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Abstract. We describe a new pipeline used to analyze the data from the fifth science run
(S5) of the LIGO detectors to search for continuous gravitational waves from isolated spinning
neutron stars. The method employed is based on the Hough transform, which is a semi-coherent,
computationally efficient, and robust pattern recognition technique. The Hough transform is
used to find signals in the time-frequency plane of the data whose frequency evolution fits the
pattern produced by the Doppler shift imposed on the signal by the Earth’s motion and the
pulsar’s spin-down during the observation period. The main differences with respect to previous
Hough all-sky searches are described. These differences include the use of a two-step hierarchical
Hough search, analysis of coincidences among the candidates produced in the first and second
year of S5, and veto strategies based on a χ

2 test.

1. Introduction

Spinning neutron stars are the most promising sources of continuous gravitational wave signals
for ground-based interferometers such as GEO600 [1], LIGO [2] and VIRGO [3]. Using data
from the different science runs, there have been two kinds of searches for gravitational waves
from pulsars: i) targeted searches [4, 5, 6, 7, 8] for periodic gravitational radiation from pulsars
whose parameters (sky-position and frequency evolution) are known through radio observations,
and ii) searches for pulsars yet unobserved by radio telescopes [9, 10, 11, 12, 13, 14]. For
this second kind of search the optimal method based on a coherent integration over the full
observation time is computationally prohibitive for a wide-parameter search. Therefore all-sky
searches require the use of semi-coherent techniques [15, 16, 17, 18, 19, 11], that are less sensitive
for the same observation time but are computationally inexpensive, or hierarchical approaches
that combine both methods, optimizing the sensitivity of a search for a given computational
power [20, 19, 21, 22, 13]. Some of these semi-coherent methods operate on successive Short
Fourier Transforms (SFTs) of the measured strain [23] searching for cumulative excess power
from hypothetical periodic gravitational wave signal taking into account the Doppler modulation
of the detected frequency due to the Earth’s rotational and orbital motion with respect to the
Solar System Barycenter, and the time derivative of the frequency intrinsic to the source. The
Hough transform [10, 11, 15, 16] is an example of such a method.

Two flavors of the Hough transform have been developed and employed for different searches.
The ‘standard Hough’ [10, 15], computes the cumulative excess power as a sum of binary zeroes
and ones, where a SFT contributes a one if and only if the power exceeds a normalized power
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threshold, and the ‘weighted Hough’ [11, 17] in which the contribution of each SFT is weighted
according to the noise and detector antenna pattern to maximize the signal-to-noise ratio. Using
the ‘weighted Hough’ has two notable benefits: i) the gain in sensitivity, and ii) that this method
can be used to analyze data from multiple detectors, since the different weights automatically
take into account the different sensitivities.

This paper describes the pipeline employed to analyze the data from the fifth science run
of the LIGO detectors to search for periodic gravitational waves using a hierarchical Hough
transform, emphasizing the changes with respect to previous Hough searches [10, 11]. The
paper is organized as follows: In section 2 we briefly summarize the basic principles of the
Hough transform and its statistics. In section 3 we give an overview of the search pipeline and
comment on the data employed and the parameter space of the search. In section 4 we describe
two main features of our two-step hierarchical search, and we conclude in section 5.

2. The Hough transform

The starting point for the Hough transform is a set of N SFTs, short stretches of Fourier
transformed data which are digitized by setting a threshold ρth on the normalized power ρk in
the different frequency bins:

n
(i)
k =

{

1 if ρ
(i)
k ≥ ρth

0 if ρ
(i)
k < ρth

, (1)

where

ρk =
2|x̃k|2

TcohSn(fk)
. (2)

Here x̃k is the value of the Fourier transform in the kth frequency bin corresponding to a
frequency fk, Tcoh is the time baseline of the SFT (in our case Tcoh = 1800 s), and Sn(fk) is the
single sided power spectral density of the detector noise at the frequency fk.

For a given template, the Hough number count is a weighted sum of the binary zeroes and
ones, along the corresponding time-frequency pattern

n =

N−1
∑

i=0

w
(i)
k n

(i)
k , (3)

where the weights are defined as

w
(i)
k ∝ 1

S
(i)
k

{

(

F
(i)
+1/2

)2
+

(

F
(i)
×1/2

)2
}

, (4)

being F
(i)
+1/2 and F

(i)
×1/2 the values of the beam pattern functions at the mid point of the ith SFT.

Thus, we take a binary count n
(i)
k to have greater weight if SFT i has a lower noise floor or

if, in the time-interval corresponding to this SFT, the beam pattern functions are larger for a
particular point in the sky.

The weight normalization is chosen according to

N−1
∑

i=0

w
(i)
k = N . (5)

With this normalization the Hough number count n lies within the range [0, N ]. Note that the
sensitivity of the search is governed by the ratios of the different weights, not by the choice of



overall scale. The robustness of the Hough transform method in the presence of strong transient
disturbances is not compromised by using weights because each SFT contributes at most wi

(which is of order unity) to the final number count.
The natural detection statistic is not the Hough number count n, but the significance of a

number count, defined by:

s =
n− n̄

σ
, (6)

where n̄ and σ are the expected mean and standard deviation for pure noise. Values of s can be
compared directly across different templates characterized by different weight distributions and
σ values. Furthermore, in the case of Gaussian noise, the relation between the significance and
the false alarm probability α is given by:

α = 0.5 erfc(s/
√
2) . (7)

Setting a threshold on the significance would then identify interesting candidates. We refer the
reader to [11] for further details.

3. Description of the pipeline

This paper presents a new pipeline used to analyze the data from the LIGO detectors to search
for continuous gravitational waves from isolated spinning neutron stars. The LIGO detector
network consists of two interferometers in Hanford Washington, one 4-km and another 2-km
(H1 and H2) and a 4-km interferometer in Livingston Louisiana (L1). The search described here
is currently carried out over the entire sky using the data produced during LIGO’s fifth science
run (S5) that started on November 4, 2005 and ended on October 1, 2007, at initial LIGO’s
design sensitivity. Data from each of the three LIGO interferometers is used to perform the
search.

The starting point is a collection of SFTs generated directly from the calibrated data stream,
using 30-minute intervals of data for which the interferometer is operating in what is known as
science mode. With this requirement, we search 32295 SFTs from the first year of S5 (11402
from H1, 12195 from H2 and 8698 from L1) and 35401 SFTs from the second year (12590 from
H1, 12178 from H2 and 10633 from L1).

The search is performed in the frequency range 50 – 1000 Hz and with the frequency’s
time derivative in the range −8.9 × 10−10 Hz s−1 to zero, being those values limited by the
computational cost of the search. We use a uniform grid spacing equal to the size of a SFT
frequency bin, δf = 1/Tcoh = 5.556 × 10−4 Hz. The resolution δḟ is given by the smallest value
of ḟ for which the intrinsic signal frequency does not drift by more than a frequency bin during
the total observation time Tobs: δḟ = δf/Tobs ∼ 1.8 × 10−11 Hz s−1. This yields 51 spin-down
values for each frequency. δḟ is fixed to the same value for the search on the first and the second
year of S5 data, being Tobs the value for the first year. The sky resolution, δθ, is frequency
dependent, with the number of templates increasing with frequency, as given by Eq.(4.14) of
Ref. [15]. This yields a resolution of about 9.3 × 10−3 rad at 300 Hz, which corresponds to
∼ 1.5× 105 sky locations for the whole sky at that frequency.

The key difference from previous searches is that, starting from 30 min SFTs, we perform
a multi-interferometer search analyzing separately the two years of the S5 run, and we study
coincidences among the source candidates produced by the first and second years of data. This
is inspired by a similar coincidence search using VIRGO data [24]. Furthermore, we use a χ2

test adapted to the Hough transform searches, as described in [25], to veto potential candidates.
The approach used to analyze each year of data is based on a two-step hierarchical search for

continuous signals from isolated neutron stars as described below. In both steps, the weighted
Hough transform is used to find signals whose frequency evolution fits the pattern produced



by the Doppler shift and the spin-down in the time-frequency plane of the data. The search
is done by splitting the frequency range in 0.25 Hz bands and using the SFTs from multiple
interferometers.

In the first stage, we break up the sky into smaller patches with frequency dependent size.
The size of the sky-patches ranges from ∼ 0.4 rad× 0.4 rad at 50 Hz to ∼ 0.07 rad× 0.07 rad at
1 kHz. Ideally, to obtain the maximum increase in sensitivity, we should calculate the weights,
based both on the noise and the antenna pattern, for each sky-location. In practice, we calculate
the weights just once for the center of each sky-patch. In this first stage, we perform the Hough
multi-interferometer search using the traditional look up table approach, that enormously reduces
the computational cost (see [15] for a detailed description). But limitations on the memory of
the machines constrain the volume of data (i.e., the number of SFTs) that can be analyzed
at once and the parameter space (e.g., size and resolution of the sky-patches and number of
spin-down values) we can search over. For this reason, in this first stage, the Hough transform
is not applied using all the available SFTs, but selecting the best 15000 SFTs for each frequency
band and sky-patch. A top-list keeping the best 1000 candidates is produced for each 0.25 Hz
band.

In a second stage, we recompute the Hough significance of each candidate in the top-list
using the complete set of available SFTs from all the interferometers, and at the same time we
reduce the mismatch of the template, i.e., we calculate the number count and the corresponding
significance without the roundings introduced by the look up table approach and by recomputing
the weights for the precise sky location and not for the center of the corresponding patch, as
previously done. For each candidate, we also compute the χ2 value that will help in vetoing the
resulting candidates.

4. A two-step hierarchical Hough search

In this section we describe in more detail the two main features of the two-step hierarchical
Hough search, i.e., the selection of the best SFT data and the comparison of the significance
values produced in both steps.

4.1. Selection of the best SFT data

The first of the two main changes to the Hough code consists in selecting the best SFTs based
on the weights given by Eq. (4). In this way, when doing the all-sky search for each 0.25 Hz
band, for each sky-patch, we will keep the 15000 SFTs that have lower noise and that are more
sensitive at that sky location.

Figure 1 shows the percentage of SFTs from each of the three LIGO detectors (H1, H2 and
L1) that have been selected when doing the Hough search on a 0.25 Hz band at a frequency of
420 Hz for the S5 first year of data. At this frequency, the number of sky-patches is 426 with a
size of ∼ 0.17 rad × 0.17 rad. The figure shows the percentage of SFTs from each detector on
each sky-patch. In this figure we can see that, for this particular frequency, the detector that
contributes the most at almost all the sky locations is H1. The maximum contribution of H1,
about 64%, is at the poles, L1 has it maximum contribution, about 46%, around the equator
and H2 contributes at most 23% of the SFTs in the region in between.

The selection of SFTs has been done based on the total weights, that depend both on noise
floor and antenna pattern. If this selection had been based only upon the weights due to the
noise floor, the H2 detector would not have contributed at all in this first stage. By having the
weights antenna pattern dependent, H2 has a certain contribution in some sky locations where
it is more sensitive.
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Figure 1. Percentage of SFTs that each
detector has contributed at each particular sky-
patch when selecting the best 15000 SFTs based
on the Hough weights. These figures correspond
to an all-sky search performed on a 0.25 Hz band
at 420 Hz for the S5 first year of data.

4.2. Comparison of the significance values

In the first stage of the hierarchical search, the Hough significance is computed using the look up

table approach to enormously reduce the computational cost. The code uses the selected 15000
best SFTs to compute the Hough significance and make a list of interesting candidates.

In the second stage of the search, for each candidate stored in the top-list produced for each
0.25 Hz band, the code recomputes the Hough significance without any rounding, and using all
the SFTs from the three LIGO detectors. In this stage, the significance is computed directly
from the number count that is obtained from the digitized time-frequency plane by summing
weighted binary zeros or ones along the expected path of the frequency of a hypothetical periodic
gravitational wave signal, taking into account the Doppler shift and the spin-down.

Figure 2 shows how this recomputation affects the previous value of the significance in the
case where an injected pulsar was present and in the case of a frequency band free of spectral
disturbances. To illustrate the effect, we have used a ‘quiet band’ at 205.25 Hz and a band
with an injected pulsar at 575 Hz. In both bands we perform an all-sky search and compare
the significances computed on the first and second stages. The ‘old significance’ corresponds to
the one computed in the first stage, using the look up table approach and using only the best
15000 SFTs. The ‘new significance’ corresponds to the one computed in the second stage using
all the SFTs and without any rounding. In the same figure we also provide the histograms of
the differences between the ‘old’ and ‘new’ significances, showing that in the case where we have
the hardware injected signal, the values of the ‘new’ significance are, in most cases, higher than
the ‘old’ values. While in the case of the ‘quiet’ band, the ‘new significance’ becomes smaller
than the ‘old’ one in the majority of the cases.

5. Conclusions and future work

In this paper, we have presented the improved Hough search pipeline, which is being used
to analyze data from the fifth science run of the LIGO interferometers, describing in detail
the two main features of the two-step hierarchical search, i.e., the selection of SFT data and
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Figure 2. Comparison of the distribution of the significance values when calculated in the first
stage using the look up table approach (‘old significance’) and after recomputing its value using
all the SFTs and without any rounding (‘new significance’). These results correspond to an
all-sky search on a 0.25 Hz band at a frequency of 205.25 Hz for the S5 2nd year of data (top
panels), where no relevant spectral disturbances were present, and at 575 Hz for the 1st year of
data (bottom panels), containing a hardware injected pulsar.

recomputation of the significance values. We have shown how these improvements perform on
the data, showing examples at some particular frequencies, either with interesting artifacts, such
as hardware injected pulsars, or others where we expect approximately Gaussian noise. Work is
in progress to analyze the coincidences among the candidates produced in the first and second
year of S5 for the full parameter space, and to compute astrophysical upper limits using the
search pipeline presented in this paper.
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