* with almost no capacity fading after 20 cycles. While the third discharge capacity of sample obtained from Fe₃O₄ with large particle size and some impurities is only 118 mA·h/g at 0.1*C*, with about 17% capacity fading after 20 cycles.

Key words: LiFePO₄; lithium ion battery; cathode material; carbothermal reduction method; trivalent iron source

磷酸铁锂(LiFePO₄)具有理论比容量高、循环可逆 性能优异、原材料来源广泛、无环境污染和安全性能 好等优点,是最有应用前景的锂离子电池正极材料之 一^[1-3]。然而,纯 LiFePO₄的电子导电率和锂离子扩散 速率较低造成其电化学性能较差,在高倍率下充放电 时容量迅速衰减,阻碍了其实际应用。大量研究表明, 制备 LiFePO₄/C 复合材料是克服其较差倍率性能的有 效方法^[4-7]。然而,大多数研究在制备 LiFePO₄/C 时, 主要是以价格较昂贵、化学稳定性较差的二价铁化合 物(如草酸亚铁和醋酸亚铁)为铁源^[8-10],存在原材料成

收稿日期: 2008-11-18; 修订日期: 2009-02-23

通讯作者:周震涛,教授;电话: 020-33645463; E-mail: mcztzhou@scut.edu.cn

本高、工业化生产难度大的问题。BARKER 等^[11]报道 了以价格低廉、化学稳定性较好的三价铁化合物—— Fe₂O₃为铁源、碳黑为碳源和还原剂的固相-碳热还原 法制备 LiFePO4/C,成功地解决了使用二价铁源时存 在的问题。使得以三价铁化合物作铁源制备 LiFePO4/C 备受研究者的关注。采用固相-碳热还原法 制备 LiFePO₄/C 时,三价铁源的种类是影响其产物性 能的关键因素之一。因为要获得性能优异的材料首先 得保证 Fe³⁺被完全地还原成 Fe²⁺, 而不同的三价铁化 合物被还原成 Fe²⁺的难易程度不同,需要不同的热处 理工艺。因而,研究三价铁源对固相-碳热还原法制 备 LiFePO4/C 的结构和性能影响是非常有必要的。本 文作者以常见的三价铁化合物,即 Fe₂O₃ 与柠檬酸铁 的混合物或 Fe₃O₄ 与柠檬酸铁的混合物为铁源,以有 机三价铁源如柠檬酸铁中的柠檬酸根为碳源和还原 剂,采用固相-碳热还原法制备了 LiFePO4/C 复合材 料,考察所用无机三价铁源(Fe₂O₃或 Fe₃O₄)对其结构 和性能的影响,旨在为碳热还原法制备 LiFePO₄ 的过 程中三价铁源的选择提供实践及理论依据。

1 实验

1.1 LiFePO₄/C 复合材料的合成

首先称取一定量的 Li₂CO₃和(NH₄)₂HPO₄,再加入 20%(按柠檬酸根的质量分数计算)的有机铁源柠檬酸 铁,此时原料中的铁含量未达到化学计量,不足量的 铁以无机铁源 Fe₂O₃(所制备样品为 a)或 Fe₃O₄(所制备 样品为 b)来补足。其中,柠檬酸铁中的柠檬酸根用作 碳源和还原剂。将所称取的原料经行星式球磨机(南京 大学仪器厂产)球磨混勾后,在 N₂气保护下于 300 ℃ 下加热 10 h,使之预分解,再在 700 ℃下煅烧 24 h 后 随炉冷却,研磨过筛,即得 LiFePO₄/C 复合材料。

1.2 LiFePO₄/C 复合材料的物理性能分析

复合材料的晶体结构分析使用 Simens D-500 型 X 射线衍射仪(德国产),形貌分析在 Hitachi S-550 型 扫描电镜(日本产)上进行,比表面积的测定采用 Micromeritics FlowsorbIII2310(美国产)BET 比表面测 试仪,电导率采用 Keithley 6221(美国)进行测定,Fe₃O₄ 和 Fe₂O₃ 的颗粒粒度分布采用 Horiba LA-950 型激光 粒度仪(日本产)测试。球磨混合均匀并烘干后前驱体 的 TG-DSC 分析在 Netzsch STA449C 综合热分析仪(德

国产)上进行,其测试条件为氮气保护,升温速率为 10 ℃/min。

1.3 LiFePO₄/C 复合材料的电化学性能测试

LiFePO₄/C 复合材料的电化学性能测试采用扣式 模拟电池来进行,以金属锂为阳极。阴极材料的质量 比组成为:活性材料、乙炔黑和聚四氟乙烯的质量比 为 85:10:5;隔膜为电池级 Celgrade2300 微孔膜,电解 质溶液为 1 mol/L 的 LiPF₆-EC/DMC(体积比为 1:1)。 复合材料的充放电测试在广州擎天公司生产的 BS-9300 充放电仪上进行,充放电截止电压范围为 2.8~4.2 V (vs Li⁺/Li)。采用上海辰华公司生产的 CHI-660A 电化学工作站对复合材料进行循环伏安测试,扫 描电压为 2.8~4.2 V,扫描速度为 0.1 mV/s。

2 结果与讨论

2.1 LiFePO₄/C 复合材料的物理性能

样品 a 和 b 由固相-碳热还原法合成,为了得到单 一物相和电化学性能优异的 LiFePO₄,烧结温度的选 择至关重要。热力学上,Fe³⁺转变为 Fe²⁺的温度宜高 于 650 ℃^[11],但是温度过高,产物粒径增大将导致材 料的实际容量大幅度衰减,故烧结温度选择为 700 ℃。

为了考察无机三价铁源对所制得的 LiFePO₄/C 复 合材料晶体结构的影响,本实验采用 X 射线衍射(XRD) 技术对所制备的复合材料进行了结构表征,结果如图 1 所示。从图 1 可以看出,样品 a 和 b 的主要衍射峰 都归属于正交晶系橄榄石型晶态结构的 LiFePO₄。但 样品 b 的基线不平整,由其局部放大图可见,在衍射

角约为 28.83°和 34.16°处出现两个明显的小肩峰,归 属为杂质相 Li₃PO₄ 的衍射峰,同时在衍射角约为 33.31°和 34.59°处出现两个尖锐的小峰,归属为杂质相 Li₃Fe₂(PO₄)₃的衍射峰,表明该样品中含有大量的杂 质;而样品 a 的基线平整,晶相相对较单一,其较弱 的峰强度和较窄的峰形表明该晶体具有较小的晶粒尺 寸和良好的结晶度。众所周知,影响固相反应的因素 主要包括热力学和动力学两方面^[12]。比较 Fe₃O₄ 和 Fe₂O₃的吉布斯生成函(ΔG_{f}),发现 Fe₃O₄的 ΔG_{f} (-1 014.2kJ/mol)小于 Fe₂O₃ 的(-741.0 kJ/mol)^[13], ΔG_f 越 小,其氧化物越稳定,且越难被还原^[14],需要的还原 温度更高。Fe₃O₄较 Fe₂O₃ 难被还原的这一事实也从两 者前驱体的 TG/DSC 测试中得到证实。TG/DSC 测试 发现,以Fe₃O₄为无机铁源时,形成LiFePO₄晶核的 温度为 525 ℃; 而以 Fe₂O₃ 为无机铁源时, 形成 LiFePO₄晶核的温度为 505 ℃,即以 Fe₃O₄ 为无机铁源 时,生成 LiFePO4 晶体的温度较以 Fe2O3 为铁源时的 高,表明 Fe₃O₄较 Fe₂O₃ 难还原,前者需要在更高温 度下进行热处理。另一方面,对 Fe₂O₃和 Fe₃O₄的原 材料进行粒度测试,结果表明,Fe₃O₄的粒径(d₀ = 8.677 μm)大于 Fe₂O₃ 的(d_{0.5}=3.465 μm),反应原材料的粒径 越大,反应固体之间的接触面积越小,反应速度越慢。 因此,造成样品 b 结构中含杂质相的原因可能与其较 难被还原的性质和较大的颗粒尺寸有关。Fe₃O₄ 较难 被还原的性质使得其在本文的实验温度下难被还原完 全,要想得到纯净的相结构,还需进一步提高烧结温 度。然而,进一步升高烧结温度会增加能耗,导致颗 粒尺寸长大,使电化学性能恶化。反之,因为 Fe₂O₃ 较易被还原,在本实验温度下即可被完全还原,因而 以 Fe₂O₃ 为无机铁源制得的材料具有较单一的相结 构。另外,在衍射图上衍射角约为40.2°处均可观察到 Fe₂P的衍射峰。Fe₂P是一种导电物质,具有较高的导 电率(1.5 S/cm),它与碳一样对提高LiFePO4的导电率、 改善其高倍率充放电性能有益^[15-16]。此外, XRD 谱上 未发现碳的衍射峰,这可能与碳的含量较低有关。采 用红外碳硫计测得样品 a 和 b 中的碳含量均为 1.93%(质量分数)。

为了考察无机三价铁源对所制得的 LiFePO₄/C 复 合材料表观形貌的影响,本实验中采用扫描电镜(SEM) 对所制的样品进行了观察,其结果如图 2 所示。从图 2 可以看出,样品 a 的颗粒尺寸较小,分散性较好, 粒径分布在 100 nm~2 μm 的范围内;而样品 b 的颗粒 较大,分散性较差,为大量细小颗粒团聚而成的蜂窝 状结构,其多孔结构有利于电解液的渗透,有助于增 大材料的比表面积、提高其电导率。样品 a 和 b 具有

图 2 LiFePO₄/C 复合材料的 SEM 像 Fig.2 SEM images of carbon-coated LiFePO₄/C composites: (a) Sample a; (b) Sample b

完全不同的表观形貌与其制备时使用的无机铁源种类 有关,而以 Fe₂O₃ 为无机铁源制得的材料具有较小的 颗粒尺寸可能与其原材料的粒径较小有关。

为了考察无机三价铁源对所制得的 LiFePO₄/C 复 合材料的电导率和比表面积的影响,本实验中测试样 品 a 和 b 的电导率和比表面积,其结果如表 1 所列。 由表 1 可知,样品 a 和 b 的电导率分别为 6.5×10^{-5} 和 1.5×10^{-4} S/cm,比纯 LiFePO₄(电导率在 $10^{-9} \sim 10^{-10}$ S/cm 之间^[17])提高 $4 \sim 5$ 个数量级,这说明产物中的碳 和 Fe₂P 的存在能极大地提高材料的电导率。此外,样 品 b 的比表面积和电导率均略大于样品 a 的,这似乎 与前面所知样品 b 的晶粒尺寸大于样品 a 的结果不相 符合,但是图 2 可知,样品 b 中包含大量的蜂窝状团 聚体,其特殊的晶体形貌可能是产生这一结果的原因。

表1 LiFePO₄/C 复合材料的电导率和比表面积

Table 1Electrical conductivity and specific surface area of
carbon-coated $LiFePO_4$

Sample	Mass fraction of carbon/%	Electrical conductivity/ (S:cm ⁻¹)	Specific surface area/ $(m^2 \cdot g^{-1})$
a	1.93	6.5×10^{-5}	6.173
b	1.93	1.5×10^{-4}	6.346

2.2 LiFePO₄/C 复合材料的电化学性能

为了研究无机三价铁源对所制得的 LiFePO₄/C 复 合材料电化学性能的影响,实验中采用恒流充放电技 术考察了材料的电性能。图3所示为样品 a 和 b 在 0.1*C* 倍率下的第三次充放电曲线。由图 3 可以看出,与以 Fe₃O₄为无机铁源制得的 LiFePO₄/C 复合材料 b 的结果 相比较,以 Fe₂O₃为无机铁源制得的样品 a 具有较高 的放电电压、较长的充放电电位平台和较小的充放电 电位差,其第三次放电比容量为 136 mA·h/g,放电比 能量高达 462 W·h/kg; 而样品 b 的第三次放电比容量 仅为 118 mA·h/g,其放电比能量则仅有 394 W·h/kg,

样品 a 比 b 的放电比能量高出了约 17%。此外,样品 a 的可逆充放电性能也优于样品 b 的,前者第三次充 放电效率高达 101.5%, 后者第三次充放电效率仅为 92.2%。表明以 Fe₂O₃ 为无机铁源制得的 LiFePO₄/C 复 合材料的电化学性能优于以 Fe₃O₄ 为无机铁源所制得 的材料。由前面的 XRD 分析结果可知,样品 b 的晶 相中含有杂质相 Li3PO4 和 Li3Fe2(PO4)3, 且其晶粒尺 寸较大。因为橄榄石型 LiFePO4 只有一维的脱/嵌锂通 道,杂质相的存在不但使得复合材料中电化学活性物 质的含量降低,而且还会阻碍 Li⁺离子在活性材料中的 脱出/嵌入,致使部分锂离子不能参与电化学反应,从 而产生容量损失。同时其较大的晶粒尺寸,增加了锂 离子的扩散路径, 使得颗粒中心附近的活性物质难以 被利用,也会造成容量损失。因此,尽管样品 b 的电 导率和比表面积比样品 a 的略高, 但其晶相中的杂质 和较大的颗粒尺寸抵消了其导电率和比表面积对其电 性能的贡献,则样品 a 的放电比解量也高于样品 b 的。

图3 0.1C 倍率时不同三价铁源合成的 LiFePO₄/C 复合材料 的充放电曲线

Fig.3 Charge—discharge curves of LiFePO₄/C composites synthesized with different Fe³⁺ sources at 0.1C

为了从机理上说明造成样品 a 和 b 电化学性能差 别的原因,本实验中测试了这两个样品的循环伏安特 性,结果如图 4 所示。从图 4 可以看出,样品 a 和 b 的 CV 图上均出现了一对氧化还原峰,其中样品 b 的 氧化还原峰的电位差略小于样品 a 的。这与其较高的 电导率和较大的比表面积有关。另外,样品 a 的峰形 尖锐,氧化还原峰的对称性好,其阴、阳极峰电流值(分 别为 2.41 和 2.10 mA)非常相近,表明绝大部分锂离子 能可逆地脱/嵌于活性物质当中,显示出优良的充放电 可逆性能。而样品 b 的氧化还原峰的对称性较差,其 阴极峰电流值(1.54 mA)比其相应的阳极峰电流结果 (2.41 mA)要小得多,表明有相当大的一部分锂离子在 脱出之后不能够可逆地插入其活性物质当中,即该材 料在充放电过程中发生了较大的容量损失,材料的可 逆充放电性能较差。此外,样品 b 的峰形不尖锐,其 氧化还原峰上均存在明显的肩峰,表明锂离子在其中 脱/嵌困难。以上结果说明,可逆充放电性能较差与锂 离子脱出/嵌入困难是造成样品b电化学性能较差的原 因,从而证实了前面的推测结果。

图 4 不同三价铁源合成的 LiFePO₄/C 复合材料的循环伏安曲线

Fig.4 Cyclic voltammograms of $LiFePO_4C$ composites synthesized with different Fe^{3+} sources

为了进一步考察无机三价铁源对所制得的 LiFePO₄/C 复合材料电化学性能的影响,本实验中还 比较了样品 a 和 b 的倍率性能和循环可逆性能,结果 分别如图 5 和 6 所示。由图 5 可见,当放电倍率分别 为 0.1、0.2 和 0.5C 时,样品 a 的放电比容量均大于样 品 b 的,前者各倍率下的第三次放电比容量分别为 136、131 和 125 mA·h/g,而后者的放电比容量仅分别 为 118、111 和 104 mA·h/g。另外,样品 a 在各倍率下

图 5 不同三价铁源合成的 LiFePO₄/C 复合材料的倍率性能 **Fig.5** Rate capabilities of LiFePO₄/C composites synthesized with different Fe³⁺ sources

图6 0.1*C*时不同三价铁源合成的LiFePO₄/C复合材料的循环性能

Fig.6 Cycle performance of LiFePO₄/C synthesized with different Fe³⁺ sources at 0.1C

的放电电压也均高于样品 b 的,因此,若考虑放电电 压的因素,则样品 a 的放电比能量则高于样品 b 的, 表明样品 a 的倍率性能优于样品 b 的。图 6 所示为样 品 a 和 b 在充放电倍率为 0.1C 时的循环可逆性能曲 线。由图 6 可知,在前 3 次循环中两样品的放电比容 量都呈逐渐增大的趋势,说明电池有一个活化的过程, 其中以样品 a 的活化较为明显。活化过程的存在是由 于在充放电过程中,晶体能量有趋于最小化的弛豫过 程,晶体中的缺陷会发生移动或其它变化,从而使材 料的脱/嵌锂通道逐渐通畅,这样嵌入/脱出的锂离子 量会随之增加,使得材料的放电容量有所增加^[18]。此 外,样品 a 的循环可逆性能较好,循环 20 次后,容量 基本上没有衰减。而样品 b 的循环可逆性能较差,从 第 4 个循环开始容量逐渐衰减,循环 20 周后,其容量 仅为 98 mA·h/g,衰减了近 17%。样品 a 的倍率性能 和循环可逆性能与其单一的相结构和较小的颗粒尺寸 有关。

3 结论

1) 以有机(柠檬酸铁)和无机(Fe₂O₃或 Fe₃O₄)三价 铁的混合物为铁源、以有机铁源中的有机酸根(柠檬酸 根)为碳源和还原剂、采用固相-碳热还原法合成了 LiFePO₄/C 复合材料。其中,以 Fe₂O₃为无机铁源制得 的材料具有较单一的相结构和较小的颗粒尺寸;而由 Fe₃O₄制得的材料含有其它杂质相,其晶粒尺寸较大。

2) 采用 Fe₂O₃ 为无机铁源制得的材料具有较高的 放电比容量和放电比能量,以 0.1*C* 充放电时,其第三 次放电比容量为 136 mA·h/g,放电比能量达 462 W·h/kg;而由 Fe₃O₄ 制得的材料放电比容量和放电比 能量均较低,以 0.1*C* 充放电时,其第三次放电比容量 仅为 118 mA·h/g,放电比能量仅达 394 W·h/kg。

3) 由 Fe₂O₃ 制得的材料倍率性能和循环可逆性能 较好,当放电倍率分别为 0.1、0.2 和 0.5 *C* 时,其放 电比容量分别为 136、131 和 125 mA·h/g,以 0.1*C* 充 放电循环 20 次后其容量基本无衰减;而以 Fe₃O₄制得 的材料倍率性能和循环可逆性能都较差,其 0.1、0.2 和 0.5*C* 下的放电比容量仅分别为 118、111 和 104 mA·h/g,以 0.1 *C* 充放电循环 20 周后其容量下降了近 17%。

REFERENCES

- CHUNG H T, JANG S K, RYU H W, SHIM K B. Effects of nano-carbon webs on the electrochemical properties in LiFePO₄/C composite[J]. Solid State Communications, 2004, 131(8): 549–554.
- [2] KIM J K, CHOI J W, CHERUVALLY G, KIM J U, AHN J H, CHO G B, KIM K W, AHN H J. A modified mechanical activation synthesis for carbon-coated LiFePO₄ cathode in lithium batteries[J]. Material Letters, 2007, 61(18): 3822–3825.
- [3] WANG D, LI H, SHI S, HUANG X, CHEN L. Improving the rate performance of LiFePO₄ by Fe-site doping[J]. Electrochimica Acta, 2005, 50(14): 2955–2958.
- [4] BEWLAY S L, KONSTANTINOV K, WANG G X, DOU S X, LIU H K. Conductivity improvements to spray-produced

 $LiFePO_4$ by addition of a carbon source[J]. Materials Letters, 2004, 58(11): 1788–1791.

- [5] WANG G X, YANG L, BEWLAY S L, CHEN Y, LIU H K, AHN J H. Electrochemical properties of carbon coated LiFePO₄ cathode materials[J]. Journal of Power Sources, 2005, 146(1/2): 521–524.
- [6] KONSTANTINOV K, BEWLAY S, WANG G X, LINDSAY M, WANG J Z, LIU H K, DOU S X, AHN J H. New approach for synthesis of carbon-mixed LiFePO₄ cathode materials[J]. Electrochimica Acta, 2004, 50(2/3): 421–426.
- [7] DOEFF M M, WILCOX J D, KOSTECKI R, LAU G. Optimization of carbon coatings on LiFePO₄[J]. Journal of Power Sources, 2006, 163(1): 180–184.
- [8] KIM D K, PARK H M, JUNG S J, JEONG Y U, LEE J H, KIM J J. Effect of synthesis conditions on the properties of LiFePO₄ for secondary lithium batteries[J]. Journal of Power Sources, 2006, 159(1): 237–240.
- [9] TAKAHASHI M, TOBISHIMA S, TAKEI K, SAKURAI Y. Characterizaiton of LiFePO₄ as the cathode material for rechargeable lithium batteries[J]. Journal of Power Sources, 2001, 97/98: 508–511.
- [10] KWON S J, KIM C W, JEONG W T, LEE K S. Synthesis and electrochemical properties of olivine LiFePO₄ as a cathode material prepared by mechanical alloying[J]. Journal of Power Sources, 2004, 137(1): 93–99.
- [11] BARKER J, SAIDI M Y, SWOYER J L. Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method[J]. Electrochemical and Solid-state Letters, 2003,6 (3): A53-A55.
- [12] 董树岐, 黄良钊. 材料物理化学基础[M]. 北京: 兵器工业出

版社, 1991: 295.

DONG Shu-qi, HUANG Liang-zhao. Basis of material physical chemistry[M]. Beijing: Weapon Industry Press, 1991: 295.

[13] 傅献彩, 沈文霞, 姚天扬. 物理化学[M]. 北京: 高等教育出版社, 2000: 478.
 FU Xian-cai, SHEN Wen-xia, YAO Tian-yang, Physical

chemistry[M]. Beijing: Higher Education Press, 2000: 478.

- [14] 张启昆, 卢 峰. 现代无机合成化学[M]. 汕头: 汕头大学出版社, 1995: 100.
 ZHANG Qi-kun, LU Feng. Modern inorganic synthesis chemistry[M]. Shantou: Shantou University Press, 1995: 100.
- [15] XU Y, LU Y, YAN L, YANG Z, YANG R. Synthesis and effect of forming Fe₂P phase on the physics and electrochemical properties of LiFePO₄/C material[J]. Journal of Power Sources, 2006, 160(1): 570–576.
- [16] LIU H, XIE J Y, WANG K. Synthesis and characterization of LiFePO₄/(C+Fe₂P) composite cathodes[J]. Solid State Ionics, 2008, 179(27/32): 1768–1771.
- [17] GABERSCEK M, JAMNIK J. Impact of electrochemical wiring topology on the kinetics of insertion electrodes[J]. Solid State Ionics, 2006, 177(26/32): 2647–2651.
- [18] 黄小倩,张培新,许启明,李昕洋,任祥忠,罗仲宽,刘剑洪, 洪伟良. 不同碳源对LiFePO₄/C复合材料性能的影响[J]. 功能 材料, 2008, 39(7): 1154–1157.
 HUANG Xiao-qian, ZHNAG Pei-xin, XU Qi-ming, LI Xin-yang,

REN Xiang-zhong, LUO Zhong-kuan, LIU Jian-hong, HONG Wei-liang. Effects of different carbon sources on the properties of LiFePO₄/C composite materials[J]. Journal of Functional Materials, 2008, 39(7): 1154–1157.

(编辑 龙怀中)