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Abstract

We consider the goodness of fit testing problem for ergodic diffu-

sion processes. The basic hypothesis is supposed to be simple. The

diffusion coefficient is known and the alternatives are described by the

different trend coefficients. We study the asymptotic distribution of

the Cramer-von Mises type tests based on the empirical distribution

function and local time estimator of the invariant density. At partic-

ularly, we propose a transformation which makes these tests asymp-

totically distribution free. We discuss the modifications of this test in

the case of composite basic hypothesis.
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1 Introduction

The goodness of fit (GoF) tests play a special role in statistics because they
form a bridge between mathematical models and the real data. In classical
situation of i.i.d. observations Xn = {X1, . . . , Xn} and the basic hypothesis
H0 : the distribution function of Xj is F0 (x), the traditional solution is to

construct a test statistics ∆n = D
(

F̂n, F0

)

based on some distance between

the empirical distribution function F̂n (x) and the given (known) function
F0 (x). Then the test function is defined by Ψn = 1{∆n>cε}, where the con-
stant cε is chosen from the condition: limn→∞ P0 {∆n > cε} = ε, ε ∈ (0, 1).
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The diversity of tests comes from the diversity of distances. At particularly,
if we take

∆n = n

∫ ∞

−∞

H (x)
[

F̂n (x) − F0 (x)
]2

dF0 (x) , (1)

then we obtain the well-known Cramér-von Mises family of statistics [16]. If
H (x) ≡ 1, then we have Cramér-von Mises test and if the weight function
H (x) = (F0 (x) [1 − F0 (x)])−1 we obtain the Anderson-Darling test.

In the case of uniform metric

∆n = sup
x

√
n
∣

∣

∣
F̂n (x) − F0 (x)

∣

∣

∣
, (2)

and Ψn = 1{∆n>cε} we have Kolmogorov-Smirnov test. Remind that the tests
based on these statistics are asymptotically distribution free (ADF) and for
continuous F0 (x) under hypothesis H0 we have the convergence

n

∫ ∞

−∞

[

F̂n (x) − F0 (x)
]2

dF0 (x) =⇒
∫ 1

0

W0 (s)2 ds,

n

∫ ∞

−∞

[

F̂n (x) − F0 (x)
]2

F0 (x) [1 − F0 (x)]
dF0 (x) =⇒

∫ 1

0

W0 (s)2

s (1 − s)
ds,

sup
x

√
n
∣

∣

∣
F̂n (x) − F0 (x)

∣

∣

∣
=⇒ sup

0≤s≤1
|W0 (s)| ,

where W0 (x) is Brownian bridge. These last property of the statistics allows
us to chose once the constant cε for all F0 (x). Note as well that the both
statistics tend to ∞ for any fixed alternative F (·) 6= F0 (·) and this property
provides the consistency of these tests.

The present work is devoted to the similar problem but in the case of
continuous time observations XT = {Xt, 0 ≤ t ≤ T} of ergodic diffusion pro-
cess

dXt = S (Xt) dt+ σ (Xt) dWt, X0, 0 ≤ t ≤ T. (3)

The diffusion coefficient σ (·)2 is supposed to be known and the hypothesis is
concern the trend coefficient S (·) only. That means, that the basic hypothesis
is simple:
H0 : The observed trajectory XT is solution of the stochastic differential

equation

dXt = S0 (Xt) dt+ σ (Xt) dWt, X0, 0 ≤ t ≤ T

where S0 (x) is some known function.
The alternative corresponds to the case S (·) 6= S0 (·).
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We suppose that the trend (under hypothesis and alternative) and diffu-
sion coefficients satisfy the conditions:

ES. The function S (·) is locally bounded, the function σ (·)2
is continuous

and positive and for some A > 0 the inequality

xS (x) + σ (x)2 ≤ A
(

1 + x2
)

holds.

This condition provides the existence of unique weak solution of this
equation (see [3], p. 210).

Moreover, we suppose that the following condition is fulfilled too.
RP . The function

V (S, x) =

∫ x

0

exp

{

−2

∫ y

0

S (z)

σ (z)2 dz

}

dy −→ ±∞

as x→ ±∞ and

G (S) =

∫ ∞

−∞

σ (y)−2 exp

{

2

∫ y

0

S (z)

σ (z)2 dz

}

dy <∞

By this condition the observed process is recurrent positive and has er-
godic properties with the density of invariant law

f (x) =
1

G (S) σ (x)2 exp

{

2

∫ x

0

S (y)

σ (y)2
dy

}

.

The corresponding density and distribution function under hypothesis H0

we denote as f0 (x) and F0 (x) and the mathematical expectation as E0.
Moreover, we suppose that the initial value X0 is a random variable with
this distribution function because this condition simplifies exposition (the
observed process is stationary).

Let us fix some ε ∈ (0, 1) and denote by Kε the class of tests ψT of
asymptotic size ε, i.e.; E0ψT = ε+ o (1). We are interested by the GoF tests
of asymptotic size ε, which are ADF.

The problem of goodness of fit testing can be considered as follows: let
us introduce some statistic δT such that its limit distribution G (x) under
hypothesis does not depend on the model, then the test ψT = 1{δT >cε}, where
the constant cε is solution of the equation 1−G (cε) = ε is ADF. Moreover, we
require as well that for any fixed alternative (defined by the trend coefficient
S (·)) we have P {δT > cε} → 1, i.e.; the test is consistent.
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Let us remind here some of known tests satisfying these conditions. The
first ones ψT

(

XT
)

= 1{δT >dε} and φT

(

XT
)

= 1{γT >cε} are based on the
following two statistics

δT =
1

T 2 E0

[

σ (ξ)2
]

∫ T

0

[

Xt −X0 −
∫ t

0

S0 (Xv) dv

]2

dt,

γT =
1

√

T E0

[

σ (ξ)2]
sup

0≤t≤T

∣

∣

∣

∣

Xt −X0 −
∫ t

0

S0 (Xv) dv

∣

∣

∣

∣

.

Here and in the sequel ξ is the random variable with the density f0 (·).
It is shown that under hypothesis H0

δT =⇒
∫ 1

0

w (v)2 dv, γT =⇒ sup
0≤v≤1

|w (v)| .

Hence the constants cε and dε are defined by the equations

P

{
∫ 1

0

w (v)2 dv > dε

}

= ε, P

{

sup
0≤v≤1

|w (v)| > cε

}

= ε. (4)

. These tests belong to Kε and are consistent against any alternative S (·) 6=
S0 (·) such that E0S (ξ) 6= 0. Moreover, it is shown that the test ψT

(

XT
)

is
asymptotically optimal in special sense (see [2] for details).

Another GoF test ϕT = 1{∆̂T >eε} was proposed by Negri and Nishiyama

[19]. It is based on the statistic

∆̂T =
1

√

TE0σ (ξ)2
sup

x

∣

∣

∣

∣

∫ T

0

1{Xt<x} [dXt − S0 (Xt) dt]

∣

∣

∣

∣

(5)

which converges to ∆̂0 = sup0≤v≤1 |w (v)|. The constant cε is defined in
(4). This test belongs to Kε and is consistent against any fixed alternative
satisfying condition: for some x we have E0

(

1{ξ<x} [S (ξ) − S0 (ξ)]
)

6= 0.
Note that the similar question of the goodness of fit testing for ergodic

diffusion processes by discrete time observations was extensively studied (see
Chen and Gao [1] and references therein).

The goal of this work is to study the tests which are direct analogues of
the classical GoF tests like Anderson-Darling (1) and Kolmogorov-Smirnov
(2).

To test the hypothesis H0 we propose two tests of Cramér-von Mises
type. The first one is based on empirical distribution function (EDF)

F̂T (x) =
1

T

∫ T

0

1{Xt<x} dt

4



and the statistic is similar to (1):

∆T = T

∫ ∞

−∞

H (x)
[

F̂T (x) − F0 (x)
]2

dF0 (x) .

The second test is based on local time estimator (LTE) f̂T (x) of the invariant
density, which can be written as

f̂T (x) =
ΛT (x)

T σ (x)2 =
|XT − x| − |X0 − x|

T σ (x)2 − 1

T σ (x)2

∫ T

0

sgn (Xt − x) dXt.

Here ΛT (x) is the local time of the diffusion process. The corresponding
statistic is

δT = T

∫ ∞

−∞

h (x)
[

f̂T (x) − f0 (x)
]2

dF0 (x) .

We discuss as well the Kolmogorov-Smirnov type test with the test statistic

γT = sup
x

√
Tg (x)

∣

∣

∣
f̂T (x) − f0 (x)

∣

∣

∣
. (6)

The goodness of fit tests are ΨT = 1{∆T >cε}, and ψT = 1{δT >dε} and ψ̂T =
1{γT >eε}. These tests with H (x) ≡ 1, h (x) ≡ 1, g (x) ≡ 1, were proposed in
[2], but unfortunately they are not ADF (see as well [6], [7], where similar
test statistics are discussed).

The test ϕT , (5) is ADF. It is interesting to see the relation between the
statistics (5) and (6). Suppose that σ (x) ≡ 1 and remind that

f̄T (x) =
2

T

∫ T

0

1{Xt<x} dXt, f ∗
T (x) =

2

T

∫ T

0

1{Xt<x}S0(Xt) dt

are unbiased estimators of the invariant density [13]. The first is asymptoti-
cally equivalent to the local time estimator f̂T (x), i.e.;

√
T
(

f̄T (x) − f̂T (x)
)

= o (1)

and for the second we have

f ∗
T (x) −→ 2E01{ξ<x}S0 (ξ) = f0 (x) .

Of course, the second estimator is not indeed estimator of the invariant den-
sity because it uses the function S0 (x), but this choice of the second term
makes the statistic asymptotically distribution free. Therefore

∆̂T =

√
T

2
sup

x

∣

∣f̄T (x) − f ∗
T (x)

∣

∣ .
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The random processes {ηT (x) , x ∈ R} and {ζT (x) , x ∈ R} where

ηT (x) =
√
T
[

F̂T (x) − F0 (x)
]

and ζT (x) =
√
T
[

f̂T (x) − f0 (x)
]

converge to the Gaussian processes {η (x) , x ∈ R} and {ζ (x) , x ∈ R} with
quite complicate structure (for the first convergence see [18] and for the
second see [14]). For example,

E0ζ (x) ζ (y) = 4f0 (x) f0 (y)

∫ ∞

−∞

(

1{z>x} − F0 (z)
) (

1{z>y} − F0 (z)
)

σ (z)2 f0 (z)
dz

The goal of this work is to show that for certain choice of weight functions
H (x) and h (x) the tests ΨT = 1{∆T >cε} and ψT = 1{δT >dε} can be ADF and
consistent against some alternatives.

We discuss as well some other ADF GoF tests.

2 GoF tests based on LTE

Let us denote by µ the median of the invariant law : F0 (µ) = 1/2. We
consider a special hypotheses testing problem, when the trend coefficient is
fixed for x ≤ µ or for x ≥ µ. Therefore, we consider one sided alternatives

only. Suppose that the changes in the trend coefficient are possible for x ≥
µ, i.e., the values of S (x) for x < µ are the same under hypothesis and
alternative.

We study first the Cramér-von Mises type test ψT = 1{δT >dε}, where the
statistic

δT = T

∫ ∞

µ

h (x)
(

f̂T (x) − f0 (x)
)2

dF0 (x)

with

h (x) =
2F0 (x) − 1

4Φ (µ)2 σ (x)2 f0 (x)4 e−Φ(x)/Φ(µ) 1{x≥µ},

and

Φ (x) =

∫ ∞

−∞

(

1{y>x} − F0 (y)
)2

σ (y)2 f0 (y)
dy.

The study of this test is based on the asymptotic normality of the LTE:

√
T
(

f̂T (x) − f0 (x)
)

=⇒ ζ (x) ∼ N
(

0, df (x)2) ,

where df (x)2 = 4f0 (x)2 Φ (x). But we have two other classes of density
estimators, which are consistent and asymptotically normal with the same
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limit distribution. These are kernel type estimators

f̄T (x) =
1√
T

∫ T

0

K
(√

T (Xt − x)
)

dt,

and the unbiased estimators

f̃T (x) =
2

T

∫ T

0

1{Xt≤x} h(Xt)

σ(x)2 h(x)
dXt +

1

T

∫ T

0

1{Xt≤x} h
′(Xt) σ(Xt)

2

σ(x)2 h(x)
dt

where h (·) ∈ C′ is an arbitrary function. Under mild regularity conditions
(see [14], Propositions 1.58 and 1.61) we have the same asymptotic normality

√
T
(

f̄T (x) − f (x)
)

=⇒ N
(

0, df (x)2)

and √
T
(

f̃T (x) − f (x)
)

=⇒ N
(

0, df (x)2) .

Therefore, the results obtained for the test ψT based on the LTE can be valid
for the tests based on the kernel-type or unbiased estimators as well (under
strengthen conditions).

The calculation of the statistic δT can be slightly simplified. Remind the
equalities

1

T

∫ T

0

g (Xt) dt =

∫ ∞

−∞

g (x) f̂T (x) dx =

∫ ∞

−∞

g (x) dF̂T (x) .

Hence

δT = T

∫ ∞

µ

h (x)
(

f̂T (x) − f0 (x)
)2

dF̂T (x)

+ T

∫ ∞

µ

h (x)
(

f̂T (x) − f0 (x)
)2

d
[

F0 (x) − F̂T (x)
]

=

∫ T

0

h (Xt)
[

f̂T (Xt) − f0 (Xt)
]2

dt− 1√
T

∫ ∞

µ

h (x) ζT (x)3 dx

=

∫ T

0

h (Xt)
[

f̂T (Xt) − f0 (Xt)
]2

dt+ o (1)

and we can use the statistic

δ∗T =

∫ T

0

h (Xt)
[

f̂T (Xt) − f0 (Xt)
]2

dt (7)

7



in the construction of our GoF test. To avoid the difficulties with calculation
of stochastic integral related to f̂T (Xt) we can use here the kernel type
estimator of the density.

Note that the LTE of the density is the derivative with probability 1 of
the EDF. Indeed, we have the equality (r > 0)

F̂T (x+ r) − F̂T (x)

r
=

1

rT

∫ T

0

1{x≤Xt≤x+r} dt =
1

r

∫ x+r

x

f̂T (y) dy

and, as the local time is continuous with probability one (see [20]), we have

lim
r→0

1

r

∫ x+r

x

f̂T (y) dy = f̂T (x) .

Let us define the constant dε as solution of the equation

P

{
∫ ∞

1

w(v)2 e−v dv > dε

}

= ε,

where w (·) is a Wiener process and introduce the following condition.
Condition A. The function Φ (x) <∞ for all x ∈ (µ,∞) and

A1 =

∫ ∞

µ

(2F0 (x) − 1)Φ (x)

Φ (µ)2 σ (x)2 f0 (x)2 e−
Φ(x)
Φ(µ) dx <∞, (8)

A2 =

∫ ∞

µ

(2F0 (x) − 1) e−
Φ(x)
Φ(µ)

Φ (µ)2 σ (x)2 f0 (x)2 E0

(
∫ ξ

0

1{v>x} − F0 (v)

σ (v)2 f0 (v)
dv

)2

dx <∞. (9)

Proposition 1 Let the conditions ES, RP and A be fulfilled, then the GoF

test ψT = 1{δT >dε} is ADF.

Proof. We have to prove the convergence (under hypothesis H0)

δT =⇒ δ0 =

∫ ∞

1

w (v)2 e−v dv.

First we remind some properties of the local time estimator of the density
(under hypothesis H0). The following presentation is valid (see [14], p. 29)

ζT (x) =
2f0 (x)√

T

∫ T

0

F0 (Xt) − 1{Xt>x}

σ (Xt) f0 (Xt)
dWt

+
2f0 (x)√

T

∫ XT

X0

1{v>x} − F0 (v)

σ (v)2 f0 (v)
dv = ζ

(1)
T (x) + ζ

(2)
T (x) (10)

8



in obvious notation. We supposed that the process Xt, t ≥ 0 is stationary,
hence

E0

(

ζ
(2)
T (x)

)2

= E0

(

2f0 (x)√
T

∫ XT

X0

1{v>x} − F0 (v)

σ (v)2 f0 (v)
dv

)2

≤ 16

T
E0

(
∫ ξ

0

1{v>x} − F0 (v)

σ (v)2 f0 (v)
dv

)2

.

Further, by condition (9) we have

4

∫ ∞

µ

h (x) f0 (x)2
E0

(
∫ ξ

0

1{v>x} − F0 (v)

σ (v)2 f0 (v)
dv

)2

dx

=

∫ ∞

µ

(2F0 (x) − 1) e
−Φ(x)

Φ(µ)

Φ (µ)2 σ (x)2 f0 (x)2 E0

(
∫ ξ

0

1{v>x} − F0 (v)

σ (v)2 f0 (v)
dv

)2

dx <∞.

Hence
∫ ∞

µ

h (x)E0

(

ζ
(2)
T

)2

dF0 (x) ≤ A2

T
−→ 0.

Therefore it is sufficient to study the first integral in (10), i.e.,

δT =

∫ ∞

µ

(2F0 (x) − 1) e−
Φ(x)
Φ(µ)

TΦ (µ)2 σ (x)2 f0 (x)2

(
∫ T

0

1{Xt>x} − F0 (Xt)

σ (Xt) f0 (Xt)
dWt

)2

dx+ o (1) .

Let us denote

ζ̂T (x) =
1√
T

∫ T

0

1{Xt>x} − F0 (Xt)

σ (Xt) f0 (Xt)
dWt.

By the law of large numbers we have the convergence

1

T

∫ T

0

(

1{Xt>x} − F0 (Xt)

σ (Xt) f0 (Xt)

)2

dt −→ Φ (x) .

hence we can apply the central limit theorem (see, e.g., [14],Theorem 1.19)
and to obtain the convergence of all finite dimensional distributions of ζ̂T (·)
to the multidimensional Gaussian law:

(

ζ̂T (x1) , . . . , ζ̂T (xk)
)

=⇒
(

ζ̂ (x1) , . . . , ζ̂ (xk)
)

, (11)

where the Gaussian process ζ (x) is with zero mean and it’s covariance func-
tion is

R (x, y) =

∫ ∞

−∞

(

1{v>x} − F0 (v)
) (

1{v>y} − F0 (v)
)

σ (v)2 f0 (v)
dv.

9



The process ζ̂ (x) admits the representation

ζ̂ (x) =

∫ ∞

−∞

1{y>x} − F0 (y)

σ (y)
√

f0 (y)
dWy.

The last integral is with respect to double-sided Wiener process, i.e.; Wy =
W+ (y) , y ≥ 0 and Wy = W− (−y) , y ≤ 0, where W− (·) and W+ (·) are two
independent Wiener processes.

The convergence (11) formally can be obtained as follows (egalities in
distribution)

ζ̂T (x) = W

(

1

T

∫ T

0

(

1{Xt>x} − F0 (Xt)

σ (Xt) f0 (Xt)

)2

dt

)

+ o (1)

= W

(

∫ ∞

−∞

(

1{y>x} − F0 (y)

σ (y) f0 (y)

)2

f̂T (y) dt

)

+ o (1)

=⇒ W

(

∫ ∞

−∞

(

1{y>x} − F0 (y)

σ (y) f0 (y)

)2

f0 (y) dy

)

=

∫ ∞

−∞

1{y>x} − F0 (y)

σ (y)
√

f0 (y)
dWy = ζ̂ (x)

where W (s) , s ≥ 0 is some Wiener process. We used above the following
property of local time of ergodic diffusion process : for any integrable function
g (·)

1

T

∫ T

0

g (Xt) dt =

∫ ∞

−∞

g (y) f̂T (y) dy −→
∫ ∞

−∞

g (y) f0 (y) dy. (12)

To verify the convergence

δT =⇒ 4

∫ ∞

µ

h (x) f0 (x)2 ζ̂ (x)2 dF0 (x) = 4

∫ ∞

µ

h (x) f0 (x)3W (Φ (x))2 dx

we note that for any ε > 0 there exists L > µ such that

∫ ∞

L

h (x)E0

(

ζ
(1)
T (x)

)2

dF0 (x) ≤ ε.

Therefore it is sufficient to show that for any L > µ

∫ L

µ

h (x) f0 (x)2 ζ̂T (x)2 dF0 (x) =⇒
∫ L

µ

h (x) f0 (x)2 ζ̂ (x)2 dF0 (x) .

10



This last convergence follows from the the convergence of finite dimensional
distributions (11) and the estimate

E0

∣

∣

∣
ζ̂T (x2)

2 − ζ̂T (x1)
2
∣

∣

∣
≤ CL |x2 − x1|1/2 (13)

which is valid for all |xi| ≤ L (see [9], Theorem 9.7.1). The estimate (13) can
be obtained as follows. We have

(

E0

∣

∣

∣
ζ̂T (x2)

2 − ζ̂T (x1)
2
∣

∣

∣

)2

≤ E0

∣

∣

∣
ζ̂T (x2) − ζ̂T (x1)

∣

∣

∣

2

E0

∣

∣

∣
ζ̂T (x2) + ζ̂T (x1)

∣

∣

∣

2

≤ E0

∣

∣

∣
ζ̂T (x2) − ζ̂T (x1)

∣

∣

∣

2 (

2E0ζ̂T (x2)
2 + 2E0ζ̂T (x1)

2
)

≤ (2Φ (x2) + 2Φ (x1))E0

∣

∣

∣
ζ̂T (x2) − ζ̂T (x1)

∣

∣

∣

2

.

Further (let x2 > x1)

E0

∣

∣

∣
ζ̂T (x2) − ζ̂T (x1)

∣

∣

∣

2

= E0

(

1√
T

∫ T

0

1{x1≤Xt≤x2}

σ (Xt) f0 (Xt)
dWt

)2

=

∫ x2

x1

dv

σ (v)2 f0 (v)
≤ BL |x2 − x1| .

Remind that h (·) is continuous on [µ, L].
The last step is to verify the equality (in distribution)

4

∫ ∞

µ

h (x) f0 (x)2 ζ̂ (x)2 dF0 (x) =

∫ ∞

1

w (v)2 e−v dv.

For the function

Φ (x) =

∫ ∞

−∞

(

1{y>x} − F0 (y)
)2

σ (y)2 f0 (y)
dy

=

∫ x

−∞

F0 (y)2

σ (y)2 f0 (y)
dy +

∫ ∞

x

(1 − F0 (y))2

σ (y)2 f0 (y)
dy

we have

Φ′ (x) =
2F0 (x) − 1

σ (x)2 f0 (x)
< 0, for x < µ

and Φ′ (x) > 0 for x > µ. Hence the functions Φ (x) , x ≤ µ and Φ (x) , x ≥ µ
are strictly monotone (decreasing and increasing respectively). Moreover,
Φ (±∞) = ∞.

11



We can write

4

∫ ∞

µ

h (x) f0 (x)3W (Φ (x))2 dx

= 4

∫ ∞

µ

h (x) σ (x)2 f0 (x)4

2F0 (x) − 1
W (Φ (x))2 Φ′ (x) dx

=

∫ ∞

µ

W (Φ (x))2

Φ (µ)2
e−Φ(x)/Φ(µ) dΦ (x)

=

∫ ∞

Φ(µ)

W (z)2

Φ (µ)2
e−z/Φ(µ) dz =

∫ ∞

1

w (v)2 e−v dv.

To show the consistency of this test against any fixed alternative

H1 : S (x) 6= S0 (x)

we just note that

√
T
(

f̂T (x) − f0 (x)
)

=
√
T
(

f̂T (x) − f (x)
)

+
√
T (f (x) − f0 (x))

where the first term is asymptotically normal and for the second term we
have

T

∫ ∞

µ

h (x) (f (x) − f0 (x))2 dF0 (x) −→ ∞.

Here f (x) is the invariant density function (under alternative). Of course, we
have to suppose that the corresponding integrals like (8) and (9) are finite.

We now apply the similar arguments to study the Kolmogorov-Smirnov
type statistic

γT = sup
x≥µ

√
Tg (x)

∣

∣

∣
f̂T (x) − f0 (x)

∣

∣

∣
.

Our goal is to chose such weight function g (·) ≥ 0 that the GoF test ψ̂T =
1{γT >eε} based on this statistic be ADF. Let us put σ (x) ≡ 1 (for simplicity).
Remind that the weak convergence

ζT (·) =⇒ ζ (·)

in the space of continuous functions vanishing at infinity was already proved
in [14], Theorem 4.13. This convergence provides as well the convergence of

12



our statistic γT with g (x) ≡ 1. Suppose that the function g (·) is such that
we have the convergence γT ⇒ γ0 = supx g (x) |ζ (x)| too. Let us put

g (x) =
1

2f0 (x)
√

Φ (µ)
e−Φ(x)/Φ(µ).

Then we can write (egalities in distribution)

γ0 = sup
x≥µ

2g (x) f0 (x)

∣

∣

∣

∣

∣

∫ ∞

−∞

1{y>x} − F0 (y)

σ (y)
√

f0 (y)
dWy

∣

∣

∣

∣

∣

= sup
x≥µ

2g (x) f0 (x) |W (Φ (x))|

= sup
x≥µ

|W (Φ (x))|
√

Ψ (µ)
e−Φ(x)/Φ(µ) = sup

v≥1
|w (v)| e−v.

We see that the test ψT = 1{γT ≥eε} with eε from the equation

P

{

sup
v≥1

|w (v)| e−v ≥ eε

}

= ε

is ADF and belongs to Kε.

Remark. Note that these arguments do not work directly in the case of
double sided alternatives, i.e., if the function S (x) changes under alternative
for the values x < µ too. It can be shown that the limit

δT =⇒
∫ ∞

1

[

w1 (v)2 + w2 (v)2
]

e−vdv

holds, but the Wiener processes w1 (·) and w2 (·) are correlated and the cor-
relation function depends on the model.

3 GoF test based on EDF

We study the GoF test ΨT = 1{∆T >cε} with Cramér-von Mises type statistic

∆T = T

∫ ∞

µ

H (x)
(

F̂T (x) − F0 (x)
)2

dF0 (x)

and our goal is to chose such weights H (·) ≥ 0 that this statistic converges
to the distribution free limit:

∆T =⇒
∫ ∞

1

w (v)2 e−v dv.

13



This statistic can be written in the empirical form like (7)

∆∗
T =

∫ T

0

H (Xt)
(

F̂T (Xt) − F0 (Xt)
)2

dt

because ∆T = ∆∗
T + o (1) with the same explication as above.

The properties of this statistic are quite close to that of δT , that is why
we do not give here all details.

We suppose that the conditions E S,RP and Φ (x) <∞ are fulfilled and

∫ ∞

µ

H (x) f0 (x)E0

(

F0 (ξ)F0 (x) − F0 (ξ ∧ x)
σ (ξ) f0 (ξ)

)2

dx <∞ (14)

∫ ∞

µ

H (x) f0 (x)E0

(
∫ ξ

µ

F0 (y)F0 (x) − F0 (y ∧ x)
σ (y)2 f0 (y)

dy

)2

dx <∞ (15)

The process ηT (x) =
√
T
(

F̂T (x) − F0 (x)
)

admits the presentations (see

[14], p. 85)

ηT (x) =
2√
T

∫ T

0

F0 (Xt)F0 (x) − F0 (Xt ∧ x)
σ (Xt) f0 (Xt)

dWt

+
2√
T

∫ XT

X0

F0 (v ∧ x) − F0 (v)F0 (x)

σ (v)2 f0 (v)
dv. (16)

Note that if Φ (x) <∞, then (see [14], Remark 1.64)

dF (x)2 = 4E0

(

F0 (ξ)F0 (x) − F0 (ξ ∧ x)
σ (ξ) f0 (ξ)

)2

<∞

too and √
T
(

F̂T (x) − F0 (x)
)

=⇒ N
(

0, dF (x)2) .

It can be shown that (under mild regularity conditions)

∆T =⇒ ∆0 =

∫ ∞

µ

H (x) f0 (x) η̂ (x)2 dx,

where

η̂ (x) = [F0 (x) − 1]

∫ x

−∞

F0 (y)

σ (y)
√

f0 (y)
dWy + F0 (x)

∫ ∞

x

F0 (y) − 1

σ (y)
√

f0 (y)
dWy.

Hence

∆0 =

∫ ∞

µ

H (x) f0 (x) [F0 (x) − 1]2W (Ψ (x))2 dx,

14



where

Ψ (x) =

∫ x

−∞

F0 (y)2

σ (y)2 f0 (y)
dy + F0 (x)2

∫ ∞

x

(

F0 (y) − 1

F0 (x) − 1

)2
dy

σ (y)2 f0 (y)
.

Further

∆0 =

∫ ∞

µ

H (x) f0 (x) [F0 (x) − 1]2

Ψ′ (x)
W (Ψ (x))2 dΨ (x)

= Ψ (0)−2

∫ ∞

µ

W (Ψ (x))2 e−Ψ(x)/Ψ(µ) dΨ (x)

=

∫ ∞

1

w (v)2 e−v dv,

where we put Ψ (x) = vΨ (µ), w (v) = Ψ (µ)−1/2W (vΨ (µ)) and

H (x) =
Ψ′ (x)

Ψ (µ)2 f0 (x) [F0 (x) − 1]2
e−Ψ(x)/Ψ(0).

Of course, we suppose that the function Ψ (x) , x ≥ µ is strictly monotone
and Ψ (∞) = ∞.

4 Examples

Let us consider two examples. The first one is
Example 1. Ornstein-Uhlenbeck process. Suppose that the observed
process under the basic hypothesis is

dXt = −a (Xt − b) dt+ σ dWt, X0, 0 ≤ t ≤ T,

where a > 0. The invariant density is Gaussian f0 (x) ∼ N
(

b, σ2

2a

)

with

median µ = b. To check the conditions (8) and (9) we estimate first the
asymptotics of Ψ (x) as x→ ∞. We have

Φ (x) =

∫ ∞

−∞

(

1{y>x} − F0 (y)
)2

σ2f0 (y)
dy =

∫ x

−∞

1

σ2f0 (y)
dy (1 + o (1))

=
c

x
e

ax2

σ2 (1 + o (1)) .

Hence the both conditions are fulfilled and the test ψT = 1{δT >dε} with

δT = T

∫ ∞

b

2F0 (x) − 1

4Φ (µ)2 σ (x)2 f0 (x)3 e−Φ(x)/Φ(µ)

(

f̂T (x) −
√
a

σ
√
π
e−

a(x−b)2

σ2

)2

dx

15



is ADF.
It is easy to see that the conditions (14) and (15) are fulfilled too and the

test ΨT = 1{∆T >dε} with

∆T = T

∫ ∞

b

Ψ′ (x)

4Ψ (µ)2 [F0 (x) − 1]2
e−Ψ(x)/Ψ(0)

(

F̂T (x) − F0 (x)
)2

dx

is ADF.

Example 2. Simple switching process. Suppose that the observed
process under hypothesis is

dXt = −a sgn (Xt − b) dt+ σ dWt, X0, 0 ≤ t ≤ T

where a > 0. The process is ergodic with invariant density

f0 (x) =
a

σ2
exp

{

−2a

σ2
|x− b|

}

and median µ = b. The function

Ψ (x) =

∫ x

−∞

1

σ2f0 (y)
dy (1 + o (1)) = a−1 e

2a
σ

x (1 + o (1))

as x→ ∞ and the conditions (8), (9) and (14), (15) are fulfilled. The direct
calculation shows that Ψ (x) is strictly monotone function. Therefore the
corresponding tests ψT and ΨT are ADF.

The limit distribution of the test statistic δT with h (x) ≡ 1 were studied
by Gassem [8], who obtained the Karhunen-Loeve expansion for the limit
Gaussian process ζ (·).

5 Composite hypotheses

Suppose that the observed diffusion process (under hypothesis H0) is

dXt = S (ϑ,Xt) dt+ σ (Xt) dWt, X0, 0 ≤ t ≤ T

where ϑ is unknown parameter ϑ ∈ (a, b). Therefore the basic hypothesis is
composite. The test statistic can be

δT = T

∫ ∞

µ

h
(

ϑ̂T , x
)(

f̂T (x) − f0(ϑ̂T , x)
)2

dF0(ϑ̂T , x),
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where ϑ̂T is some consistent and asymptotically normal estimator of ϑ and
h (ϑ, x) is the same function as before with obvious modification, say, f0 (x) =
f0 (ϑ, x). Unfortunately the test based on this statistic is no more ADF
because its limit distribution depends on the distribution of estimator. To
compensate this contribution of estimator we can modify this statistic as
follows (see, e.g., Koul [12] for similar transformation in time series). Suppose
that ϑ̂T is the MLE and the corresponding regularity conditions are fulfilled
(see [14], Theorem 2.8). Then we have

√
T
(

ϑ̂T − ϑ
)

= I (ϑ)−1 T−1/2

∫ T

0

Ṡ (ϑ,Xt)

σ (Xt)
dWt + o (1) ,

where dot means derivation w.r.t. ϑ.
We want to substitute here the MLE, but in this case the stochastic

integral is not well defined, that is why we first rewrite this integral in the
following form (Itô formula)

RT (ϑ) =

∫ T

0

Ṡ (ϑ,Xs)

σ (Xs)
dWs =

∫ T

0

Ṡ (ϑ,Xs)

σ (Xs)
2 [dXs − S (ϑ,Xs) ds]

=

∫ XT

x0

Ṡ (ϑ, y)

σ (y)2
dy −

∫ T

0

Ṡ ′ (ϑ,Xs)σ (Xs) − 2Ṡ (ϑ,Xs) σ
′ (Xx)

2σ (Xs)
ds

−
∫ T

0

Ṡ (ϑ,Xs) S (ϑ,Xs)

σ (Xs)
2 ds.

Here prim means derivation w.r.t. x. The last expression contains no stochas-
tic integral and we use it as definition of RT (ϑ), where we can put ϑ̂T . Now
we can introduce the test statistic

δ̂T = T

∫ ∞

µ

h
(

ϑ̂T , x
)(

f̂T (x) − f0(ϑ̂T , x)

+ḟ0(ϑ̂T , x) I(ϑ̂T ) T−1 RT (ϑ̂T )
)2

dF0(ϑ̂T , x).

Note that

f̂T (x) − f0(ϑ̂T , x) = f̂T (x) − f0(ϑ, x) + f0 (ϑ, x) − f0(ϑ̂T , x)

= f̂T (x) − f0(ϑ, x) − ḟ0(ϑ̂T , x)(ϑ̂T − ϑ) (1 + o (1)) .

Hence

δ̂T = T

∫ ∞

µ

h (ϑ, x)
(

f̂T (x) − f0(ϑ, x)
)2

dF0(ϑ, x) + o (1)

=⇒
∫ ∞

1

w (v)2 e−v dv
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and the test ψ̂T = 1{δ̂T >dε} is ADF.

We supposed here that the median µ does not depend on ϑ (as in Example
1 with a = ϑ and µ = b).

In the case of Example 2 the situation is different. Suppose that ϑ is the
shift parameter:

dXt = −a sgn (Xt − ϑ) dt+ σ dWt, X0, 0 ≤ t ≤ T.

Then we can use the statistic

δ̂T = T

∫ ∞

ϑ̂T

h
(

ϑ̂T , x
)(

f̂T (x) − f0(ϑ̂T , x)
)2

dF0(ϑ̂T , x),

and it can be shown that

δ̂T =⇒
∫ ∞

1

w (v)2 e−v dv.

Indeed, the MLE ϑ̂T converges to ϑ with the rate T (and not
√
T ) (see

[14], Theorem 3.26) and its contribution to the limit distribution of δT is
negligible.

Let us see what happens under alternative

H1 : S (·) = S∗ (·) , S∗ (·) ∈ F+

where the set

F+ =

{

S (·) : inf
ϑ∈Θ

∥

∥

∥

∥

S (ϑ, ·) − S (·)
σ (·)

∥

∥

∥

∥

∗

> 0

}

and we suppose that the function S∗ (·) satisfies the conditions ES and RP .
Therefore the invariant density is fS∗

(·). Here the norm

‖h (·)‖2
∗ =

∫ ∞

−∞

h (x)2 fS∗
(x) dx.

Note that the MLE in this “misspecified situation” converges to the value ϑ∗
which minimizes the Kullback-Leibner distance

∥

∥

∥

∥

S (ϑ∗, ·) − S (·)
σ (·)

∥

∥

∥

∥

∗

= inf
ϑ∈Θ

∥

∥

∥

∥

S (ϑ, ·) − S (·)
σ (·)

∥

∥

∥

∥

∗

(17)

(see [14], Section 2.6.1 for details).
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Hence, under regularity conditions we have

f̂T (x) − f0

(

ϑ̂T , x
)

−→ fS∗
(x) − f0 (ϑ∗, x) , I

(

ϑ̂T

)

→ I (ϑ∗)

and ḟ0

(

ϑ̂T , x
)

→ ḟ0 (ϑ∗, x). Further, it can be shown that

RT

(

ϑ̂T

)

T
=

1

T

∫ T

0

Ṡ
(

ϑ̂T , Xt

) [

S∗ (Xt) − S
(

ϑ̂T , Xt

)]

σ (Xt)
2 dt (1 + o (1))

=
1

T

∫ T

0

Ṡ (ϑ∗, Xt) [S∗ (Xt) − S (ϑ∗, Xt)]

σ (Xt)
2 dt (1 + o (1))

−→
∫ ∞

−∞

Ṡ (ϑ∗, x) [S∗ (x) − S (ϑ∗, x)]

σ (x)2 fS∗
(x) dx = R (ϑ∗) .

Therefore,

δ̂T ∼ T

∫ ∞

−∞

h (ϑ∗, x)
[

fS∗
(x) − f0 (ϑ∗, x) + ḟ0 (ϑ∗, x) I (ϑ∗)R (ϑ∗)

]2

dx

and this test can be non consistent against alternatives S∗ (·) such that

fS∗
(x) − f0 (ϑ∗, x) + ḟ0 (ϑ∗, x) I−1 (ϑ∗)R (ϑ∗) = 0.

Suppose that ϑ∗ is an interior point of Θ and show that the last equality is
impossible. The value ϑ∗ defined by the equation (17) is the same time one
of the solutions of the equation

∫ ∞

−∞

Ṡ (ϑ∗, x) [S∗ (x) − S (ϑ∗, x)]

σ (x)2 fS∗
(x) dx = 0.

Hence R (ϑ∗) = 0. The equality fS∗
(x) = f0 (ϑ∗, x) implies

∫ x

0

S∗ (y)

σ (y)2
dy =

∫ x

0

S (ϑ∗, y)

σ (y)2 dy,

which gives us S∗ (x) = S (ϑ∗, x) for almost all x and the last equality con-
tradicts the definition of alternative. Therefore, δ̂T → ∞ and the test ψ̂T is
consistent.
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6 Discussion

Note, that the similar problems of ADF GoF tests for stochastic differential
equations with “small noise” are considered in [15].

The tests ψT = 1{δT >dε} and ΨT = 1{∆T >cε} studied in this work are
consistent against any fixed alternative and it can be easily shown, that
these tests are uniformly consistent if the alternatives are separated from
hypothesis as follows

H1 : S (·) ∈ Fr = {S (·) : ‖fS (·) − f0 (·)‖ ≥ r}

with some r > 0 for ψT or

H1 : S (·) ∈ Fq = {S (·) : ‖FS (·) − F0 (·)‖ ≥ q}

for ΨT with some q > 0. Here the norm

‖m (·)‖2 =

∫ ∞

−∞

m (x)2 dF0 (x) .

This means that

inf
S(·)∈Fr

PS {δT > dε} −→ 1, inf
S(·)∈Fq

PS {∆T > cε} −→ 1.

But if the alternative is defined by the Kullback-Leibner distance (s > 0)

H1 : S (·) ∈ Hs =

{

S (·) :

∥

∥

∥

∥

S (·) − S0 (·)
σ (·)

∥

∥

∥

∥

≥ s

}

,

then the both tests are no more uniformly consistent. For example, the
functions

Sn (x) = S0 (x) + ασ (x)2 cos (nx) , n = 1, 2, . . .

can belong to Hs but

‖fSn
(·) − f0 (·)‖ → 0 as n→ ∞

and
inf

Sn∈Hs

PSn
{δT > dε} −→ ε as T → ∞.

For such alternatives it is better to use the Chi-squared tests, which can
be even asymptotically optimal in minimax sense. The construction of such
tests for signals in white Gaussian noise can be found in Ermakov [5] and
Ingster and Suslina [11]. For inhomogeneous Poisson processes see [10]. It is
interesting to study such tests in the case of ergodic diffusion processes too.
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