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Abstract

We present a review of several results concerning the construction

of the Cramér-von Mises and Kolmogorov-Smirnov type goodness-

of-fit tests for continuous time processes. As the models we take

a stochastic differential equation with small noise, ergodic diffusion

process, Poisson process and self-exciting point processes. For every

model we propose the tests which provide the asymptotic size α and

discuss the behaviour of the power function under local alternatives.

The results of numerical simulations of the tests are presented.

Keywords: Hypotheses testing, diffusion process, Poisson process, self-
exciting process, goodness-of-fit tests

1 Introduction

The goodness-of-fit tests play an important role in the classical mathematical
statistics. Particularly, the tests of Cramér-von Mises, Kolmogorov-Smirnov
and Chi-Squared are well studied and allow to verify the correspondence of
the mathematical models to the observed data (see, for example, Durbin
(1973) or Greenwood and Nikulin (1996)). The similar problem, of course,
exists for the continuous time stochastic processes. The diffusion and Pois-
son processes are widely used as mathematical models of many evolution
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processes in Biology, Medicine, Physics, Financial Mathematics and in many
others fields. For example, some theory can propose a diffusion process

dXt = S∗ (Xt) dt+ σ dWt, X0, 0 ≤ t ≤ T

as an appropriate model for description of the real data {Xt, 0 ≤ t ≤ T} and
we can try to construct an algorithm to verify if this model corresponds well
to these data. The model here is totally defined by the trend coefficient
S∗ (·), which is supposed (if the theory is true) to be known. We do not
discuss here the problem of verification if the process {Wt, 0 ≤ t ≤ T} is
Wiener. This problem is much more complicated and we suppose that the
noise is white Gaussian. Therefore we have a basic hypothesis defined by the
trend coefficient S∗ (·) and we have to test this hypothesis against any other
alternative. Any other means that the observations come from stochastic
differential equation

dXt = S (Xt) dt+ σ dWt, X0, 0 ≤ t ≤ T,

where S (·) 6= S∗ (·). We propose some tests which are in some sense similar
to the Cramér-von Mises and Kolmogorov-Smirnov tests. The advantage of
classical tests is that they are distribution-free, i.e., the distribution of the
underlying statistics do not depend on the basic model and this property
allows to choose the universal thresholds, which can be used for all models.

For example, if we observe n independent identically distributed random
variables (X1, . . . , Xn) = Xn with distribution function F (x) and the basic
hypothesis is simple : F (x) ≡ F∗ (x), then the Cramér-von Mises W 2

n and
Kolmogorov-Smirnov Dn statistics are

W 2
n = n

∫ ∞

−∞

[

F̂n (x) − F∗ (x)
]2

dF∗ (x) , Dn = sup
x

∣

∣

∣
F̂n (x) − F∗ (x)

∣

∣

∣

respectively. Here

F̂n (x) =
1

n

n
∑

j=1

1{Xj<x}

is the empirical distribution function. Let us denote by {W0 (s) , 0 ≤ s ≤ 1}
a Brownian bridge, i.e., a continuous Gaussian process with

EW0 (s) = 0, EW0 (s)W0 (t) = t ∧ s− st.
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Then the limit behaviour of these statistics can be described with the help
of this process as follows

W 2
n =⇒

∫ 1

0

W0 (s)2 ds,
√
nDn =⇒ sup

0≤s≤1
|W0 (s)| .

Hence the corresponding Cramér-von Mises and Kolmogorov-Smirnov tests

ψn (Xn) = 1{W 2
n>cα}, φn (Xn) = 1{√nDn>dα}

with constants cα, dα defined by the equations

P

{
∫ 1

0

W0 (s)2 ds > cα

}

= α, P

{

sup
0≤s≤1

|W0 (s)| > dα

}

= α

are of asymptotic size α. It is easy to see that these tests are distribution-
free (the limit distributions do not depend of the function F∗ (·)) and are
consistent against any fixed alternative (see, for example, Durbin (1973)).

It is interesting to study these tests for nondegenerate set of alternatives,
i.e., for alternatives with limit power function less than 1. It can be real-
ized on the close nonparametric alternatives of the special form making this
problem asymptotically equivalent to the signal in Gaussian noise problem.
Let us put

F (x) = F∗ (x) +
1√
n

∫ x

−∞
h (F∗ (y)) dF∗ (y) ,

where the function h (·) describes the alternatives. We suppose that
∫ 1

0

h (s) ds = 0,

∫ 1

0

h (s)2 ds <∞.

Then we have the following convergence (under fixed alternative, given by
the function h (·)):

W 2
n =⇒

∫ 1

0

[
∫ s

0

h (v) dv +W0 (s)

]2

ds,

√
nDn =⇒ sup

0≤s≤1

∣

∣

∣

∣

∫ s

0

h (v) dv +W0 (s)

∣

∣

∣

∣

We see that this problem is asymptotically equivalent to the following signal
in Gaussian noise problem:

dYs = h∗ (s) ds + dW0 (s) , 0 ≤ s ≤ 1. (1)
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Indeed, if we use the statistics

W 2 =

∫ 1

0

Y 2
s ds, D = sup

0≤s≤1
|Ys|

then under hypothesis h (·) ≡ 0 and alternative h (·) 6= 0 the distributions of
these statistics coincide with the limit distributions of W 2

n and
√
nDn under

hypothesis and alternative respectively.
Our goal is to see how such kind of tests can be constructed in the case

of continuous time models of observation and particularly in the cases of
some diffusion and point processes. We consider the diffusion processes with
small noise, ergodic diffusion processes and Poisson process with Poisson and
self-exciting alternatives. For the first two classes we just show how Cramér-
von Mises and Kolmogorov-Smirnov - type tests can be realized using some
known results and for the last models we discuss this problem in detail.

2 Diffusion process with small noise

Suppose that the observed process is the solution of the stochastic differential
equation

dXt = S (Xt) dt+ ε dWt, X0 = x0, 0 ≤ t ≤ T, (2)

where Wt, 0 ≤ t ≤ T is a Wiener process (see, for example, Liptser and
Shiryayev (2001)). We assume that the function S (x) is two times contin-
uously differentiable with bounded derivatives. These are not the minimal
conditions for the results presented below, but this assumption simplifies the
exposition. We are interested in the statistical inference for this model in
the asymptotics of small noise : ε → 0. The statistical estimation theory
(parametric and nonparametric) was developed in Kutoyants (1994).

Recall that the stochastic process Xε = {Xt, 0 ≤ t ≤ T} converges uni-
formly in t ∈ [0, T ] to the deterministic function {xt, 0 ≤ t ≤ T}, which is a
solution of the ordinary differential equation

dxt
dt

= S (xt) , x0, 0 ≤ t ≤ T. (3)
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Suppose that the function S∗ (x) > 0 for x ≥ x0 and consider the following
problem of hypotheses testing

H0 : S (x) = S∗ (x) , x0 ≤ x ≤ x∗T

H1 : S (x) 6= S∗ (x) , x0 ≤ x ≤ x∗T

where we denoted by x∗t the solution of the equation (3) under hypothesis
H0:

x∗t = x0 +

∫ t

0

S∗ (x∗v) dv, 0 ≤ t ≤ T.

Hence, we have a simple hypothesis against the composite alternative.
The Cramér-von Mises (W 2

ε ) and Kolmogorov-Smirnov (Dε) type statis-
tics for this model of observations can be

W 2
ε =

[
∫ T

0

dt

S∗ (x∗t )
2

]−2 ∫ T

0

(

Xt − x∗t

ε S∗ (x∗t )
2

)2

dt,

Dε =

[
∫ T

0

dt

S∗ (x∗t )
2

]−1/2

sup
0≤t≤T

∣

∣

∣

∣

Xt − x∗t
S∗ (x∗t )

∣

∣

∣

∣

.

It can be shown that these two statistics converge (as ε→ 0) to the following
functionals

W 2
ε =⇒

∫ 1

0

W (s)2 ds, ε−1Dε =⇒ sup
0≤s≤1

|W (s)| ,

where {W (s) , 0 ≤ s ≤ 1} is a Wiener process (see Kutoyants 1994). Hence
the corresponding tests

ψε (Xε) = 1{W 2
ε>cα}, φε (Xε) = 1{ε−1Dε>dα}

with the constants cα, dα defined by the equations

P

{
∫ 1

0

W (s)2 ds > cα

}

= α, P

{

sup
0≤s≤1

|W (s)| > dα

}

= α (4)

are of asymptotic size α. Note that the choice of the thresholds cα and dα
does not depend on the hypothesis (distribution-free). This situation is quite
close to the classical case mentioned above.

It is easy to see that if S (x) 6= S∗ (x), then sup0≤t≤T |xt − x∗t | > 0 and
W 2
ε → ∞, ε−1Dε → ∞. Hence these tests are consistent against any fixed
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alternative. It is possible to study the power function of this test for local
(contiguous) alternatives of the following form

dXt = S∗ (Xt) dt+ ε
h (Xt)

S∗ (Xt)
dt+ ε dWt, 0 ≤ t ≤ T.

We describe the alternatives with the help of the (unknown) function
h (·). The case h (·) ≡ 0 corresponds to the hypothesis H0. One special class
of such nonparametric alternatives for this model was studied in Iacus and
Kutoyants (2001).

Let us introduce the composite (nonparametric) alternative

H1 : h (·) ∈ Hρ,

where

Hρ =

{

h (·) :

∫ xT

x0

h (x)2
µ (dx) ≥ ρ

}

.

To choose alternative we have to precise the “natural for this problem” dis-
tance described by the measure µ (·) and the rate of ρ = ρε. We show that
the choice

µ (dx) =
dx

S∗ (x)3

provides for the test statistic the following limit

W 2
ε −→

∫ 1

0

[
∫ s

0

h∗ (v) dv +W (s)

]2

ds,

where we denoted

h∗ (s) = u
1/2
T h

(

x∗uT s

)

, uT =

∫ T

0

ds

S∗ (x∗s)
2

We see that this problem is asymptotically equivalent to the signal in white
Gaussian noise problem:

dYs = h∗ (s) ds + dW (s) , 0 ≤ s ≤ 1, (5)

with the Wiener process W (·). It is easy to see that even for fixed ρ >

0 without further restrictions on the smoothness of the function h∗ (·) the
uniformly good testing is impossible. For example, if we put

hn (x) = c S∗ (x)3 cos [n (x− x0)]
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then for the power function of the test we have

inf
h(·)∈Hρ

β (ψε, h) ≤ β (ψε, hn) −→ α.

The details can be found in Kutoyants (2006). The construction of the uni-
formly consistent tests requires a different approach (see Ingster and Suslina
(2003)).

Note as well that if the diffusion process is

dXt = S (Xt) dt+ εσ (Xt) dWt, X0 = x0, 0 ≤ t ≤ T,

then we can put

W 2
ε =

[

∫ T

0

(

σ (x∗t )

S∗ (x∗t )

)2

dt

]−2
∫ T

0

(

Xt − x∗t

ε S∗ (x∗t )
2

)2

dt

and have the same results as above (see Kutoyants (2006)).

3 Ergodic diffusion processes

Suppose that the observed process is one dimensional diffusion process

dXt = S (Xt) dt+ dWt, X0, 0 ≤ t ≤ T, (6)

where the trend coefficient S (x) satisfies the conditions of the existence and
uniqueness of the solution of this equation and this solution has ergodic
properties, i.e., there exists an invariant probability distribution FS (x), and
for any integrable w.r.t. this distribution function g (x) the law of large
numbers holds

1

T

∫ T

0

g (Xt) dt −→
∫ ∞

−∞
g (x) dFS (x) .

These conditions can be found, for example, in Kutoyants (2004).
Recall that the invariant density function fS (x) is defined by the equality

fS (x) = G (S)−1 exp

{

2

∫ x

0

S (y) dy

}

,
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where G (S) is the normalising constant.
We consider two types of tests. The first one is a direct analogue of the

classical Cramér-von Mises and Kolmogorov-Smirnov tests based on empiri-
cal distribution and density functions and the second follows the considered
above (small noise) construction of tests.

The invariant distribution function FS (x) and this density function can
be estimated by the empirical distribution function F̂T (x) and by the local
time type estimator f̂T (x) defined by the equalities

F̂T (x) =
1

T

∫ T

0

1{Xt<x} dt, f̂T (x) =
2

T

∫ T

0

1{Xt<x} dXt

respectively. Note that both of them are unbiased:

ESF̂T (x) = FS (x) , ESf̂T (x) = fS (x) ,

admit the representations

ηT (x) = − 2√
T

∫ T

0

FS (Xt ∧ x) − FS (Xt)FS (x)

fS (Xt)
dWt + o (1) ,

ζT (x) = −2fS (x)√
T

∫ T

0

1{Xt>x} − FS (Xt)

fS (Xt)
dWt + o (1)

and are
√
T asymptotically normal (as T → ∞)

ηT (x) =
√
T
(

F̂T (x) − FS (x)
)

=⇒ N
(

0, dF (S, x)2)
,

ζT (x) =
√
T
(

f̂T (x) − fS (x)
)

=⇒ N
(

0, df (S, x)2)
.

Let us fix a simple (basic) hypothesis

H0 : S (x) ≡ S∗ (x) .

Then to test this hypothesis we can use these estimators for construction of
the Cramér-von Mises and Kolmogorov-Smirnov type test statistics

W 2
T = T

∫ ∞

−∞

[

F̂T (x) − FS∗
(x)
]2

dFS∗
(x) ,

DT = sup
x

∣

∣

∣
F̂T (x) − FS∗

(x)
∣

∣

∣
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and

V 2
T = T

∫ ∞

−∞

[

f̂T (x) − fS∗
(x)
]2

dFS∗
(x) ,

dT = sup
x

∣

∣

∣
f̂T (x) − fS∗

(x)
∣

∣

∣

respectively. Unfortunately, all these statistics are not distribution-free even
asymptotically and the choice of the corresponding thresholds for the tests
is much more complicated. Indeed, it was shown that the random functions
(ηT (x) , x ∈ R) and (ζT (x) , x ∈ R) converge in the space (C0,B) (of con-
tinuous functions decreasing to zero at infinity) to the zero mean Gaussian
processes (η (x) , x ∈ R) and (ζ (x) , x ∈ R) respectively with the covariance
functions (we omit the index S∗ of functions fS∗

(x) and FS∗
(x) below)

RF (x, y) = ES∗
[η (x) η (y)]

= 4ES∗

(

[F (ξ ∧ x) − F (ξ)F (x)] [F (ξ ∧ y) − F (ξ)F (y)]

f (ξ)2

)

Rf (x, y) = ES∗
[ζ (x) ζ (y)]

= 4f (x) f (y)ES∗

(

[

1{ξ>x} − F (ξ)
] [

1{ξ>y} − F (ξ)
]

f (ξ)2

)

.

Here ξ is a random variable with the distribution function FS∗
(x). Of course,

dF (S, x)2 = ES

[

η (x)2]
, df (S, x)2 = ES

[

ζ (x)2]
.

Using this weak convergence it is shown that these statistics converge in
distribution (under hypothesis) to the following limits (as T → ∞)

W 2
T =⇒

∫ ∞

−∞
η (x)2 dFS∗

(x) , T 1/2DT =⇒ sup
x

|η (x)| ,

V 2
T =⇒

∫ ∞

−∞
ζ (x)2 dFS∗

(x) , T 1/2dT =⇒ sup
x

|ζ (x)| .

The conditions and the proofs of all these properties can be found in Kutoy-
ants (2004), where essentially different statistical problems were studied, but
the calculus are quite close to what we need here.

Note that the Kolmogorov-Smirnov test for ergodic diffusion was studied
in Fournie (1992) (see as well Fournie and Kutoyants (1993) for further de-
tails), and the weak convergence of the process ηT (·) was obtained in Negri
(1998).
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The Cramér-von Mises and Kolmogorov-Smirnov type tests based on
these statistics are

ΨT

(

XT
)

= 1{W 2

T>Cα}, ΦT

(

XT
)

= 1{T 1/2DT>Dα},
ψT
(

XT
)

= 1{V 2

T>cα}, φT
(

XT
)

= 1{T 1/2dT>dα}
with appropriate constants.

The contiguous alternatives can be introduced by the following way

S (x) = S∗ (x) +
h (x)√
T
.

Then we obtain for the Cramér-von Mises statistics the limits (see, Kutoyants
(2004))

W 2
T =⇒

∫ ∞

−∞

[

2ES∗

(

[

1{ξ<x} − FS∗
(xϕ)

]

∫ ξ

0

h (s) ds

)

+ η (x)

]2

dFS∗
(x) ,

V 2
T =⇒

∫ ∞

−∞

[

2fS∗
(x) ES∗

∫ x

ξ

h (s) ds+ ζ (x)

]2

dFS∗
(x) .

Note that the transformation Yt = FS∗
(Xt) simplifies the writing, because

the diffusion process Yt satisfies the differential equation

dYt = fS∗
(Xt) [2S∗ (Xt) dt+ dWt] , Y0 = FS∗

(X0)

with reflecting bounds in 0 and 1 and (under hypothesis) has uniform on
[0, 1] invariant distribution. Therefore,

W 2
T =⇒

∫ 1

0

V (s)2 ds, T 1/2DT =⇒ sup
0≤s≤1

|V (s)| ,

but the covariance structure of the Gaussian process {V (s) , 0 ≤ s ≤ 1} can
be quite complicated.

To obtain asymptotically distribution-free Cramér-von Mises type test we
can use another statistic, which is similar to that of the preceding section.
Let us introduce

W̃ 2
T =

1

T 2

∫ T

0

[

Xt −X0 −
∫ t

0

S∗ (Xv) dv

]2

dt.
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Then we have immediately (under hypothesis)

W̃ 2
T =

1

T 2

∫ T

0

W 2
t dt =

∫ 1

0

W (s)2 ds,

where we put t = sT and W (s) = T−1/2WsT . Under alternative we have

W̃ 2
T =

1

T 2

∫ T

0

[

Wt +
1√
T

∫ t

0

h (Xv) dv

]2

dt

=
1

T

∫ T

0

[

Wt√
T

+
t

T

1

t

∫ t

0

h (Xv) dv

]2

dt.

The stochastic process Xt is ergodic, hence

1

t

∫ t

0

h (Xv) dv −→ ES∗
h (ξ) =

∫ ∞

−∞
h (x) fS∗

(x) dx ≡ ρh

as t → ∞. It can be shown (see section 2.3 in Kutoyants (2004), where we
have the similar calculus in another problem) that

W̃ 2
T =⇒

∫ 1

0

[ρh s+W (s)]2 ds.

Therefore the power function of the test ψ
(

XT
)

= 1{W̃ 2

T>cα} converges

to the function

βψ (ρh) = P

(
∫ 1

0

[ρh s+W (s)]2 ds > cα

)

.

Using standard calculus we can show that for the corresponding Kolmo-
gorov-Smirnov type test the limit will be

βφ (ρh) = P

(

sup
0≤s≤1

|ρh s+W (s)| > cα

)

.

These two limit power functions are the same as in the next section de-
voted to self-exciting alternatives of the Poisson process. We calculate these
functions with the help of simulations in Section 5 below.

Note that if the diffusion process is

dXt = S (Xt) dt+ σ (Xt) dWt, X0, 0 ≤ t ≤ T,
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but the functions S (·) and σ (·) are such that the process is ergodic then we
introduce the statistics

Ŵ 2
T =

1

T 2 ES∗

[

σ (ξ)2
]

∫ T

0

[

Xt −X0 −
∫ t

0

S∗ (Xv) dv

]2

dt.

Here ξ is random variable with the invariant density function

fS∗
(x) =

1

G (S∗)σ (x)2 exp

{

2

∫ x

0

S∗ (y)

σ (y)2
dy

}

.

This statistic under hypothesis is equal to

Ŵ 2
T =

1

T 2 ES∗

[

σ (ξ)2
]

∫ T

0

[
∫ t

0

σ (Xv) dWv

]2

dt

=
1

T ES∗

[

σ (ξ)2]

∫ T

0

[

1√
T

∫ t

0

σ (Xv) dWv

]2

dt.

The stochastic integral by the central limit theorem is asymptotically normal

ηt =
1

√

tES∗

[

σ (ξ)2
]

∫ t

0

σ (Xv) dWv =⇒ N (0, 1)

and moreover it can be shown that the vector of such integrals converges in
distribution to the Wiener process

(

ηs1T , . . . , ηskT

)

=⇒ (W (s1) , . . . ,W (sk))

for any finite collection of 0 ≤ s1 < s2 < . . . < sk ≤ 1. Therefore, under mild
regularity conditions it can be proved that

Ŵ 2
T =⇒

∫ 1

0

W (s)2 ds.

The power function has the same limit,

βψ (ρh) = P

(
∫ 1

0

[ρh s+W (s)]2 ds > cα

)

.
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but with

ρh =
ES∗

h (ξ)
√

ES∗

[

σ (ξ)2]
.

The similar consideration can be done for the Kolmogorov-Smirnov type test
too.

We see that both tests can not distinguish the alternatives with h (·)
such that ES∗

h (ξ) = 0. Note that for ergodic processes usually we have
ESS (ξ) = 0 and ES∗+h/

√
T

[

S∗ (ξ) + T−1/2h (ξ)
]

= 0 with corresponding ran-
dom variables ξ, but this does not imply ES∗

h (ξ) = 0.

4 Poisson and self-exciting processes

Poisson process is one of the simplest point processes and before taking any
other model it is useful first of all to check the hypothesis the observed se-
quence of events, say, 0 < t1, . . . , tN < T corresponds to a Poisson process. It
is natural in many problems to suppose that this Poisson process is periodic
of known period. For example, many daily events, signal transmission in op-
tical communication, season variations etc. Another model of point processes
as well frequently used is self-exciting stationary point process introduced in
Hawkes (1972). As any stationary process it can as well describe the periodic
changes due to the particular form of its spectral density.

Recall that for the Poisson processXt, t ≥ 0 of intensity function S (t) , t ≥
0 we have (Xt is the counting process)

P {Xt −Xs = k} = (k!)−1 (Λ (t) − Λ (s))k exp {Λ (s) − Λ (t)} ,
where we suppose that s < t and put

Λ (t) =

∫ t

0

S (v) dv.

The self-exciting process Xt, t ≥ 0 admits the representation

Xt =

∫ t

0

S (s,X) ds+ πt,

where πt, t ≥ 0 is local martingale and the intensity function

S (t, X) = S +

∫ t

0

g (t− s) dXs = S +
∑

ti<T

g (t− ti) .

13



It is supposed that

ρ =

∫ ∞

0

g (t) dt < 1.

Under this condition the self-exciting process is a stationary point process
with the rate

µ =
S

1 − ρ

and the spectral density

f (λ) =
µ

2π |1 −G (λ)|2
, G (λ) =

∫ ∞

0

eiλtg (t) dt

(see Hawkes (1972) or Daley and Vere-Jones (2003) for details).
We consider two problems: Poisson against another Poisson and Poisson

against a close self-exciting point process. The first one is to test the simple
(basic) hypothesis

H0 : S (t) ≡ S∗ (t) , t ≥ 0

where S∗ (t) is known periodic function of period τ , against the composite
alternative

H1 : S (t) 6= S∗ (t) , t ≥ 0,

but S (t) is always τ -periodic.
Let us denote Xj (t) = Xτ(j−1)+t − Xτ(j−1), j = 1, . . . , n, suppose that

T = nτ and put

Λ̂n (t) =
1

n

n
∑

j=1

Xj (t) .

The corresponding goodness-of-fit tests of Cramér-von Mises and Kolmo-
gorov-Smirnov type can be based on the statistics

W 2
n = Λ∗ (τ)−2

n

∫ τ

0

[

Λ̂n (t) − Λ∗ (t)
]2

dΛ∗ (t) ,

Dn = Λ∗ (τ)−1/2 sup
0≤t≤τ

∣

∣

∣
Λ̂n (t) − Λ∗ (t)

∣

∣

∣
.

It can be shown that

W 2
n =⇒

∫ 1

0

W (s)2 ds,
√
n Dn =⇒ sup

0≤s≤1
|W (s)|

14



where {W (s) , 0 ≤ s ≤ 1} is a Wiener process (see Kutoyants (1998)). Hence
these statistics are asymptotically distribution-free and the tests

ψn
(

XT
)

= 1{W 2
n>cα}, φn

(

XT
)

= 1{√nDn>dα}
with the constants cα, dα taken from the equations (4), are of asymptotic size
α.

Let us describe the close contiguous alternatives which reduce asymptot-
ically this problem to signal in white Gaussian noise model (5). We put

Λ (t) = Λ∗ (t) +
1

√

nΛ∗ (τ)

∫ t

0

h (u (v)) dΛ∗ (v) , u (v) =
Λ∗ (v)

Λ∗ (τ)
.

Here h (·) is an arbitrary function defining the alternative. Then if Λ (t)
satisfies this equality we have the convergence

W 2
n =⇒

∫ 1

0

[
∫ s

0

h (v) dv +W (s)

]2

ds.

This convergence describes the power function of the Cramér-von Mises
type test under these alternatives.

The second problem is to test the hypothesis

H0 : S (t) = S∗, t ≥ 0

against nonparametric close (contiguous) alternative

H1 : S (t) = S∗ +
1√
T

∫ t

0

h (t− s) dXt, t ≥ 0,

We consider the alternatives with the functions h (·) ≥ 0 having compact
support and bounded.

We have Λ∗ (t) = S∗ t and for some fixed τ > 0 we can construct the
same statistics

W 2
n =

n

S∗τ 2

∫ τ

0

[

Λ̂n (t) − S∗ t
]2

dt, Dn = (S∗ τ)
−1/2 sup

0≤t≤τ

∣

∣

∣
Λ̂n (t) − S∗ t

∣

∣

∣
.

Of course, they have the same limits under hypothesis

W 2
n =⇒

∫ 1

0

W (s)2 ds,
√
nDn =⇒ sup

0≤s≤1
|W (s)| .

15



To describe their behaviour under any fixed alternative h (·) we have to
find the limit distribution of the vector

wn =
(

wn
(

t1
)

, . . . , wn (tk)
)

, wn (tl) =
1√
S∗τ n

n
∑

j=1

[Xj (tl) − S∗tl] ,

where 0 ≤ tl ≤ τ . We know that this vector under hypothesis is asymptoti-
cally normal

L0 {wn} =⇒ N (0,R)

with covariance matrix

R = (Rlm)k×k , Rlm = τ−1 min (tl, tm) .

Moreover, it was shown in Dachian and Kutoyants (2006) that for such al-
ternatives the likelihood ratio is locally asymptotically normal, i.e., the like-
lihood ratio admits the representation

Zn (h) = exp

{

∆n (h,Xn) − 1

2
I (h) + rn (h,Xn)

}

where

∆n (h,Xn) =
1

S∗
√
τn

∫ τn

0

∫ t−

0

h (t− s) dXs [dXt − S∗dt] ,

I (h) =

∫ ∞

0

h (t)2 dt+ S∗

(
∫ ∞

0

h (t) dt

)2

and
∆n (h,Xn) =⇒ N (0, I (h)) , rn (h,Xn) → 0. (7)

To use the Third Le Cam’s Lemma we describe the limit behaviour of the
vector (∆n (h,Xn) ,wn). For the covariance Q = (Qlm) , l,m = 0, 1, . . . , k of
this vector we have

E0∆n (h,Xn) = 0, Q00 = E0∆n (h,Xn)2 = I (h) (1 + o (1)) .

Further, let us denote dπt = dXt − S∗dt and H (t) =
∫ t−
0
h (t− s) dXs, then

16



we can write

Q0l = E0 [∆n (h,Xn)wn (tl)]

=
1

nS
3/2
∗ τ

E0

(

n
∑

j=1

∫ τj

τ(j−1)

H (t) dπt

n
∑

i=1

∫ τ(i−1)+tl

τ(i−1)

dπt

)

=
1

nτ
√
S∗

n
∑

j=1

∫ τ(j−1)+tl

τ(j−1)

E0H (t) dt =
tl

τ

√

S∗

∫ ∞

0

h (t) dt (1 + o (1)) ,

because

E0H (t) = S∗

∫ t−

0

h (t− s) ds = S∗

∫ ∞

0

h (s) ds

for the large values of t (such that [0, t] covers the support of h (·)).
Therefore, if we denote

h̄ =

∫ ∞

0

h (s) ds

then

Q0l = Ql0 =
tl

τ

√

S∗ h̄.

The proof of the Theorem 1 in Dachian and Kutoyants (2006) can be
applied to the linear combination of ∆n (h,Xn) and wn (t1) , . . . , wn (tk) and
this yields the asymptotic normality

L0

(

∆n (h,Xn) ,wn

)

=⇒ N (0,Q) .

Hence by the Third Lemma of Le Cam we obtain the asymptotic normality
of the vector wn

Lh
(

wn

)

=⇒ L
(

W (s1) + s1

√

S∗ h̄, . . . ,W (sk) + sk
√

S∗ h̄
)

,

where we put tl = τ sl. This weak convergence together with the estimates
like

Eh |wn (t1) − wn (t2)|2 ≤ C |t1 − t2|
provides the convergence (under alternative)

W 2
n =⇒

∫ 1

0

[

√

S∗ h̄ s+W (s)
]2

ds.

17



We see that the limit experiment is of the type

dYs =
√

S∗ h̄ ds+ dW (s) , Y0 = 0, 0 ≤ s ≤ 1.

The power β(ψn, h) of the Cramer-von Mises type test ψn(X
n) = 1{W 2

n>cα}
is a function of the real parameter ρh =

√
S∗ h̄

β (Wn, h) = P

(
∫ 1

0

[ρh s+W (s)]2 ds > cα

)

+ o (1) = βψ (ρh) + o (1) .

Using the arguments of Lemma 6.2 in Kutoyants (1998) it can be shown
that for the Kolmogorov-Smirnov type test we have the convergence

√
nDn =⇒ sup

0≤s≤1
|ρh s+W (s)| .

The limit power function is

βφ (ρh) = P

(

sup
0≤s≤1

|ρh s+W (s)| > dα

)

.

These two limit power functions will be obtained by simulation in the
next section.

5 Simulation

First, we present the simulation of the thresholds cα and dα of our Cramér-
von Mises and Kolmogorov-Smirnov type tests. Since these thresholds are
given by the equations (4), we obtain them by simulating 107 trajectories of
a Wiener process on [0,1] and calculating empirical 1 − α quantiles of the
statistics

W 2 =

∫ 1

0

W (s)2 ds and D = sup
0≤s≤1

|W (s)|

respectively. Note that the distribution of W 2 coincides with the distribution
of the quadratic form

W 2 =
∞
∑

k=1

ζ2
k

(πk)2 , ζk i.i.d. ∼ N (0, 1)
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and both distributions are extensively studied (see (1.9.4(1)) and (1.15.4) in
Borodin and Salmienen (2002)). The analytical expressions are quite com-
plicated and we would like to compare by simulation cα and dα with the real
(finite time) thresholds giving the tests of exact size α, that is cTα and dTα
given by equations

P
{

W 2
n > cTα

}

= α and P
{√

nDn > dTα
}

= α

respectively. We choose S∗ = 1 and obtain cTα and dTα by simulating 107 tra-
jectories of a Poisson process of intensity 1 on [0,T ] and calculating empirical
1−α quantiles of the statistics W 2

n and
√
nDn. The thresholds simulated for

T = 10, T = 100 and for the limiting case are presented in Fig. 1. The lower
curves correspond to the Cramér-von Mises type test, and the upper ones
to the Kolmogorov-Smirnov type test. As we can see, for T = 100 the real
thresholds are already indistinguishable from the limiting ones, especially in
the case of the Cramér-von Mises type test.

0 0,2 0,4 0,6 0,8 1
alpha

0

1

2

3

th
re

sh
ol

d

T=10
T=100
Limiting

Fig. 1: Threshold choice

It is interesting to compare the asymptotics of the Cramér-von Mises and
Kolmogorov-Smirnov type tests with the locally asymptotically uniformly
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most powerful (LAUMP) test

φ̂n (Xn) = 1{δT>zα}, δT =
Xnτ − S∗nτ√

S∗nτ

proposed for this problem in Dachian and Kutoyants (2006). Here zα is 1−α
quantile of the standard Gaussian law, P (ζ > zα) = α, ζ ∼ N (0, 1). The
limit power function of φ̂n is

βφ̂ (ρh) = P (ρh + ζ > zα) .

In Fig. 2 we compare the limit power functions βψ (ρ) , βφ (ρ) and βφ̂ (ρ).
The last one can clearly be calculated directly, and the first two are obtained
by simulating 107 trajectories of a Wiener process on [0,1] and calculating
empirical frequencies of the events
{
∫ 1

0

[ρ s+W (s)]2 ds > cα

}

and

{

sup
0≤s≤1

|ρ s+W (s)| > dα

}

respectively.

0 1 2 3 4 5 6
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K-S test
C-vM test
LAUMP test

Fig. 2: Limit power functions
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The simulation shows the exact (quantitative) comparison of the limit
power functions. We see that the power of LAUMP test is higher that the
two others and this is of course evident. We see also that the Kolmogorov-
Smirnov type test is more powerful that the Cramér-von Mises type test.
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