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Abstract . We calculate intensity of thermal radiation (via Hawking effect) and evaporation time 

of a stationary nonrotating black hole using  Kirchhoff ‘s law and the electrodynamic membrane 

paradigm. It is shown that both quantities significantly depend on the relative thickness of  

membrane and real part of its static dielectric permittivity. 

 

1.Introduction 

 

Following [1,2], stationary black holes without rotation in the vicinity of their event horizon 

generate photons having thermal spectrum with temperature  
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where ,  and G  are Planck’s, Boltzann’s and gravitational constants,  the speed of light in 

free space and

h Bk c

M  the mass of a black hole. It is usual to believe that intensity of this radiation is 

governed by Stefan’s law, i.e. , where  is Schwarzshild’s 

radius and 

424/ TrdtdE gSπσ= 2/2 cGMrg =

Sσ  is Stefan’s constant. Solving equation  with respect to dtdEdtdMc //2 = M  

yields the characteristic evaporation time for an isolated black hole, . )/(5120 432 cMGB hπτ =

       However, generally speaking, the above estimations are valid only in the limit of 

geometrical optics, at  
Tk
cr

B
TTg

hπλλ 2,1/ =>>  . In this case, it is assumed that the black hole 

emits radiation just like an absolutely absorbing black sphere of radius . Nevertheless, it is not 

so: from the above expressions for ,  and 

gr

gr T Tλ  it follows just an opposite relation: 
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1/ 2 <<=
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λTgr . This results in great difference in the rate of evaporation of a black hole in 

comparison with the common accepted estimation, thus stimulating our further consideration. 
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     Recently, it has been realized [3] that an event horizon of a black hole can be considered as a 

conducting sphere with surface resistance of Ohm
c

RH 3774
==

π . This result can be used to get 

the absorption cross –section of the black hole with respect to the low –frequency photons 

( gr>>λ ) and further, applying Kirchoff’s law, to calculate the intensity of thermal radiation. So, 

this paper aims at an estimation of the radiation intensity of black hole with account of the 

known electrodynamic and thermodynamic properties. 

 

2. Theoretical consideration 

According to the membrane paradigm [3], in the presence of the external electromagnetic field 

the event horizon of a black hole behaves like a conducting surface. Introducing an effective 

thickness r∆  of the membrane, and assuming the same resistivity within r∆ , one can relate total 

resistance  of the black hole with the conductivity of the membrane using a model of two 

concentric spheres with radii  

HR

rrara gg ∆+== 21 ,  ,  where the spherical shell is filled by 

homogenious conducting matter [4] 
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with σ  being  the conductivity. Assuming 1/ <<∆ grr  , we get from (2) 
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On the other hand, following [5], the dielectric permittivity of the corresponding conducting 

medium can be written as 

ω
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Eqs.(3), (4) enable to determine polarizability of the membrane by analogy with the 

polarizability of spherical shell of thickness 12 aaa −=∆ , occupied  by substance having the 

dielectric permittivity )(ωε  (see Appendix with substitution )(,1 221 ωεεε ==  in (A2)) 
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Substituting  ,  into (5) and expanding it up to a linear order ingra =1 rra g ∆+=2 grrx /∆= , 

one obtains 
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Because gT r>>λ , the related cross-section for absorption of electromagnetic radiation is given 

by 
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where )(ωα ′′  is the corresponding imaginary  part. Using (3), (6) yields 
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Applying Kirchoff’s law, the intensity of thermal radiation of the black hole is given by 
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Introducing (7), (8) into (9) with account of  (1) and  yields 2/2 cGMrg =
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The evaporation time ),,( 0ετ xM  is calculated from  and reads ),,(/ 0
2 εxMIdtdMc =
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         Contrary to that, usage of the generally accepted expression for the total absorption cross –

section of a black hole, , which is grounded on  an approximation of geometrical 

optics, being incorrect in this case, coupled with  Kirchoff’s law  results in conventional 

expressions (see, for instance, [6]): 
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Comparing (10), (13) and (12), (14) shows that, in general, the radiation intensity and 

evaporation time of black holes essentially depend not only on the mass M , but on parameters 

0,εx , too. It seems to be quite natural to put forward  the assumption , but this still leaves 

the value of the constant 

1<<x

0ε  to be arbitrary. Correspondingly, both intensity of radiation and 
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evaporation time may change in a rather broad interval of values. In the above calculation we 

have not taken into account the presence of other type particles (besides photons) having thermal 

spectrum. 

 

3. Numerical estimations 

It is interesting to numerically compare the intensities (10), (13) and evaporation times (12), 

(14). Figs. 1, 2 show the calculated fractions  and BII / Bττ /  in dependence of  and x 0ε . We 

see from the figures that the obtained results significantly depend on  , x 0ε  and  their 

interrelation. Particularly, at 10 <<<< xε  we get 2/ ≈BII . On the other hand, at 10 ≥ε  we get 

. Correspondingly, the relative evaporation time 12.0/ 2 <<≈ xII B Bττ /  changes from nearly 

30.6 at 10 <<<< xε  to  at 1/5~ 2 >>x 10 ≥ε . As seen from Figs.1,2, the evaporation time of 

black holes can be many orders of value larger as compared with generally accepted estimate. 

This makes it possible for some primary black holes with relatively small mass to survive and to 

be observed even at present time.  

 

4.Conclusions 

 

As it follows yet from Kirchoff’s law, the intensity of thermal radiation of a black hole of any 

mass differs from that one corresponding to absolutely absorbing black sphere with the same 

radius, as the condition  directly opposes to the validity condition of 

geometrical optics, 

18/ 2 >>= πλ gT r

1/ <<gT rλ . Consequently, the currently used formula  

(where 

424/ TrdtdE Sg σπ=

Sσ  is Stefan’s constant) proves to be incorrect. 

    Numerical calculations of the radiation intensity of black holes based on the membrane 

paradigm manifest strong dependence on the relation between a relative thickness of the 

membrane and a real part of the static dielectric permittivity. More precise judgement needs the 

corresponding parameters to be specified. In particular, it may happen that evaporation time of 

black holes with a small mass will exceed the generally accepted estimate by many orders of 

value at a definite relation between grr /∆   and 0ε . From this it follows that, if such black holes 

might formerly born during the universe evolution, they might survive up to the present time. 

The lack of observations of black holes having small mass ( ⊕< MM ) may provoke both a more 

precise determination of  the parameters x,0ε  and give rise to definite problems relating to 

mutual concord between the theory and experiment.  
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Appendix 

The static polarizability of a two –layer dielectric sphere (Fig.3) can be found solving Laplace 

equation for the electric potential. If the dielectric sphere is placed in homogeneous external 

electric field being directed along -axis (Fig.3), the Laplace equation E z 0=∆φ  should be 

solved subjected to boundary conditions of continuity φ  and normal projection of  the electric 

displacement at  and . In outer space  we finally obtain 1ar = 2ar = 2ar >

θαθθφ coscos),( 2r
EErr +−=                                                                                                  (A1) 

3
2221

2
1212

3
2221

3
12123

2 )2)(2())(1(2
)1)(2())(21(
aa
aaa

+++−−
−++−+

=
εεεεεε
εεεεεε

α                                                                (A2) 

where α  is the static polarizability. Making use the transformations )(ωεε ii → ,  in (A2), 

we immediately get the dynamic polarizability 

2,1=i

)(ωα . The corresponding long –wave 

approximation holds at .1/2 <<caω  Eq.(5) follows from (A2) at )(,1 21 ωεεε →=   

     To get the polarizability of a thin dielectric spherical shell with thickness , one must put a∆

1,, 121 =∆+== εaaaaa  in Eq.(A2). Then in a linear expansion (A2) in  we retrieve 

Eq.(6) in the particular  case of 

aa /∆

grara =∆=∆ , . 
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FIGURE 1 

 

                                                                

 
 

FIGURE 2 
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FIGURE 3 
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FIGURE CAPTIONS 

 

Fig.1. Relative intensity of the thermal radiation of black holes ,  vs. BII / 0ε . Different lines 

correspond to the relative thickness of the event horizon membrane,  . grrx /∆=

 

Fig.2. Relative evaporation time of black holes, Bττ / .  Different lines correspond to the same 

values of   as on Fig.1. x

 

Fig.3. Schematic view of the two –shell dielectric sphere placed in the external electric field E , 

and the coordinate system used. 

 

 

 


