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Abstract

An important tool to quantify the likeness of two probability measures

are f–divergences, which have seen widespread application in statistics

and information theory. An example is the total variation, which plays

an exceptional role among the f–divergences. It is shown that every f–

divergence is bounded from below by a monotonous function of the total

variation. Under appropriate regularity conditions, this function is shown

to be monotonous.

Remark: The proof of the main proposition is relatively easy, whence

it is highly likely that the result is known. The author would be very

grateful for any information regarding references or related work.

1 The total variation

Let (Ω, σ) be a probability space. A signed measure ν is a σ–additive set
function with values in R ∪ {−∞,∞}, and so that either ν > −∞ or ν < ∞. I
will use the standard term measure if ν is nonnegative. To any signed measure
ν, there corresponds a Hahn–Jordan decomposition of Ω into two measurable
sets P, N so that P ∪ N = Ω, P ∩ N = ∅ and

ν+(.) = ν(. ∩ P ), ν−(.) = −ν(. ∩ N) (1)

are both (nonnegative) measures. Obviously, ν = ν+ − ν−. Furthermore, the
representation

ν+(A) = sup
B⊂A

ν(B), ν−(A) = − inf
B⊂A

ν(B) (2)

holds for every measurable set A. For a proof of these facts see [2]. The measure
〈ν〉 = ν+ + ν− is called the variation measure of ν, which in turn defines the
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total variation ‖ν‖ = 〈ν〉 (Ω). If ν(Ω) = 0, it follows easily from the previous
statements that

〈ν〉 (Ω) = 2 sup
B∈σ

|ν(B)|. (3)

A probability measure is a measure µ so that µ(Ω) = 1. For any two proba-
bility measures, µ, ν, the difference µ− ν is a signed measure, and Equation (3)
applies. Hence,

‖µ − ν‖ = 〈µ − ν〉 (Ω) = 2 sup
B∈σ

|µ(B) − ν(B)|. (4)

Obviously, ‖µ − ν‖ is a metric for probability measures, namely the total vari-
ation metric, with Equation (4) providing two possible representations. If µ is
absolutely continuous with respect to µ, then there is a third representation,
namely

‖µ − ν‖ =

∫

|dµ

dν
− 1|dν. (5)

Proof of this fact

2 The f-divergences

Equation (5) can be read as follows:

‖µ − ν‖ =

∫

f(
dµ

dν
)dν, (6)

with f(x) = |x − 1|. There is a way to generalise this approach by using other
forms of f . Let f be a convex function on R≥0 that vanishes at x = 1. Let µ, ν
two probability measures with µ being absolutely continuous with respect to ν
(which will be written as µ ≪ ν). The f–divergence between µ and ν is given
by

Df (µ, ν) =

∫

f(
dµ

dν
)dν. (7)

For, if µ = ν we have dµ
dν

= 1, we see that f(µ, ν) vanishes in this case.
Furthermore, Df (µ, ν) is non-negative. Indeed, by Jensen’s inequality,

0 = f(1) = f(

∫

dµ

dν
dν) ≤

∫

f(
dµ

dν
)dν = f(µ, ν).

Note though that f(µ, ν) may be infinite. Furthermore f(µ, ν) may vanish even
if µ 6= ν. To exclude this, further conditions on f have to be imposed, for
example as in the following

2.1. Lemma. Suppose there is an a ∈ R so that the function

g(x) := f(x) − a(x − 1)

is non-negative and vanishes only if x = 1, then f(µ, ν) vanishes only if µ = ν.
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Proof. The function g(x) is convex as well. Furthermore Df (µ, ν) = Dg(µ, ν).
But since g is non-negative,

Dg(µ, ν) =

∫

g(
dµ

dν
)dν

can only vanish if g(dµ
dν

) is identical to zero, which implies that dµ
dν

= 1 ν-a.s.
But this means µ = ν.

The concept of f -divergences was introduced by Csiszár [1], who also noted
the result in Lemma 2.1. Common choices for f are

(
√

x − 1)2 Hellinger divergence HE

|x − 1| total–variation divergence TV

x log(x) Kullback–Leibler divergence KL

(x − 1)2 Pearson divergence PE

The transformation f∗(x) = xf(1/x) yields a divergence Df∗ which is equal
to Df but with interchanged arguments. Applying this transformation to the
Kullback–Leibler divergence for example, we get a divergence which is also
sometimes referred to as the Kullback–Leibler divergence, or alternatively as
the Shannon divergence SH. The total variation divergence plays a central role,
since all f–divergences allow for an estimate against TV, as will be shown in
the following proposition, which forms the main result of this short note.

2.2. Proposition. For two probability measures µ, ν, it holds in general that

f(1 +
1

2
TV(µ, ν)) + f(1 − 1

2
TV(µ, ν)) ≤ Df (µ, ν).

Proof. The proof of this fact is a generalisation of the method used in [3] to
prove the special case of the KL divergence. Since f(1) = 0, we have the general
property that

f(x) = f(max{x, 1}) + f(min{x, 1}).
Using this fact and the convexity of f we get the general estimate

Df (µ, ν) =

∫

f(
dµ

dν
)dν

=

∫

f(max{dµ

dν
, 1})dν +

∫

f(min{dµ

dν
, 1})dν

≥ f(

∫

max{dµ

dν
, 1}dν) + f(

∫

max{dµ

dν
, 1}dν).

Now use that

max{x, 1} =
1 + x + |1 − x|

2

min{x, 1} =
1 + x − |1 − x|

2

to complete the theorem.
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Recalling that always TV ≤ 2, the proposition rises the question as to when
the function f(1 + x) + f(1 − x) is monotonous on x ∈ [0, 1]. The following
lemma partially answers this.

2.3. Lemma. Under the conditions of Lemma 2.1, the function φ(x) = f(1 +
x) + f(1 − x) is strictly monotonous on x ∈ [0, 1].

Proof. The conditions imply that φ(0) = 0, φ(x) > 0 for x > 0, and that φ is
convex. Let 0 ≤ x1 < x2 ≤ 1. For any τ ∈]0, 1[,

(1 − τ)φ(0) + τφ(x2) > φ((1 − τ)0 + τx2)

which obviously implies φ(x2) > τφ(x2) > φ(τx2) (since τ ∈]0, 1[). Now take
τ = x1/x2 to get the result.

As a corollary of Proposition 2.2, we get the following well known estimates
between TV and KL

2.4. Corollary (Bretagnole–Huber and Furstemberg inequality).

TV(µ, ν) ≤ 2
√

1 − exp (−SH(µ, ν)) ≤ 2
√

SH(µ, ν)

Recall that SH(µ, ν) = KL(ν, µ). A further useful estimate concerns the
Hellinger divergence

2.5. Corollary. For the Hellinger divergence HE, the estimate

TV ≤
{

2 − 2
(

1 −
√

HE

)2

if HE < 1

2 otherwise
(8)

holds.

Proof. Theorem 2.2 gives the inequality

HE ≥
(

√

1 +
1

2
TV − 1

)2

+

(

√

1 − 1

2
TV − 1

)2

. (9)

The right hand side of Equation (9) is larger than
(
√

1 − 1

2
TV − 1

)2

, whence

HE ≥
(

√

1 − 1

2
TV − 1

)2

,

which, after solving for TV, yields the result.
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