锌(Ⅱ)-氟罗沙星光化学荧光法测定药物制剂中的氟罗沙星

冯瑞琴,丁 芬,刘 昱

北京师范大学化学系,北京 100875

摘 要 氟罗沙星在紫外光的照射下易发生光解作用。依据氟罗沙星的光解产物与 Zn^{2+} 离子形成配合物,能显著地增敏氟罗沙星的荧光强度,建立了敏化荧光分析氟罗沙星的新方法。探讨了酸度、 $[Zn^{2+}]/[PHFL-RX]$ 浓度比和光照等对荧光强度的影响。结果表明该方法的线性范围为 $5.0\times10^{-8}\sim5.0\times10^{-6}$ mol·L⁻¹,检出限为 4.2×10^{-8} mol·L⁻¹。对浓度为 5.0×10^{-7} mol·L⁻¹的氟罗沙星平行测定 20 次,计算其相对标准偏差 (RSD)为 1.7%。对针剂、片剂和尿样中的氟罗沙星分别进行了测定,其回收率为 $95.0\%\sim105.0\%$ 。并在实验的基础上,对其机理进行了合理的推测。

主题词 氟罗沙星; 锌离子; 光化学荧光中图分类号: O657.3 文献标识码: A

文章编号: 1000-0593(2005)09-1468-03

氟罗沙星(fleroxacin, FLRX)是第三代氟喹诺酮类广谱抗菌药,其突出特点是抗菌作用强[1],半衰期长,体内分布广,在临床上有广泛的应用。目前生物体液中氟罗沙星的含量测定多采用色谱法^[2,3],近来也开始使用荷移反应荧光光谱法测定^[4]。氟罗沙星(结构式见图 1)有一个较大的共轭平面,内源荧光较强,但是其喹啉环 8 位上含有 F 原子,易发生光解反应^[5],其光解产物表现出 10 倍以上的细胞毒性。因此对 FLRX 光解产物的分析在药动学研究上有很大意义。本文将 FLRX 溶液经紫外光照射发生光解,FLRX 光解产物(用 PHFLRX 表示)与 Zn²⁺ 离子形成了荧光很强又较稳定的配合物,激发波长和荧光波长分别为 276 和 433 nm。利用该方法测定了针剂、片剂和尿样中 FLRX 的含量,结果令人满意。此方法灵敏度较高,背景干扰少,操作简便快速,选择性较好。

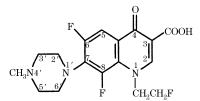


Fig. 1 The molecular structure of FLRX

1 实验部分

1.1 仪器与试剂

M 850 荧光分光光度计(日本日立公司); pHS-3B 型精

密 pH 计(上海雷磁仪器厂)。FLRX 标准品(中国医学科学院 医药生物技术研究所提供);FLRX($1.0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$)储备液的配置:准确称取 36.90 mg FLRX 标准品于烧杯中,滴加 4 mL $0.1 \text{ mol} \cdot \text{L}^{-1}$ HCl 溶液和少量二次水将其完全溶解,然后转移至 100 mL 容量瓶中,定容至刻度,放在冰箱中储存,用时逐级稀释至所需浓度。 Zn^{2+} 储备液($1.0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$)。所有试剂均为分析纯,实验用水为二次重蒸水。

1.2 实验方法

于 10 mL 具塞刻度比色管中依次加入适量 FLRX 标准溶液、 Zn^{2+} 标准溶液,以二次水定容摇匀。光照 30 min(光照强度 30 mW·cm⁻²),放置 30 min 后测定。装在 1 cm 石英池中,选定激发波长 276 nm,发射波长 433 nm,激发和发射通带为 6 nm/8 nm,测定溶液的荧光强度 F,同时做试剂空白 F_0 ,相对荧光强度 $\Delta F = F - F_0$ 。

2 结果和讨论

2.1 激发光谱和荧光光谱

为了探讨 Zn²⁺-FLRX 光解产物的发光机理,我们研究了 PHFLRX 和 Zn²⁺-PHFLRX 配合物的激发和荧光光谱(见图 2)。FLRX 光解产物的最大激发峰和荧光峰分别为 276 和 433 nm,与未光解的 FLRX 相比,峰位均发生了紫移且强度变大。而 FLRX 光解产物与 Zn²⁺ 形成配合物后的荧光强度增大了 6.5 倍,灵敏度显著提高。这是由于紫外光照使 FL-RX 的结构发生了变化,生成了荧光更强的醌亚胺构型^[6]。

收稿日期: 2004-05-08, **修订日期**: 2004-08-26 **基金项目**: 北京市自然科学基金(2022007)资助项目

作者简介: 冯瑞琴, 女, 1946年生, 北京师范大学化学系副教授

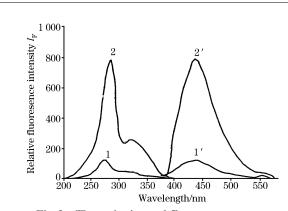


Fig. 2 The excitation and fluorescence spectra of PHFLRX and Zn²⁺-PHFLRX

1, 1', The excitation and fluorescence spectra of PHFLRX; 2, 2', The excitation and fluorescence spectra of PHFLRX-Zn²+ $\lambda_{ex} = 276 \text{ nm}, \ \lambda_{em} = 433 \text{ nm}, \ c(\text{FLRX}) = 1.0 \times 10^{-6} \text{ mol} \cdot \text{L}^{-1},$ $c(\text{Zn}^{2+}) = 1.0 \times 10^{-4} \text{ mol} \cdot \text{L}^{-1}$

2.2 酸度对荧光强度的影响

酸度对 Zn^{2+} -PHFLRX 体系荧光强度有一定的影响, pH 值小于 2.0 时 Zn^{2+} -PHFLRX 不能形成配合物, pH 5.5~6.5 之间其荧光强度最大且稳定。而我们用的去离子水配制的 Zn^{2+} 和 FLRX 溶液的 pH 值均在此范围内。故实验中未加任何缓冲溶液。

2.3 [Zn2+]/[PHFLRX]浓度比的影响

荧光峰强度是溶液中 $[Zn^{2+}]/[PHFLRX]$ 浓度比的函数。随着 Zn^{2+} 倍数的加大,荧光峰明显增强。而这种影响与 FL-RX 的浓度也有关。当 FLRX 浓度为 5.0×10^{-5} mol·L⁻¹时, Zn^{2+} 过量大约 50 倍时发光强度较大且平稳;而浓度为 5.0×10^{-6} mol·L⁻¹时,需要 Zn^{2+} 过量大约 200 倍才能促使配合反应尽快达到平衡。当 FLRX 的浓度为 5.0×10^{-6} mol·L⁻¹、 Zn^{2+} 的浓度为 1.0×10^{-4} mol·L⁻¹时,荧光强度已经很大,所以在以后的实验中选用 Zn^{2+} 的浓度为 1.0×10^{-4} mol·L⁻¹。

2.4 光照的影响

由于 FLRX 溶液易光解, 荧光强度不稳定, 无法用荧光 法直接测定。本文采用光化学的手段, 将配好的 FLRX 与 Zn²⁺ 的溶液放在 365 nm 的紫外灯下光照一段时间, 使 FL-RX 的光解产物与 Zn²⁺ 离子生成荧光更强的配合物, 然后测定其荧光强度。实验发现紫外光强度、光照时间、FLRX 的浓度及[Zn²⁺]/[FLRX]的比值都对 FLRX 的光解有影响。经实验, 我们选择光照强度为 30 mW·cm⁻², 光照时间为 30 min, 光照后放置 30 min 后测定效果最佳。

2.5 干扰实验

在选定的最佳实验条件下,考察了体内常见的一些金属离子、有机物对 Zn^{2+} -PHFLRX 体系相对荧光强度的影响,以加入干扰物对相对荧光强度的影响不超过 \pm 5% 计算。实验结果表明 100 倍的 K^+ , Na^+ , Ca^{2+} , Mg^{2+} ;10 倍的 Co^{2+} , Pb^{2+} , Ni^{2+} , Cu^{2+} ;1 倍的 Al^{3+} , Fe^{3+} ;20 倍的淀粉、糊精、血红蛋白、肌红蛋白、维生素 B_l 、 β -丙氨酸对样品的测定无影响。实验采用的大多数的无机离子浓度远远高于其在真实

样品中的浓度, 所以它们对真实样品的测定基本上无影响。

2.6 工作曲线、检出限和精密度

在选定的最佳实验条件下,以 276 nm/433 nm 荧光峰强度定量。当 FLRX 浓度在 $5.00\times10^{-8}\sim5.00\times10^{-6}$ mol·L⁻¹ 的范围内, Zn^{2+} -PHFLRX 配合物体系的相对荧光强度与FLRX 浓度呈良好的线性关系,线性回归方程为: $\Delta F=1.572~4\times10^{8}~c_{\rm FLRX}+3.440~3,~r=0.998~8$ 。

按实验方法对空白溶液进行了 20 次平行测定,根据 IU-PAC 建议,空白信号的标准偏差的 3 倍与工作曲线斜率的比值即为检出限。据此计算其检出限为 4.2×10^{-8} mol·L⁻¹。按实验方法对浓度为 5.0×10^{-7} mol·L⁻¹的 FLRX 平行测定 10次,相对标准偏差(RSD)=1.7%。

2.7 样品的测定

2.7.1 片剂和针剂中 FLRX 含量的测定

取 5 片天方罗欣药片研磨均匀成粉状,准确称取相当于 1 片 FLRX 的质量(约含 FLRX 100 mg),置于 100 mL 烧杯中,加热溶解,电磁搅拌 1 h 过滤,将滤液定容至 500 mL。测定时适当稀释。

将一支天方罗欣针剂(含 FLRX 200 mg)置于 100 mL 容量瓶中,用去离子水定容至刻度(5.415×10^{-3} mol·L⁻¹),放在冰箱中储存,测定时稀释至所需浓度。结果见表 1。

Table 1 Determination results of FLRX in samples(n = 3)

样品	标示量 /mg	测得量 /mg	加入量 /(×10 ⁻² mol·L)	回收量 /(×10 ⁻² mol·L)	回收率 /%
针剂	100	100 ± 2.3	2.00 4.00 10.00 20.00 50.00	1.91 4.16 10.2 19.6 50.1	95.6 104.0 102 98.0 100
片剂	100	96.5 ± 2.2	5.00 10.00 15.0 20.0 30.0	5.24 9.65 15.8 20.7 29.5	105.0 96.5 105.0 104.0 98.3

Table 2 Determination results of FLRX in urine (n = 5)

加入量 /(×10 ⁻² mol·L ⁻¹)	测得量 /(×10 ⁻² mol·L ⁻¹)	回收率 /%	RSD /%
2.00	2.00	100	
4.00	4.05	101	
5.00	4.87	97.4	
10.0	10.1	101	2.9
20.0	19.0	95.0	
40.0	38.7	96.8	
50.0	51.4	103	

2.8.2 尿样中 FLRX 回收率的测定

根据文献[7]报道,单次口服 FLRX 胶囊后,24 h 内,依时间不同尿药浓度不同,约在 $30\sim200~{\rm mg}\cdot {\rm L}^{-1}$ 范围(即为 $8.1\times10^{-5}\sim5.4\times10^{-4}~{\rm mol}\cdot {\rm L}^{-1}$)。人工合成尿样,使尿药浓度在工作曲线范围之内。取 $1.0~{\rm mL}$ 尿样按实验方法测定。

尿样中 FLRX 的浓度在 $2.0 \times 10^{-7} \sim 5.0 \times 10^{-6} \text{ mol·L}^{-1}$ 范围 内与相对荧光强度呈线性关系,尿样中加标工作曲线线性回

归方程为: $\Delta F = 15.155 \times 10^7 c_{FL} + 152.96$, r = 0.9989, 加标回收率 $95.0\% \sim 103.0\%$, 见表 2。

参 考 文 献

- [1] Morin M. Anal. Chim. Acta, 1989, 219: 67.
- [2] Predrag Djurdjevic, Milena Jelikic-Stankov, Aleksandra Laban. Talanta, 2001, 55: 631.
- [3] Eva M Golet, Alfredo C Alder, Andres Hartmann, et al. Anal. Chem., 2002, 73: 3632.
- [4] DU Li-ming, FAN Zhe-feng, ZHANG Rui-feng(杜黎明, 范哲锋, 张瑞凤). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2003, 23(2): 328.
- [5] Lydia J Martinez, Galaxy Li, Colin F Chignell. Photochemistry and Photobiology, 1997, 65: 599.
- [6] ZHANG Tie-li, ZHAO Hui-chun, Jin Lin-pei, et al. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 121: 37.
- [7] LI Hua, et al(李 华,等). Chinese Journal of New Drugs(中国新药杂志), 1996, 5(1): 55.

Determination of Fleroxacin by Photochemical Fluorescence of Zinc-Fleroxacin Complex

FENG Rui-qin, DING Fen, LIU Yu

Department of Chemistry, Beijing Normal University, Beijing 100875, China

Abstract Based on the complex formed by Zn^{2^+} which can strengthen the relative fluorescence intensity of fleroxacin evidently, a novel photochemical fluorescence method was developed. The effects of the acidity, the concentration ratio of Zn^{2^+} to fleroxacin, and the time for illumination were studied. Under the optimum experiment conditions, the linear range of the determination was 5.00×10^{-8} - 5.00×10^{-6} mol·L⁻¹. The detection limit was 4.2×10^{-8} mol·L⁻¹. The relative standard deviation of the determination of fleroxacin (5.0×10^{-7} mol·L⁻¹) was 1.7% (n = 20). The method was successfully applied to the determination of fleroxacin in specimens, and the recoveries were in the range of 95.0%-105%. The mechanism of this system is proposed.

Keywords Fleroxacin; Zinc ion; Photochemical fluorescence

(Received May 8, 2004; accepted Aug. 26, 2004)