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Abstract: We revisit ghost dark matter, the possibility that ghost condensa-

tion may serve as an alternative to dark matter. In particular, we investigate the

Friedmann-Robertson-Walker (FRW) background evolution and the large-scale struc-

ture (LSS) in the ΛGDM universe, i.e. a late-time universe dominated by a cosmolog-

ical constant and ghost dark matter. The FRW background of the ΛGDM universe

is indistinguishable from that of the standard ΛCDM universe if M & 1 eV, where

M is the scale of spontaneous Lorentz breaking. From the LSS we find a stronger

bound: M & 10 eV. For smaller M , ghost dark matter would have non-negligible

sound speed after the matter-radiation equality, and thus the matter power spectrum

would significantly differ from observation. These bounds are compatible with the

phenomenological upper bound M . 100 GeV known in the literature.
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1. Introduction

Current data of the cosmological observations (e.g., Cosmic Microwave Background

(CMB), Large Scale Structure (LSS) and SuperNovae (SNe)) show that our Universe

today mostly consists of dark matter responsible for the structure formation and dark

energy causing late time accelerated expansion of the Universe [1, 2, 3, 4, 5]. From

observational point of view, the paradigm of dark energy and dark matter is very

successful to fit the data.

However, from theoretical viewpoint, we do not know what they really are, de-

spite the fact that there are many theoretical models (for review, see e.g. [6] for

dark energy and [7] for dark matter). This situation has been a strong motivation

for modification of gravity as an alternative to dark energy and dark matter: just

changing behavior of gravity at long distance/time scales might be able to explain
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the observational data without introducing dark energy and dark matter. Indeed,

many theories of modification of gravity have been proposed, such as massive grav-

ity [8], DGP model [9, 10], ghost condensate [11, 12] and so on. It is important to

investigate cosmological implications of those modified gravity theories toward the

future observations.

In this paper, we focus on the ghost condensate scenario and investigate the pos-

sibility that it might serve as an alternative to dark matter. This possibility, dubbed

ghost dark matter, was already pointed out in [11] but has not been investigated

in detail. Based on the Friedmann-Robertson-Walker (FRW) background evolution

and the large-scale structure of the universe, in the present paper we shall find a

lower bound on the scale of spontaneous Lorentz breaking, M & 10 eV, under the

assumption that ghost dark matter is responsible for all dark matter in the universe.

Most importantly, this bound is compatible with the phenomenological upper bound

M . 100 GeV found in [12].

The rest of this paper is organized as follows. In the next section, we briefly re-

view the ghost condensate scenario, including the basic idea, the low-energy effective

theory and the phenomenological upper bound on the scale of spontaneous Lorentz

breaking. In Sec. 3, we introduce a simplified description of ghost dark matter and

investigate the FRW background evolution. We also clarify the regime of validity of

the simplified description. In Sec. 4, we consider effects of ghost dark matter on the

large-scale structure of the universe. We discuss how density perturbations evolve

in the universe dominated by the cosmological constant and ghost dark matter, i.e.

the ΛGDM universe, and then give a constraint on the model from the shape of the

matter power spectrum. The final section is devoted to conclusion of this paper and

discussions.

2. Review of ghost condensation

2.1 Basic idea

In particle physics it is the so-called Higgs mechanism that modifies force law in

the infrared (IR) and that makes it possible to describe the weak interaction in a

theoretically controllable way. A non-vanishing vacuum expectation value (vev) of a

scalar field spontaneously breaks a part of the gauge symmetry and modifies the IR

behavior of the corresponding gauge force from Gauss law to Yukawa law.

Ghost condensation applies the idea of Higgs mechanism to general relativity to

modify the IR behavior of gravity [11, 12]. In order to spontaneously break a part

of the symmetry of general relativity, i.e. spacetime diffeomorphism invariance, we

consider a non-vanishing vev of derivative of a scalar field. In addition, we demand

that the vev is timelike so that only the time reparametrization symmetry is spon-

taneously broken and the 3-dimensional spatial diffeomorphism invariance remains
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unbroken. Note that this symmetry breaking pattern is totally consistent with obser-

vational fact that our universe averaged over large scales is isotropic. However, unlike

usual situations in cosmology with a scalar field, we require that the vev of derivative

should remain non-zero and finite as the universe expands towards maximally sym-

metric spacetimes, i.e. Minkowski or de Sitter spacetimes 1. This is because we would

like the IR modification of gravity to persist in Minkowski or de Sitter backgrounds.

Therefore the equation of motion of the scalar field and the Einstein equation

must allow a solution with X ≡ −∂µφ∂µφ constant and positive 2 in Minkowski or

de Sitter spacetime. This requirement forbids inclusion of any non-trivial potentials

for the scalar field since a potential for an eternally running scalar field would lead

to time-dependence in the stress-energy tensor. In other words, we must invoke the

shift symmetry for the scalar field action, i.e. invariance of the action under constant

shift of the scalar field: φ → φ+ c, where c is an arbitrary constant. With the shift

symmetry, the action for the scalar field minimally coupled to gravity should be of

the form

Iφ =

∫

d4x
√
−gLφ, Lφ = Lφ(X,2φ, Y, Z, · · ·), (2.1)

where Y ≡ ∇µ∇νφ∇µ∇νφ, Z ≡ ∇µ∇νφ∂µφ∂νφ, and so on. In addition to the shift

symmetry, we assume the Z2 symmetry for the scalar field action, i.e. invariance of

the action under reflection φ → −φ. The Z2 symmetry is to ensure that the effective

theory for excitations of ghost condensate is invariant under simultaneous reflection

of the time t and the scalar field perturbation δφ: t → −t, δφ → −δφ.

The simple Lagrangian

Lφ = P (X) (2.2)

is of the form (2.1). The equation of motion for a homogeneous φ(t) in the flat

Friedmann-Robertson-Walker (FRW) background

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2) (2.3)

is ∂t(a
3PX∂tφ) = 0, where PX ≡ dP/dX , and leads to

PXX
1/2 ∝ a−3 → 0 (a → ∞), (2.4)

i.e. either PX → 0 orX → 0. Note thatX is either positive or zero for a homogeneous

φ. Thus, if P (X) has an extremum at X = M4 > 0, i.e. PX(M
4) = 0, then

X = M4 is a dynamical attractor of the system and ghost condensate may be realized

automatically.

However, we shall see below that a more general action depending on e.g. 2φ

(see (2.1)) is needed to describe excitations around the ghost condensate properly.
1We do not consider anti-de Sitter spacetimes as backgrounds since we are interested in cosmol-

ogy. If we nonetheless considered ghost condensation in an anti-de Sitter background then the vev

of derivative would be spacelike and excitations around the condensate would not have a healthy

kinetic term.
2In this paper we adopt the mostly positive sign for the spacetime metric.
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2.2 Decoupling limit in Minkowski background

Let us now consider excitations around the extremum X = M4 > 0 of P (X). For

simplicity we consider Minkowski background. We shall expand the action (2.2)

around φ = ct and take the limit c2 → M4. Note that in Minkowski background the

equation of motion for φ is satisfied for any c and that this treatment is consistent

as far as the backreaction to the geometry is negligible.

For

φ = ct+ π(t, ~x), (2.5)

by expanding P (X) with respect to π we obtain the quadratic Lagrangian for π as

L(0)
π =

[

2c2PXX(c
2) + PX(c

2)
]

(∂tπ)
2 − PX(c

2)(~∇π)2, (2.6)

where PXX ≡ d2P/dX2. Note that we did not take into account the backreaction of

the scalar field to the background geometry nor include metric perturbations. These

treatments are justified in the limit E/MPl → 0, where E represents energy scales

of interest and MPl is the Planck scale. Since we shall later take the limit c2 → M4

and we shall see that M sets the cutoff scale of the effective field theory, E can

be replaced by M in the regime of validity of the effective field theory. Thus, the

decoupling limit is characterized by M/MPl → 0. In this limit and for energies and

momenta sufficiently lower thanM , the action (2.6) is valid and the small fluctuation

π is stable if

2c2PXX(c
2) + PX(c

2) > 0, PX(c
2) > 0. (2.7)

By taking the limit c2 → M4, we obtain

L(0)
π = 2M4PXX(M

4)(∂tπ)
2. (2.8)

Thus, the excitation π around the attractor X = M4 has a healthy time kinetic term

if PXX(M
4) > 0, i.e. if X = M4 is a local minimum of the function P (X). However,

the spatial gradient term vanishes.

This means that the action (2.2) is too simple to describe excitations around the

ghost condensate background. Indeed, while we have assumed the shift symmetry

to prevent a non-trivial potential from being generated, there is no way to prevent

2φ, Y , Z, etc. from appearing in the action. We therefore have to go back to the

general action (2.1) and seek leading gradient terms.

It turns out that the leading gradient term is of the form

∆Lπ = − α

2M2
(~∇2π)2 (2.9)

where α is a constant of order unity. (The reason why this is indeed the leading term

will be made clear in the next subsection.) Combining this with the leading time

kinetic term (2.8), we obtain the quadratic action for π

Iπ =

∫

dtd3~xLπ, Lπ = M4

{

1

2
(∂tπ)

2 − α

2M2
(~∇2π)2

}

, (2.10)
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where we have normalized π and α as 2
√

PXX(M4)π → π and α → 4M4PXX(M
4)α.

Thus, the dispersion relation for π in the decoupling limit M/MPl → 0 is

ω2 =
α

M2
~k4. (2.11)

2.3 Scaling dimension and suppression of extra terms

The general action (2.1) should in principle include any terms consistent with the

shift symmetry and the Z2 symmetry. In terms of π, they are invariance under the

constant shift of π (π → π+c, where c is an arbitrary constant) and invariance under

the simultaneous reflection of the time t and π (t → −t, π → −π), respectively. Thus,

there should be infinite number of terms added to the quadratic action (2.10) for π.

Nonetheless, one can show that the quadratic action (2.10) is a good description of

low energy behavior of the system.

In order to show that those extra terms are irrelevant at low energies, let us first

identify the scaling dimensions as the energy E is scaled by E → sE (or the time

interval dt is scaled by dt → s−1dt), where s is some constant. By requiring that the

quadratic action (2.10) be invariant under scaling, we can fix the scaling dimensions

as

E → sE,

dt → s−1dt,

d~x → s−1/2d~x,

π → s1/4π. (2.12)

Note that the scaling dimensions of dt and d~x are consistent with the dispersion

relation (2.11). With this scaling, one can check that the leading interaction

M4

∫

dtd3~x(~∇π)2∂tπ (2.13)

scales as s1/4. Thus, this term is irrelevant and becomes less and less important

at energies and momenta sufficiently lower than M . All other terms are even more

irrelevant.

There is one relevant operator, namely (~∇π)2. However, as we have already seen,

the coefficient of this operator is proportional to PX and goes to zero as the universe

expands.

Therefore, if energies, momenta and the field amplitude are sufficiently lower than

M then low energy/momentum/amplitude expansion around the quadratic action

(2.10) is under control. This in particular implies that apparent extra modes due to

higher time derivative terms have frequencies of order M or higher. Hence there is

no ghost in the regime of validity of the effective field theory if we set the cutoff scale

slightly below M .
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2.4 Jeans-like instability and IR modification of linear gravity

So far, we have considered the decoupling limit M/MPl → 0 of the theory. For small

but finite M/MPl, the dispersion relation (2.11) gets corrected due to mixing with

gravity and becomes [11]

ω2 =
α

M2
~k4 − αM2

2M2
Pl

~k2. (2.14)

This dispersion relation exhibits Jeans-like instability for modes with length scales

longer than Lc and the corresponding time scale is Tc, where

Lc ∼
MPl

M2
, Tc ∼

M2
Pl√

αM3
. (2.15)

Note that this is an IR instability and has nothing to do with ghost. The Jeans-

like instability is the origin of the IR modification of gravity in ghost condensate

background [11]. The time scale and the length scale of the modification are Tc and

Lc, respectively, and are much longer than the naive scale 1/M .

In Sec. 4 we shall investigate Jeans instability of ghost dark matter, a component

which arises from excitation around ghost condensate and which behaves like dark

matter. One should note that the Jeans-like instability in the exact ghost conden-

sate background considered in this subsection is both conceptually and qualitatively

different from the Jeans instability of ghost dark matter in Sec. 4.

In the decoupling limit M/MPl → 0, the timescale Tc diverges (in the unit of

1/M) and thus the Jeans-like instability disappears.

If we required that the Jeans timescale Tc be longer than the age of the universe

then we would end up with the (would-be) upper bound M . 10 MeV [11]. However,

we shall see below that nonlinear dynamics becomes important much earlier than Tc,

that this (would-be) bound is not necessary and that the current upper bound on M

is as weak as M . 100 GeV [12].

2.5 Nonlinear dynamics and upper bound on M

A sightly nonlinear extension of the quadratic action (2.10) coupled to linearized

gravity is

Iπ =

∫

dtd3~xLπ, Lπ = M4

{

1

2

[

∂tπ − (~∇π)2 − Φ
]2

− α

2M2
(~∇2π)2

}

, (2.16)

where Φ = −δg00/2 is the Newtonian potential [12] in the longitudinal gauge. This

is obtained by not dropping the leading nonlinear term and the metric perturbation

in going from (2.2) to (2.8) before adding (2.9). Note that (∂tπ)
2 has been dropped

from the expression in the square bracket since it has a scaling dimension higher

than (~∇π)2, following the discussions in subsection 2.3.
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From the quadratic part of the action (2.16), i.e. (2.10), it is easy to see that

the timescale of linear dynamics TLin is determined by

π2

T 2
Lin

∼ π2

M2L4
, (2.17)

where we have assumed that the length scale of interest L is shorter than the Jeans

scale LJ (so that the second term in the right hand side of (2.14) is negligible) and

we have set α = O(1). Thus we obtain

TLin ∼ ML2, (2.18)

which is consistent with the dispersion relation (2.11). On the other hand, from the

nonlinear action (2.16), the timescale of nonlinear dynamics TNL is determined by

π

TNL

∼ π2

L2
∼ Φ, (2.19)

and we obtain

TNL ∼ L
√

|Φ|
∼

√

M2
PlL

3

Msrc
, (2.20)

where Msrc is the mass of the gravitational source. Note that this timescale is noth-

ing but the Kepler time. Therefore, nonlinear dynamics dominates before linear

dynamics if TNL . TLin, i.e.
M

MPl
&

√

1

MsrcL
. (2.21)

This condition is satisfied in virtually all interesting situations. For example, for the

earth’s surface gravity, this condition is as weak as

M & 10−9 eV. (2.22)

From the dispersion relation (2.14) it is easy to see that modes with L & LJ

grow due to Jeans-like instability in timescale

τ ∼ MPl

M
L. (2.23)

The nonlinear term (~∇π)2 in the squared bracket in the action (2.16) becomes im-

portant when it is comparable to ∂tπ or larger, i.e. when

|π| & πc ≡
L2

τ
. (2.24)

This can be rewritten as a condition on the energy density ρπ ∼ M4∂tπ:

ρπ & ρc ≡
M4πc

τ
∼ M6

M2
Pl

. (2.25)
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Hereafter, we assume that nonlinear dynamics cutoff the Jeans-like instability at

|ρπ| ∼ ρc. Positive and negative regions can grow to |ρπ| ∼ ρc within the age of the

universe H−1
0 if L & Lc and τ . H−1

0 , i.e. if

Lc . L . Lmax ≡
M

MPlH0

∼ 10R⊙ × M

100GeV
, (2.26)

where R⊙ is the solar radius. Therefore, if M is lower than 100 GeV (we shall indeed

see below that M must be lower than 100 GeV) then the typical size of positive and

negative regions is smaller than 10R⊙. This means that ρπ averaged over large scales

such as galactic scales is almost zero and does not gravitate significantly.

Based on these properties of nonlinear dynamics, several phenomenological upper

bounds on M were derived in [12]. The strongest among them is the ’twinkling-from-

lensing’ bound, which we shall briefly describe here.

Suppose that the universe is filled with regions with ρπ ∼ ±ρc of the size Lc .

L . Lmax moving relative to the cosmic microwave background (CMB). Each region

contributes to weak gravitational lensing with the deflection angle

∆θeach ∼ rg
b

∼ M6b2

M4
Pl

∼ M6L2

M4
Pl

, (2.27)

where b (. L) is the impact parameter and rg ∼ ρcb
3/M2

Pl is the gravitational radius

of the mass contained within the impact parameter. In the final expression, we have

maximized ∆θeach with respect to b. Since a light-ray from the distance d experiences

N (∼ d/L) lens events, the total deflection angle is

∆θtot ∼ ∆θeach
√
N ∼ M6d1/2L3/2

M4
Pl

∼ M6d1/2L
3/2
max

M4
Pl

, (2.28)

where we have maximized ∆θtot with respect to L in the final expression. We can

apply this result to the CMB by setting d ∼ H−1
0 . Requiring that ∆θtot be smaller

than the angular resolution of CMB experiments ∼ 10−3, we obtain the upper bound

M . 100 GeV. (2.29)

The twinkling timescale for the CMB is

Ttwinkle ∼
Lmax

v
∼ M

100GeV
· 300km/s

v
× 0.1 day, (2.30)

where v is the typical velocity of positive and negative regions relative to the CMB

rest frame. Thus, if M is close to 100 GeV then the twinkling effect may be detected

in future CMB experiments.
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3. Ghost dark matter and background evolution

3.1 Simple description of ghost dark matter

Now let us reconsider the simple Lagrangian (2.2) which depends on X only. As

we have already seen in subsection 2.2, we need to add the extra term (2.9) to this

Lagrangian in order to describe perturbations around the exact ghost condensate

background, i.e. a local minimum of the function P (X). In this subsection we shall

instead consider a background with non-vanishing PX and see that, under a certain

condition, the Lagrangian P (X) without the additional term (2.9) can properly de-

scribe the background and perturbations around it. In this situation, as we shall see

below, deviation from the exact ghost condensate behaves like dark matter.

The stress-energy tensor corresponding to the Lagrangian P (X) is

Tµν = 2PX∂µφ∂νφ+ Pgµν = (ρ+ P )uµuν + Pgµν , (3.1)

where

ρ = 2XPX − P, uµ = − ∂µφ√
X
. (3.2)

The sound speed squared for perturbation is [13]

c2s =
dP/dX

dρ/dX
=

PX

2XPXX + PX
. (3.3)

This agrees with minus the ratio of the coefficient of the gradient term to the coeffi-

cient of the time kinetic term in the quadratic Lagrangian (2.6).

As we have already seen in subsection 2.2, in order to describe perturbations

around the exact ghost condensate background, the simple Lagrangian P (X) is not

sufficient but we need to add the term (2.9) to it. The reason is that the coefficient

of the would-be leading gradient term (~∇π)2 vanishes in the exact ghost condensate

background. However, if the background is not exact ghost condensate but has

PX 6= 0 then the coefficient of (~∇π)2 does not vanish as shown in (3.3). Therefore,

if c2s is large enough then we do not have to add the extra term (2.9) to the simple

Lagrangian P (X). To be more precise, the extra term (2.9) is not needed if

c2s ≫
1

M2L2
, (3.4)

where L is the length scale of interest and we have supposed that α = O(1).

We have also seen that a local minimum of P (X) is a dynamical attractor in

the expanding universe. Thus, it is rather natural to Taylor expand P (X) around a

local minimum X = M4 as

P ≃ P (M4) +
1

2
PXX(M

4)(X −M4)2. (3.5)
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This expansion of P (X) is valid if and only if |X −M4| ≪ M4. Note that we any-

way have to restrict our consideration to this regime; otherwise, higher dimensional

operators, which in general depend on not only X but also 2φ, Y , Z, etc., would

be unsuppressed and the system would exit the regime of validity of the low energy

effective theory. (See discussions in subsection 2.3.) Correspondingly, we have the

following expansions.

ρ ≃ −P (M4) + 2M4PXX(M
4)(X −M4), (3.6)

c2s ≃ X −M4

2M4
. (3.7)

These expressions are rewritten as

ρ ≃ ρgde + ρgdm, P ≃ Pgde + Pgdm, c2s ≃
ρgdm
M̄4

(3.8)

where

Pgde = −ρgde = const., Pgdm =
ρ2gdm
2M̄4

. (3.9)

Here, M̄4 ≡ 4M8PXX(M
4) ∼ M4. In the regime |X − M4| ≪ M4, it is intriguing

to note that (ρgde, Pgde) and (ρgdm, Pgdm) behave like dark energy and dark matter,

respectively. In particular, we shall call the latter ghost dark matter [12].

In terms of ghost dark matter component, the necessary condition (3.4) for the

validity of the simple Lagrangian P (X) is written as

M ≪ Lρ
1/2
gdm ≃ 1015GeV×

(

L

1Mpc

)

·
(

ρgdm
0.3× ρ0

)1/2

, (3.10)

where ρ0 ≡ 3M2
PlH

2
0 is the critical density. For example, if M ≪ 1015 GeV and if we

suppose that the ghost dark matter is responsible for all dark matter in the universe

(ρgdm ≃ 0.3 × ρ0) then (3.10) is satisfied for length scales longer than ∼ 1 Mpc.

Note, however, that validity of low energy effective theory requires that all associated

energies, momenta and amplitudes be sufficiently lower than unity in the unit of M .

Thus, (3.8) and (3.9) are valid only if

ρgdm ≪ M4, H ≪ M. (3.11)

On the other hand, we do not have to require that the radiation temperature be

lower than M since interactions between ghost condensate and radiation are highly

suppressed (typically by the Planck scale).

3.2 Ghost dark matter production from ghost inflation

In the previous subsection we have seen that the background evolution and the be-

havior of perturbations of ghost dark matter can be described by (3.8) and (3.9)
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under the conditions (3.10) and (3.11), where L is the length scale for perturba-

tions of interest and M̄ ∼ M . If (3.10) is not satisfied then the use of the simple

Lagrangian of the form P (X) is not justified and we need to take into account ef-

fects of the extra term (2.9). This is not a big problem but would make analysis

slightly complicated [14]. Fortunately, for the purpose of the present paper, i.e. for

understanding of the evolution of the FRW background and the large-scale structure

of the universe, we are interested in L of order 1 Mpc or longer. In this case, the

condition (3.10) always holds if the phenomenological upper bound M . 100 GeV

(see subsection 2.5) is satisfied and if we suppose that a non-trivial fraction of dark

matter of the universe is ghost dark matter. On the other hand, if (3.11) is not met

then the system exits the regime of validity of the low energy effective theory and

we need a ultraviolet (UV) completion 3 to describe the system.

This naturally leads to the question “what happens in the early universe?” The

condition (3.11) does not hold in the very early epoch of the universe. In this early

epoch the sector including ghost condensation should be governed by a theory more

fundamental than what we have been describing since M is the energy scale above

which a new physics kicks in. While it is important to seek a UV completion to

describe this epoch properly, it is also plausible to consider cosmological scenarios

in which all interesting observables are predicted within the regime of validity of the

low energy effective theory. As a possible realization of such scenarios let us consider

a generation mechanism of ghost dark matter at the end of ghost inflation [21].

In ghost inflation the scalar field φ responsible for ghost condensation plays

the role of inflaton as well. For example we can consider a hybrid inflation-type

implementation. In this case we suppose that the mass squared m2
χ of a water-fall

field χ depends on φ in such a way that m2
χ(φ) is positive and constant for φ ≪ −φ∗,

and negative and constant for φ ≫ φ∗, where φ∗ is a positive constant. This setup

is technically natural since the shift symmetry is broken only in the vicinity of the

transition region |φ| . φ∗ and otherwise exact. We suppose that ∂tφ > 0 so that the

sign of m2
χ changes from positive to negative.

For φ ≪ −φ∗, φ enjoys the shift symmetry and χ has a positive mass squared.

Thus the system has a de Sitter attractor with ∂tφ = M2 and χ = 0, where X = M4

is a local minimum of P (X). We suppose that the system settles in this state well

before φ crosses the transition region. Noting that the fluctuation δφ of φ has the

scaling dimension 1/4 (see subsection 2.3) and the mass dimension 1, we can easily

estimate the amplitude of quantum fluctuations of φ as

δφ ∼ M

(

Hinf

M

)1/4

, (3.12)

3See [15, 16, 17, 18] for some attempts towards possible scenarios of UV completion, and [19, 20]

for compatibility with the generalized second law of black hole thermodynamics.
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where Hinf is the Hubble expansion rate of the de Sitter attractor. As usual, quantum

fluctuations of φ is eventually converted to temperature anisotropies as

δT

T
∼ Hinfδφ

∂tφ
. (3.13)

Thus, we obtain

δT

T
∼

(

Hinf

M

)5/4

. (3.14)

By requiring that this is responsible for the observed amplitude of temperature

anisotropies δT/T ∼ 10−5, Hinf is determined as

Hinf ≃ 10−4 ×M. (3.15)

Under this condition, one can also estimate non-Gaussian features of CMB anisotropies.

The shape of the bispectrum is of the equilateral type and the nonlinear parameter

fNL is of order ∼ 80 if we set all dimensionless parameters to unity [21]. The es-

sential reason for the relatively large non-Gaussianities is that the leading nonlinear

operator has the scaling dimension 1/4 and thus is less suppressed than in usual

slow-roll inflation.

The condition (3.15) shows that ghost inflation is well within the regime of

validity of the low energy effective theory: Hinf ≪ M . The condition (3.15) also

shows that there is a lower bound on M in terms of the reheating temperature Treh:

M & 104 × T 2
reh

MPl
. (3.16)

Ghost inflation can generate not only temperature anisotropies observed in the

CMB but also ghost dark matter. In the hybrid inflation-type implementation, the

shift symmetry is broken and a potential for φ should be generated by quantum cor-

rections in and only in the vicinity of the transition region |φ| . φ∗. Correspondingly,

the equation of motion for homogeneous φ is

1

a3
∂t
[

a3PX∂tφ
]

+ V ′

gen(φ) = 0, (3.17)

where Vgen(φ) is the potential for φ generated by quantum corrections. Note that

it is not Vgen(φ) but a potential for χ that is responsible for most of the potential

energy during the inflationary phase:

|∆Vgen| ≪ 3M2
PlH

2
inf , (3.18)

where ∆Vgen ≡ V before
gen − V after

gen , and the superscripts ’before’ and ’after’ represent

values before and after the transition. Noting that ∂tφ ≃ M2 and ignoring the
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Hubble friction term, it is easy to integrate (3.17) over the transition region. The

result is

P after
X ≃ ∆Vgen

M4
. (3.19)

This gives the amplitude of ghost dark matter right after the transition as

ρaftergdm ∼ ∆Vgen. (3.20)

Ghost dark matter does not dominate the universe just after the end of ghost inflation

as easily seen from (3.18). However, since it evolves more slowly than radiation, it

can dominate the late time universe.

In obtaining the estimate (3.19) we have ignored the Hubble friction. This is

justified if the transition timescale, ∆t ∼ φ∗/∂tφ ≃ φ∗/M
2, is short compared with

the Hubble timescale H−1
inf ≃ 104/M , i.e. if

φ∗ ≪ 104 ×M. (3.21)

3.3 Phenomenological constraint from background evolution

While it is certainly interesting and important to investigate concrete cosmological

scenarios such as one presented in the previous subsection, it is also important to

constrain the ghost dark matter in a model independent way. This subsection and

the next section are devoted to this subject, assuming that ghost dark matter is

responsible for all dark matter in the universe.

We now consider background evolution from the radiation-matter equality to the

present time to give a lower bound on M . In this epoch we know from observations

that the background dark matter component behaves like pressure-less dust. Thus,

if all dark matter in the universe is ghost dark matter then Pgdm/ρgdm ∼ ρgdm/M
4

must be sufficiently lower than unity. (This condition incidentally agrees with the

first inequality in (3.11).) In this case ρgdm behaves as

ρgdm ≃ Ωgdmρ0 ·
(

a

a0

)−3

. (3.22)

We set Ωgdm ≃ 0.3 by the assumption that ghost dark matter is responsible for all

dark matter in the universe. Hence, by requiring that ρgdm ≪ M4 all the way up the

matter-radiation equality a ≃ 10−4a0, we obtain the lower bound

M & 1 eV. (3.23)

4. Large-scale structure with ghost dark matter

In this section, we calculate the evolution of density perturbations in the ΛGDM

universe, where the sound speed for matter perturbation, cs, is given by Eq. (3.7)

unlike the standard ΛCDM universe. Then, we consider the bound on M in order

not to conflict with current observations of large-scale structure.
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4.1 Jeans wavenumber for ghost dark matter

In subsection 3.3, we obtained the lower bound on M as M & 1 eV by demanding

that Pgdm/ρgdm ≪ 1 all the way up to the matter-radiation equality. The condition

M & 1 eV also justifies the use of the simplified description given in subsection 3.1

for the matter dominated era since Pgdm/ρgdm ≪ 1 is equivalent to ρgdm ≪ M4.

We consider the evolution of the matter perturbations in this situation. In this

subsection, before detailed numerical analysis in the next subsection, let us foresee

that a bound stronger than M & 1 eV can be obtained.

For the sound speed given by Eq. (3.7), we can define the Jeans wavenumber as

kJ =

√

3

2

aH

cs
. (4.1)

As is well-known, the matter perturbations do not evolve very much during radiation

dominated era and we need not to consider the effects of the Jeans scales. However,

after the matter-radiation equality we have to take into account the effects of the

Jeans scales, namely, the perturbations with scales shorter than the Jeans scales

can not grow. From Eq. (4.1), the Jeans wavenumber evolves as kJ ∝ a during

the matter dominated era and hence in the matter dominated era the comoving

Jeans scale (∼ k−1
J ) becomes the largest at the matter-radiation equality. The Jeans

wavenumber at the matter-radiation equality is given by

kJ,eq ≃ 1×
(

Ωgdmh
2

0.11

)−5/6 (
M

10eV

)4/3

Mpc−1. (4.2)

The matter power spectrum is expected to be significantly suppressed for modes with

wavenumbers k & kJ,eq.

Almost all current observational data do not indicate any suppression in the

matter power spectrum, roughly for the wavenumber k/h . 1 Mpc−1. Hence, from

the above expression, we can roughly obtain a constraint on the model parameter M

as M & 10 eV. In the next subsection, we shall confirm this bound by numerically

calculating the matter power spectrum.

4.2 Numerical calculation

4.2.1 Field description and background evolution

In the numerical calculation, it will be practically difficult to use Eqs. (3.6)-(3.9)

because the sound speed of GDM increases beyond the speed of light as we go

back in time. (Of course, this is not a physical problem but just a breakdown of

the description.) Therefore, in the following, we shall solve X assuming a working

Lagrangian to avoid this difficulty and follow the time evolution in a numerically

stable way, instead of solving Eqs. (3.6)-(3.9). Let us consider a model in which
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P (X) is given by

P (X) =
1

8M4
(X −M4)2 . (4.3)

In this case M̄ = M . The time evolution of X is given by

dX

d ln a
=

6X(X −M4)

3X −M4
, (4.4)

and the energy density, pressure, and sound speed of GDM are given by

ρgdm =
1

8M4
(3X2 − 2XM4 −M8) , (4.5)

Pgdm =
1

8M4
(X −M4)2 , (4.6)

c2s =
X −M4

3X −M4
, (4.7)

respectively. The initial condition for the value of X(= X0) is fixed at present de-

manding that GDM component should be accounting for the dark matter component

observed today:

Ωgdm =
1

24M2
PlH

2
0M

4
(3X2

0 − 2X0M
4 −M8) = 0.3 (4.8)

Then the evolution of X can be solved backward in time using Eq.(4.4).

As we have discussed in the previous section, we have to restrict our consideration

to the regime |X −M4| /M4 ≪ 1 and in this regime the sound speed evolves as

cs ∝
√

|X −M4| ∝ a−3/2. Hence, if we look back the background evolution in

ΛGDM universe, the condition |X −M4|/M4 ≪ 1 might be violated at some point

in time. Let us define a critical scale factor when the condition |X −M4| /M4 ≪ 1

is violated as

∣

∣X(acr)−M4
∣

∣ /M4 = 2c2s(acr) = 0.1 . (4.9)

From this equation, the critical scale factor acr can be obtained in terms of M as

acr/a0 ≃ 1.0× 10−4

(

Ωgdmh
2

0.11

)1/3(
1.0eV

M

)4/3

. (4.10)

Thus, it is found that for M & 1 eV the critical scale factor acr is smaller than the

scale factor at the matter-radiation equality, aeq. In the previous section, we have

obtained the lower bound for M from the background evolution as M > 1 eV. Hence,

if this bound is satisfied, we can use the low energy effective theory, at least, after

the matter-radiation equality. Hereinafter, we consider the case for M > 1 eV.

This GDM description by X is equivalent to fluid-like description by Eqs. (3.6)-

(3.9), when X is near the condensate position, i.e., |X −M4| ≪ M4. However, the
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sound speed will approach to c2s = 1
3
in this description and will never exceed the

speed of light even if the energy density evolves to infinity as |X −M4| /M4 ≫ 1, as

is shown in Fig. 1. The equation of state parameter, w = Pgdm/ρgdm, also approaches

to 1/3. Therefore we can solve the system in a numerically stable way. It should be

noted, however, that this description should be considered only as a regulator of the

fluid description considered in the previous section, and it will be invalid when X is

far away from the condensate position. Still one needs to interpret the results where

a < acr with caution.

In fact, we have to extend our analysis before acr because the density pertur-

bations should be solved numerically from the early epoch when the corresponding

Fourier modes are outside the cosmic horizon. Therefore, in the analysis in this sec-

tion we extrapolate the behavior of GDM beyond acr with a reasonable asuumption

that the sound speed of GDM had been satulated as c2s = 1/3 for a < acr. This

treatment corresponds to an assumption that the density perturbation of GDM can

not grow in the radiation dominated era even when the low energy effective theory

is broken.

0.0

0.1

0.2

0.3

0.4

0.5

6 5 4 3 2 1 0- - - - - -
log 10[a=a0]

equality time

M4
XàM4j j = 0:1

c s

M = 10à1[eV]

M = 1:0[eV]

M = 10[eV]

M = 102[eV]

Figure 1: The evolution of the sound speed of GDM for various values of M . The

blue short-dashed line is for cosmological constant plus ghost dark matter (ΛGDM) with

M = 10−1 eV, the magenta dotted line is for the ΛGDM with M = 1.0 eV, the red

solid line is for the ΛGDM with M = 10 eV and the cyan long-dashed line is for the

ΛGDM with M = 102 eV. In all plots we set ΩΛ = 0.7 and Ωgdm = 0.3 (or Ωcdm = 0.3

for the ΛCDM). The vertical black dashed line represents the matter-radiation equality.

The downward arrow shows the regime of the validity of the low energy effective theory

(
∣

∣X −M4
∣

∣ /M4 < 0.1).
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Figure 2: The comoving Jeans wavenumber for various values of M as indicated in the fig-

ure. From up to bottom, the lines are for M = 10, 1keV, 100, 10, 1 eV. The vertical dashed

line shows the matter-radiation equality time. The turnover of the Jeans wavenumber oc-

curs due to the change of the sound speed of GDM, which roughly shows the boundary of

the regime of validity of the low energy effective theory.

The corresponding Jeans wavenumber is plotted in Fig. 2. From the figure, we

can see a turnover of the Jeans wavenumber kJ for each M . This turnover of the

Jeans wavenumber occurs at the transition of the sound speed of the GDM between

cs = 1/
√
3 and cs ∝ a−3/2. The Jeans wavenumber is given by

kJ,turn =
3√
2
aturnH(aturn) , (4.11)

where we denote the scale factor at the turnover epoch by aturn. We can easily find

that aturn ≃ acr, where acr is given by Eq. (4.10). ForM & 1 eV, of course, aturn ≃ acr
is smaller than aeq.

4.2.2 Perturbation evolution

Let us consider the evolution of the matter perturbations. In synchronous gauge, the

growth of density contrast of GDM, δgdm, is described by the differential equations

[22]

δ′′gdm +
(

1 + 3c2s − 6wgdm

)

Hδ′gdm

+

{

3

2
H2(c2s − wgdm)(1− 6wgdm − 3w̄)
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+c2sk
2 + 3H(c2s

′ − w′

gdm)

}

δgdm

=−(1 + wgdm)
h′′

2
− (1 + wgdm)(1− 3wgdm)H

h′

2
−

w′

gdmh
′

2
, (4.12)

h′′ +Hh′ = −3H2(1 + c̄s
2)δ̄, (4.13)

where a prime denotes a derivative with respect to conformal time, H = a′/a, h is

the metric perturbation, δ̄, c̄s, w̄ are total component’s density fluctuation, sound

speed and equation of state, respectively, defined as

δ̄ =

∑

ρiδi
∑

ρi
, w̄ =

∑

ρi
∑

pi
, c̄2s =

∑

ρ̇ic
2
s,i

∑

ρ̇i
. (4.14)

The evolution of perturbations in the sound horizon depends on the time dependence

of the sound speed. In the present model the sound speed is c2s = 1/3 in the very

early universe, and c2s ∝ a−3/2 after some critical epoch. Therefore, the perturbation

evolution in the sound horizon is divided into two cases. They are; case (a): wgdm =

c2s = 1/3, and case (b): wgdm, cs ≪ 1.

Note that the case (a) may not be a correct description of GDM scenario in

the sense that the low energy effective theory is broken at large redshifts where

a < acr(. aeq). However, it would be natural to expect that the density perturbation

in GDM can not grow very much if the sound speed of GDM had been saturated

as cs ∼ O(1). This situation would be effectively taken into account by setting

c2s = 1
3
because in this case the density perturbation can not grow at subhorizon

scales. Therefore we shall assume case (a) in the following analysis to solve the

perturbations in GDM for the energy scales in which the effective theory can not be

applied.

• case (a): wgdm = c2s = 1/3

In this case, c′s, w
′

gdm = 0. So, differential equations(Eq. (4.12), Eq. (4.13)) are

reduced to

δ′′gdm + c2sk
2δgdm = −2

3
h′′, (4.15)

h′′ +Hh′ = −4H2δ̄. (4.16)

Roughly speaking, h′′ ∝ H2δ̄ from the second equation, and using the fact that

H ≪ csk in sound horizon, the first equation becomes

δ′′gdm + c2sk
2δgdm = 0. (4.17)

Therefore, the density perturbation of GDM in this case cannot grow and only os-

cillate.
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• case (b) : wgdm, cs ≪ 1

In this case, c′s = −3
2
Hcs and w′

gdm = −3Hwgdm. So, Eq. (4.12) becomes

δ′′gdm +Hδ′gdm +

(

c2sk
2 − 3

2
H2

)

δgdm = 0. (4.18)

Since H′(η) ≪ c′s(η)k, we use WKB approximation

δgdm = A(η) exp

(

i

∫ η

η0

cskdη

)

, (4.19)

to solve this equation. In this approximation, A′(η) is roughly in proportion to H
and csk ≫ H. So the term proportional to H2 can be neglected. Then, the equation

becomes

(2csA
′ + c′sA+ csHA) ik exp

(

i

∫ η

η0

cskdη

)

= 0. (4.20)

Then we obtain A ∝ a1/4 since c′s = −3
2
Hcs. Thus the growth rate of GDM for case

(b) is

δ ∝ a1/4 , (4.21)

in the sound horizon. Therefore, the density perturbation of GDM for case (b)

gradually grows in the sound horizon. The above consideration can be generalized

in the case where cs, ∝ a−n(n 6= 0). In this case, c′s = −nHcs, so the evolution of

perturbation in sound horizon is

δ ∝ a(n−1)/2, (4.22)

which is derived from Eq. (4.20).

The evolution of GDM density perturbations in ΛGDM cosmology can be divided

into four cases by comparing the wavelength of the modes and the Jeans length. Let

us define aJ(k) as a scale factor when a mode becomes larger than the Jeans scale,

namely, when the mode exits the sound horizon. We define the four cases from

the smallest scale to the largest one, depending on aJ(k) and the matter-radiation

equality time denoted by aeq as follows;

• case I (k < kJ,turn):

the modes of interest never cross the sound horizon during the cosmic history,

• case II (kJ,eq > k > kJ,turn):

the modes of interest exit the sound horizon before the matter-radiation equality,

• case III (a0 > aJ(k); k > kJ,eq):

the modes of interest exit the sound horizon after the matter-radiation equality,
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• case IV (aJ(k) > a0; k > kJ,eq):

the modes do not exit the sound horizon until today.
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Figure 3: Four cases (case I - IV) divided for the Jeans wavenumber for the ΛGDM with

M = 10eV due to the difference of the evolution of the perturbation. Thick solid line shows

the evolution of the Jeans wavenumber, vertical thin dashed line shows the matter-radiation

equality.

For example, Fig.3 shows typical wavenumbers of four cases for the ΛGDM with

M = 10 eV. If the mode belongs to the case I, the evolution of the mode is similar

to that in the ordinary CDM one because the mode is always outside the sound

horizon. However, if the modes belong to the cases II - IV, the modes enter the

sound horizon at some epochs, where the perturbation evolution of GDM becomes

different from that of CDM. Then, let us consider how the modes entering the sound

horizon of GDM can be suppressed and estimate the k-dependence of the matter

power spectrum. In the M ≥ 1eV models, the small scale perturbations cross the

sound horizon in the radiation dominated era as shown in Fig.2. However, the time

of exiting the sound horizon dependends on the wavenumber of the mode k and also

the cut-off scale M as mentioned above.

From these considerations, one can estimate the power spectrum of GDM model.

In the following, for simplicity, we neglect the phase of oscillations in the sound

horizon. In fact, it is found to be important quantitatively and we will include

this effect in the numerical calculation which will be presented later in order to
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calculate evolution of perturbations and the matter power spectrum more precisely.

We approximate δgdm ∝ a and ∝ log a outside the sound horizon in the matter and

radiation dominated era (acr < a < aeq), respectively. Because of the fact that

δgdm ∝ a1/4 inside the sound horizon when a & acr, we find

δgdm(a0) ∼



















δcdm(a0) for k < kJ,turn
(aJ/acr)

1/4 log (aeq/aJ) (a0/aeq) δgdm(ahc) for kJ,eq > k > kJ,turn
(aJ/acr)

1/4 (a0/aJ) δgdm(ahc) for a0 > aJ(k); k > kJ,eq
(a0/acr)

1/4 δgdm(ahc) for aJ(k) > a0; k > kJ,eq

,(4.23)

where we have introduced ahc as the scale factor when the modes of interest enter in

the Hubble horizon. In these equations, only aJ has k dependence, namely, aJ ∝ k2

in the radiation era and aJ ∝ k in the matter era. Meanwhile, in the standard cold

dark matter cosmology, we find δcdm(a0) ∼ log(aeq/ahc) (a0/aeq) δgdm(ahc). Therefore,

the k dependence of the GDM power spectrum at present can be found to be

Pgdm(k)

Pcdm(k)
∝



















1 for k < kJ,turn
(log k)−2 for kJ,eq > k > kJ,turn
k−2 for a0 > aJ(k); k > kJ,eq
(log k)−2 for aJ(k) > a0; k > kJ,eq

. (4.24)

where we have used x−1/4 log(x) ≈ O(1) for x > 1.

The analysis so far is based on the rough estimate and only appropriate for

qualititative understanding. In order to evaluate the perturbation amplitude quanti-

tatively and take into account the effects neglected in the above analysis, we calculate

the evolution numerically using the modified CAMB code [23].

In Fig.4, we depict the evolutions of density perturbations of GDM with different

wavenumbers (k = 0.1, 1, 10, 100 Mpc−1) for two different model parameters (M =

20 eV and 100 eV). We also depict those of the baryon density for comparison. At

largest scales (top panels) the evolution of GDM density perturbations is almost

identical to that of standard CDM, because the mode is always outside the sound

horizon. On the other hand, the evolutions of the modes at small scales are depicted

in the third and fourth panels. In these panels the amplitude of GDM exhibits

oscillations when the perturbations are inside the sound horizon. The growth of

density perturbation of GDM inside the sound horizon for wgdm, c
2
s ≪ 1 is clearly

seen, which has a dependence of a1/4 as derived in our analytic estimate. We need,

however, to see the second-top left panel (k = 1 Mpc−1 and M = 20 eV) with

care. The panel shows the marginal case where the mode exits the sound horizon

immediately after entering the horizon. In this case, we observe that the amplitude of

δgdm does not experience any logarithmic growth which is expected for the CDM case.

We found that this brings a large difference in amplitudes at the present universe

about an order of magnitude, which is seen by comparing with the second-top right

panel.
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Figure 4: The evolution of density perturbations of GDM and baryon fluid in Ghost

condensation model. Left panels are for M = 20 eV model, right panels are forM = 100 eV

model. The panels from top to bottom are for k = 0.1, 1, 10, 100 Mpc−1.

The net effect in the matter power spectrum is the deficit of power for k & kJ,turn,

which is shown in Fig.5. From this figure, we can find that the matter power spectrum

alters not at kJ,eq as discussed in Sec.4.1, but at kJ,turn. That is because we have
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extended the analysis beyond the critical epoch acr in our numerical calculations, by

extrapolating the behavior of GDM beyond acr with a reasonable assumption that

the sound speed of GDM had been satulated as c2s = 1/3. In this case the density

perturbation of GDM only oscillates inside the sound horizon and does not experience

any logarithmic growth during the radiation dominated era which is expected in the

ΛCDM model. The power deficit at k & kJ,eq is more reasonable because it is a

result derived mainly from the perturbation evolution at the subhorizon scales at the

regime where the effective low-energy theory is applicable, i.e., (X−M4)/M4 < 1 or

a > acr, under a simple assumption that the density perturbation of GDM can not

grow deep in the radiation dominated era, even when the low energy effective theory

is broken.

The evolution of the baryon density perturbation is affected only through gravity.

In the standard cosmology, it is known that after the fluctuation is erased by diffusion

damping the baryon fluctuation should start to grow in time again with terminal

velocity falling into the gravitational potential of clustered dark matter [24]. In

the GDM model, however, the baryon fluid can not have terminal velocity because

the dark matter density fluctuation oscillates in the sound horizon and hence the

gravitational potential. As the GDM ceases oscillating, the amplitude of the density

fluctuation of baryon fluid starts growing with oscillation, which is clearly seen in

the left bottom panel. In any case, the baryon density fluctuation quickly catches

up the dark matter density one after decoupling.

The matter power spectrum of our universe can be probed through various cos-

mological observations, such as clustering of galaxies [25], cosmic shear [27, 26, 28],

Lyman-α forest [29, 30, 31], and so on. At present, almost all observational data

support the CDM paradigm, roughly for the wavenumber k/h . 1 Mpc−1. In the

models considered in this paper, this observational fact gives us a constraint on the

model parameter M . The constraint is derived through the suppression of the mat-

ter power spectrum, in the same way to obtain the constraints on the hot and/or

warm dark matter models (or in other words, masses of neutrinos and/or warm dark

matter particles) [32]. By looking at the matter power spectrum obtained in the

present analysis (Fig.5), we conclude that the model parameter should be

M & 10 eV , (4.25)

which is a stronger constraint than that obtained only from the background evolution

considered in Sec. 3. This result is consistent with the rough analytic estimate given

by Eq. (4.2).

Finally we should note that the way of suppression in the GDMmodels is different

from that in hot or warm dark matter models. In the GDM models the suppression is

the power law while for hot and warm models the power is exponentially suppressed.

This fact might be used to distinguish between GDM and other dark matter models.
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Figure 5: The matter power spectrum for GDM model. Red solid line is a matter power

spectrum of ΛCDM model. The GDM power spectra are plotted for three models : M =

1 eV (green dashed line), M = 20 eV (blue short-dashed line), M = 100 eV (pink dotted

line). For modes k > kJ,turn (shown by a down arrow for M = 20 eV), the power spectrum

of GDM model is suppressed compared to that of ΛCDM model.

5. Summary and discussion

We have investigated the possibility that ghost condensation may serve as an alterna-

tive to dark matter, which had not been investigated in detail. In the present paper

we have considered the ΛGDM universe, i.e. a late-time universe dominated by a

cosmological constant and ghost dark matter. We have investigated the Friedmann-

Robertson-Walker (FRW) background evolution and the large-scale structure of the

ΛGDM universe, and have found a lower bound on the scale of spontaneous Lorentz

breaking as M & 10 eV. This bound is compatible with the phenomenological upper

bound M . 100 GeV known in the literature.

As we have reviewed in Sec. 2, ghost condensation is the simplest Higgs mech-

anism for gravity in the sense that the number of Nambu-Goldstone boson is only

one. The structure of the low-energy effective field theory is completely determined

by the symmetry breaking pattern and this makes it possible for us to give robust

predictions of the theory as far as the system is in the regime of validity of the effec-

tive theory. In Sec. 2 we have also reviewed the infrared modification of linearized

gravity as well as some non-linear dynamics and the phenomenological lower bound

mentioned above.

In Sec. 3 we have provided a simple description of ghost dark matter and investi-

gated the FRW background evolution. In subsection 3.1 we have shown that, under

a certain condition, the background evolution and the behavior of large-scale pertur-
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bations of ghost dark matter can be described by a fluid with the equation of state

Pgdm ∝ ρ2gdm/M
4. This description has been used throughout this paper, except for

numerical studies where the field picture turns out to be more convenient for some

technical reasons. In subsection 3.2, as a possible cosmological scenario relating the

late time evolution of ghost dark matter to the early universe, we have considered

a generation mechanism of ghost dark matter at the end of ghost inflation [21]. In

subsection 3.3 we have shown that the background FRW evolution in the ΛGDM

universe is indistinguishable from that in the standard ΛCDM universe if M & 1 eV.

In Sec.4 we have investigated the large-scale structure of the ΛGDM universe.

Since the GDM has the effective sound speed unlike the standard CDM, small scale

perturbations are suppressed. The suppression of the matter power spectrum occurs

in a way different from that in models with hot dark matter or warm dark matter

particles. We have given an analytic treatment to predict the matter power spec-

trum observed today and have also calculated the power spectrum numerically. The

analytic treatment can be extended for general dark matter models in which dark

matter has a finite sound speed whose time dependence is the power law of scale

factor. By comparing the GDM power spectrum with the observed one, one can get

a lower bound on the scale M . The result we obtained is M & 10 eV.

The constraint obtained in this paper can be improved further by observations

of the matter power spectrum at smaller scales. For example, 21cm-line observations

and/or the precise determination of the reionization epoch will provide us plenty of

information about the matter power spectrum at smaller scales and hence stronger

limits on the ghost condensation scale M . We leave these interesting subjects for

future investigation.

As suggested in [11], ghost condensation may provide an alternative explanation

for the acceleration of the present universe if M ∼ 10−3 eV. If the cosmological

constant in the symmetric phase (with φ̇ = 0) is zero then the effective cosmolog-

ical constant in the broken phase, i.e. the ghost condensate, (with φ̇ = M2) is

positive 4 and of order O(M4/M2
Pl) unless fine-tuned. Unfortunately, the condition

M ∼ 10−3 eV is not compatible with the lower bound on M found in the present pa-

per under the assumption that ghost dark matter is responsible for all dark matter in

the universe. Therefore, it is not easy for the ghost condensate to be a simultaneous

alternative to dark energy and dark matter unless fine-tuned.

On the other hand, as shown in subsection 3.2, ghost inflation is compatible with

ghost dark matter. Ghost dark matter is naturally produced at the end of ghost

inflation. Moreover, the lower bound (3.16) from ghost inflation can be satisfied

simultaneously with not only the phenomenological upper bound (2.29) but also the

bound from ghost dark matter. Detailed investigation of the combination of ghost

inflation and ghost dark matter is certainly worthwhile as a future work.

4Note that in the standard Higgs mechanism, the effective cosmological constant in the broken

phase would be negative if the cosmological constant in the symmetric phase is zero.
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