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In this paper, we consider a continuous-time autoregressive fractionally integrated moving av-
erage (CARFIMA) model, which is defined as the stationary solution of a stochastic differential
equation driven by a standard fractional Brownian motion. Like the discrete-time ARFIMA
model, the CARFIMA model is useful for studying time series with short memory, long mem-
ory and antipersistence. We investigate the stationarity of the model and derive its covariance
structure. In addition, we derive the spectral density function of a stationary CARFIMA process.
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1. Introduction

It is well known that the long-range dependence properties of time series data have diverse
applications in many fields, including hydrology, economics and telecommunications (see
Bloomfield [8], Sowell [35], Beran [4], Robinson [32], Baillie [3] and Ray and Tsay [31]).
Autoregressive fractionally integrated moving average (ARFIMA) models are a popular
class of discrete-time long memory processes (see Granger and Joyeux [19] and Hosking
[21]). For continuous-time long memory modeling, see Viano et al. [40], Chambers [13],
Comte [14], Comte and Renault [15], Brockwell and Marquardt [12], Tsai and Chan [37]
and Tsai and Chan [38].

In contrast to long-range dependence, which corresponds to the singularity of the
spectrum at the origin, antipersistent time series are covariance-stationary processes with
zero spectral density at the origin (Dittmann and Granger [16], Bondon and Palma [9]).
Interesting examples of antipersistent processes include: Kolmogorov [24], which models
the local structure of turbulence in incompressible viscous fluids; Ausloos and Ivanova [2],
which models the temporal correlations of fluctuations in the Southern Oscillation index
(SOI) signal; Simonsen [34], which measures correlations in the Nordic electricity spot
market. For financial applications of antipersistent processes, see Peters [29] and Shiryaev
[33], both of which model the implied and realized volatility of the S & P 500 index. For
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further examples of antipersistence modeling, see Otway [28], Beran and Mazzola [7] and
Metzler [26].

Beran and Feng [5] observed that antipersistent processes can be generated by overdif-
ferencing. In other words, a slightly non-stationary process lying between a stationary
long-memory process and a random walk becomes antipersistent after the first differenc-
ing. For example, Beran et al. [6] found that the first-differenced daily world copper price
from January 2, 1997 to September 2, 1998 comprised an antipersistent process and a
non-zero mean function. This implies that the original process was a trend function, plus
a nonstationary error process whose first difference was antipersistent. Karuppiah and
Los [23] also noted that many intra-day foreign exchange rate series are antipersistent.

Recently, Tsai and Chan [37] proposed the continuous-time autoregressive fractionally
integrated moving average (CARFIMA) model, which is defined as the stationary solu-
tion of a stochastic differential equation driven by standard fractional Brownian motion
with the Hurst parameter 1/2 < H < 1. The model is useful for studying time series data
that exhibits long-range dependence properties. In [37], Tsai and Chan derived the au-
tocovariance function of the stationary CARFIMA process and in [38], they derived its
spectral density function; both functions are derived under the condition 1/2 < H < 1.

In this paper, we focus on the stationarity, autocovariance function, spectral density
function and other properties of the CARFIMA process with the Hurst parameter 0 <
H < 1. The CARFIMA process with 0 < H < 1/2 is an antipersistent process that is
useful for studying time series data exhibiting antipersistent properties. For H = 1/2, the
CARFIMA process becomes a continuous-time autoregressive moving average (CARMA)
process. We present the main results in Section 2, followed by their proofs in Section 3.
Finally, in Section 4, we make some concluding remarks.

2. Main results

Heuristically, a CARFIMA(p, H, q) process {Yt} is defined as the solution of a pth order
stochastic differential equation with suitable initial conditions. It is driven by a standard
fractional Brownian motion with the Hurst parameter H and its derivatives up to and
including the order 0≤ q < p. Specifically, for t ≥ 0,

Y
(p)
t − αpY

(p−1)
t − · · · − α1Yt − α0 (1)

= σ{B
(1)
t,H + β1B

(2)
t,H + · · ·+ βqB

(q+1)
t,H },

where {Bt,H = BH
t , t ≥ 0} is a standard fractional Brownian motion with the Hurst

parameter 0 < H < 1, dY
(j−1)
t = Y

(j)
t dt, j = 1, . . . , p − 1. The superscript (j) denotes a

j-fold differentiation with respect to t. We assume that σ > 0, α1 6= 0 and βq 6= 0.
Let 0 < H < 1 be a fixed number. It is well known (see, e.g., Duncan et al. [17]) that

there exists a Gaussian stochastic process {BH
t , t≥ 0}, which satisfies the following three

properties:

(a) its initial condition is BH
0 = 0;
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(b) it is of zero mean, that is, E(BH
t ) = 0 for all t≥ 0;

(c) its covariance kernel is defined as

E(BH
t BH

s ) = 1
2{|t|

2H + |s|2H − |t− s|2H}

for all s, t ≥ 0. The Gaussian process {BH
t } is called a standard fractional Brownian

motion with the Hurst parameter H . A standard fractional Brownian motion with H =
1/2 is the same as a standard Brownian motion. In addition, a fractional Brownian
motion defined over non-negative t can be extended and defined for all real numbers.
Specifically, for H ∈ (0,1), we have, for −∞< t < ∞,

BH
t = DH

∫ ∞

−∞

{(t− u)
H−1/2
+ − (−u)

H−1/2
+ }dBu,

where DH = [2HΓ(3/2−H)/{Γ(H+1/2)Γ(2−2H)}]1/2, Γ(·) is the Gamma function and
{Bu} is a two-sided standard Brownian motion with covariance E(BsBt) = min(|s|, |t|) if
s and t have the same sign and 0 if s and t have different signs (see Taqqu [36]).

Let Z be a set of integers. The stationary process {Ft}t∈Z , defined by Ft = BH
t+1−BH

t ,
is called fractional Gaussian noise. The autocovariance of the noise is

γF (k) = 1
2{|k + 1|2H − 2|k|2H + |k − 1|2H}.

It can be easily demonstrated (see, e.g., Taqqu [36]) that for k 6= 0, γF (k) = 0 if H = 1/2,
γF (k) < 0 if 0 < H < 1/2 and γF (k) > 0 if 1/2 < H < 1. For H 6= 1/2,

γF (k) ∼H(2H − 1)|k|2H−2 as k →∞.

For 1/2 < H < 1,
∑∞

k=−∞ γF (k) = ∞, so the noise is said to be persistent, to have long
memory or to be long-range dependent. For 0 < H < 1/2,

∑∞
k=−∞ γF (k) = 0; therefore,

the process is negatively autocorrelated at all positive lags and the noise is said to be
antipersistent. For H = 1/2, all correlations of the process at non-zero lags are zero, that
is, Ft and Fs are uncorrelated for t 6= s. The spectral density of the noise is given by (see
Beran [4])

fF (ω) = {2(1− cosω)}

∞
∑

k=−∞

|ω + 2kπ|−2H−1.

Note that fF (ω) is O(|ω|1−2H) for ω → 0.
Taqqu [36] considers continuous-time fractional Gaussian noise {Ct}t∈R, where R is

a set of real numbers, namely Ct = BH
t+1 − BH

t , and shows that the spectral density of
continuous-time fractional Gaussian noise is given by

fC(ω) =
1

2π

σ2Γ(2H + 1) sin(πH)|eiω − 1|2|ω|−2H−1

=
2

π

σ2Γ(2H + 1) sin(πH) sin2

(

ω

2

)

|ω|−2H−1, ω ∈ R.
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Fractional Brownian motion is not differentiable (Mandelbrot and Van Ness [25]), so
the stochastic equation (1) has to be appropriately interpreted as an integral equation,
as explained below. Analogous to continuous-time ARMA processes (see, e.g., Brockwell
[10]), equation (1) can be equivalently cast in terms of the observation and state equations

Yt = β′Xt, t≥ 0, (2)

dXt = (AXt + α0δp)dt + σδp dBH
t , (3)

where the prime superscript denotes taking the transpose,

A =













0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
α1 α2 α3 · · · αp













, Xt =















X
(0)
t

X
(1)
t
...

X
(p−2)
t

X
(p−1)
t















,

δp =













0
0
...
0
1













, β =













1
β1
...

βp−2

βp−1













and βj = 0 for j > q. See Tsai and Chan [39] for a proof of the equivalence between
equation (1) and the set of equations (2) and (3). The process {Yt, t ≥ 0} is said to be
a CARFIMA(p, H, q) process with the parameter (θ, σ) = (α0, . . . , αp, β1, . . . , βq,H,σ)
if Yt = β′Xt, where Xt is the solution of (3) for the initial condition X0. Similarly to
equation (5) of Tsai and Chan [37], the solution {Xt, t≥ 0} of (3) can be written as

Xt = eAtX0 + α0

∫ t

0

eA(t−u)δp du + σ

∫ t

0

eA(t−u)δp dBH
u , (4)

where

eAt = Ip +

∞
∑

n=1

{(At)n(n!)−1}

and Ip is the p× p identity matrix. The stochastic integration in (4) is defined in terms
of the limit of Riemann sums because it only involves deterministic integrands.

For a random initial condition X0, the mean vector of {Xt}, denoted by µX,t, satisfies
the following equation:

µX,t = eAtµX,0 +
α0

α1
(eAt − Ip)δ1, (5)

where δ1 = [1,0, . . . ,0]′. If µX,0 is chosen to be −(α0/α1)δ1, then µX,t becomes
−(α0/α1)δ1, which is independent of t. If all the eigenvalues of A have negative real
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parts, then it can be easily shown that (2) and (4) imply that, when t→∞, Yt converges
in distribution to a normal random variable with mean −α0/α1 and variance VY , where
VY = γY (0) is defined in equation (11). Thus, the stationary solution, if it exists, must
be Gaussian.

The stationary CARFIMA process defined over non-negative t can be extended so that
it is a stationary process over all real t. For simplicity, we assume that α0 = 0. Then,
provided the eigenvalues of A all have negative real parts, we can show that the process
{Xt} defined by

Xt = σ

∫ t

−∞

eA(t−u)δp dBH
u (6)

is a strictly stationary solution of (3) for t ∈ (−∞,∞) with the corresponding CARFIMA
process

Yt = σ

∫ t

−∞

β′eA(t−u)δp dBH
u . (7)

The proof of (6) is similar to that of (4) and is hence omitted.
For 1/2 < H < 1 and f, g ∈ L2(R;R) ∩ L1(R;R), Gripenberg and Norros [20] proved

that

cov

(
∫ ∞

−∞

f(u)dBH
u ,

∫ ∞

−∞

g(v)dBH
v

)

(8)

= H(2H − 1)

∫ ∞

−∞

∫ ∞

−∞

f(u)g(v)|u− v|2H−2 dudv.

For H < 1/2, Norros et al. [27] defines a class of stochastic integrals with the fractional
Brownian integrator and deterministic integrands that are functions of bounded variation.
However, they only consider integrals over the interval [0,∞). In our case, integrals
over an interval of the form (−∞, t] for finite t are needed. For the definition of such
stochastic integrals, we outline an approach similar to Norros et al. [27]. Let t be a
fixed but arbitrary finite real number. Let Γ denote the integral operator mapping a
bounded-variation function f(s), s≤ t, to a function Γf(s), s≤ t, defined by the equation

Γf(s) = Hf(t)|t− s|2H−1 sgn(t− s)

+H

∫ t

−∞

|u− s|2H−1 sgn(s− u)df(u),

where sgn(u) equals −1, 0 or 1, depending on whether u is negative, zero or positive.
Next, define an inner product between two functions f and g by the formula

〈f, g〉Γ =

∫ t

−∞

g(v)Γf(v)dv.
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Define L2
Γ(−∞, t] as the space of equivalence classes of measurable, bounded-variation

functions f such that 〈f, f〉Γ < ∞. Consider the association of the simple function
1[a,b] to BH

b − BH
a that preserves the inner product, which follows from equation (9)

below, and hence the association can be extended to an isometry between the Gaus-
sian space spanned by BH

u , u ≤ t, and the function space L2
Γ(−∞, t] so that the integral

∫ t

−∞
f(u)dBH

u can be defined as the image of f in the isometry. Consequently, provided
that the integrals of the right-hand side of equation (9) exist, then for 0 < H < 1/2 and
all s, t ∈ R,

cov

(
∫ s

−∞

f(u)dBH
u ,

∫ t

−∞

g(v)dBH
v

)

= Hf(s)

∫ t

−∞

|s− v|2H−1 sgn(s− v)g(v)dv

+ H

∫ t

−∞

∫ s

−∞

g(v)|u− v|2H−1 sgn(v − u)df(u)dv. (9)

To demonstrate the above formula, it suffices to consider the case t = s. The proof of
equation (9) for simple functions is given in Section 3 and its validity for general functions
then follows from the isometry alluded to above.

From the above discussion, we can derive the stationarity condition and the autoco-
variance function of the CARFIMA process with 0 < H < 1. We state the stationarity
condition of the CARFIMA process in Theorem 1.

Theorem 1. Let 0 < H < 1. Equation (4) with a deterministic initial condition admits
an asymptotically stationary solution if and only if all the eigenvalues of A have negative
real parts. Moreover, under the preceding eigenvalue condition of A and assuming the
solution is stationary, Y0 and {BH

t , t ≥ 0} are jointly Gaussian with the covariances
given by

cov(Y0,B
H
t ) = Hσβ′

∫ ∞

0

eAuδp{(u + t)2H−1 − u2H−1}du, (10)

and the stationary mean of {Yt} equalling µY = −α0/α1.

For a random initial condition Y0, which may be correlated with the fractional Brown-
ian innovation process, it can be verified that the sufficiency part of Theorem 1 continues
to hold if Y0 has finite variance. Furthermore, the theorem implies that, under stationar-
ity, Y0 and the fractional Brownian innovations BH

t , t≥ 0, are generally correlated when
H 6= 1/2. This contrasts with the case H = 1/2, where the stationary distribution of Y0

is independent of the standard Brownian motion.
In Theorem 2, we use the covariance formulae of stochastic integrals given in ex-

pressions (8) and (9) to calculate the autocovariance function of {Yt}. In part (a), the
autocovariance function of the CARFIMA process is expressed in terms of three integrals.
In part (b), the eigenvalues of the companion matrix A are distinct, so we have a closed



184 H. Tsai

form of the autocovariance function. Then, (c) describes the asymptotic expression for
the autocovariance function with H 6= 1/2.

Theorem 2. Let 0 < H < 1.
(a) Under stationarity, for h≥ 0, the autocovariance function of {Yt} equals

γY (h) := cov(Yt+h, Yt)

= Hβ′AeAh

(
∫ h

0

e−Auu2H−1 du

)

V ∗β (11)

−Hβ′Ae−Ah

(
∫ ∞

h

eAuu2H−1 du

)

V ∗β −Hβ′AeAh

(
∫ ∞

0

eAuu2H−1 du

)

V ∗β,

where V ∗ = σ2
∫∞

0 eAuδpδ
′
pe

A′u du.
(b) Under stationarity, and when the eigenvalues λ1, . . . , λp of the companion matrix

A are distinct,

γY (h) =
σ2

2
Γ(2H + 1)

p
∑

i=1

β(λi)β(−λi)

α(1)(λi)α(−λi)
u(H,λi, h), (12)

where h ≥ 0, α(z) = zp − αpz
p−1 − · · · − α1, α(1)(·) denotes its first derivative, β(z) =

1 + β1z + β2z
2 + · · ·+ βqz

q,

u(H,λ,h) = 2(−λ)1−2H cosh(λh) + λ1−2HeλhP (2H,λh)
(13)

− (−λ)1−2He−λhP (2H,−λh)

and P (a, z) =
∫ z

0
e−uua−1 du/Γ(a), where the integration is along the radial line in the

complex plane from 0 to z.
(c) For H 6= 1/2, as h→∞, we have the asymptotic expression

γY (h) ∼ σ2H(2H − 1)
β2(0)

α2(0)
h2H−2, (14)

where “∼” means that the ratio of the left- and right-hand sides converges to 1.

For H = 1/2, it is easy to verify that Theorem 2(a) and (b) can be simplified to

γY (h) = β′eAhV ∗β

= σ2

p
∑

i=1

β(λi)β(−λi)

α(1)(λi)α(−λi)
eλih,

which is consistent with the autocovariance function of the short-memory CARMA model
proposed by Brockwell [11]. Let Γ(a, z) =

∫∞

z e−uua−1 du be an incomplete Gamma func-
tion with complex arguments. Then, the fact that Γ(a + 1, z) = aΓ(a, z) + zae−z can be



Continuous time ARFIMA processes 185

used to show that, for 1/2 < H < 1, equation (13) is the same as expression (6.4) of
Brockwell and Marquardt [12] up to a factor that involves the Hurst parameter only.
The asymptotic expression (14) implies that for 0 < H < 1/2, γY (h) < 0 when h →∞,
which shows that the CARFIMA(p,H, q) model with 0 < H < 1/2 is antipersistent. In
contrast, the model with 1/2 < H < 1 is of long-memory type.

The autocovariance function established in Theorem 2 can be used to compute the
spectral density function of {Yt, t ∈R} stated in Theorem 3 below.

Theorem 3. For 0 < H < 1, the spectral density function of {Yt, t ∈ R} is given by

fY (w) =
σ2

2π

Γ(2H + 1) sin(πH)|w|1−2H |β(iw)|2

|α(iw)|2
, ω ∈ (−∞,∞). (15)

For 0 < H < 1/2, equation (15) implies that
∫∞

−∞
γY (τ)dτ = 2πfY (0) = 0. The equa-

tion also shows that the spectral density function of the CARFIMA(p,H, q) process is
essentially a product of the spectral density of the ARMA process and the spectral den-
sity of the fractional Gaussian noise. Thus, the CARFIMA(p,H, q) model is generated by
applying an ARMA filter to the fractional Gaussian noise. Furthermore, the CARFIMA
model is antipersistent if the fractional Gaussian noise is antipersistent, whereas it is
long-memory if the noise is long-memory. Compared to fractional Gaussian noise, the
CARFIMA model displays a much wider spectrum of autocovariance patterns, including
non-monotone autocovariance functions.

One major problem with continuous-time modeling is the identifiability of the
continuous-time model, given discrete-time data. Let {Yih}i=1,...,N be the observations
sampled from a stationary CARFIMA(p,H, q) process, where h is the step size. By the
aliasing formula (Priestley [30]), the spectral density of {Yih}i=1,...,N equals

fh(ω; θ, σ2) =
1

h

∑

k∈Z

fY

(

ω + 2kπ

h

)

, ω ∈ [−π,π], (16)

where fY (·) is as defined in equation (15). Using the frequency domain method, Tsai and
Chan [38] showed that the CARFIMA(p,H, q) model with 1/2 < H < 1 is identifiable,
given regularly spaced discrete-time data. Specifically, they showed that, for (θ1, σ

2
1) 6=

(θ2, σ
2
2), the set {ω|fh(ω; θ1, σ

2
1) 6= fh(ω; θ2, σ

2
2)} has positive Lebesgue measure if 1/2 <

H < 1. Because the spectral density function of {Yih}i=1,...,N is given by the same form
as (16) for 0 < H < 1/2 and 1/2 < H < 1, it can be shown by similar arguments that the
CARFIMA model with 0 < H < 1/2 is also identifiable (see Section 3). The identifiability
problem with H = 1/2 is more difficult; see [38] for further discussion. In summary, we
have the following theorem on identifiability.

Theorem 4. Let Y = {Yti
}N

i=1 be sampled from a stationary (Gaussian) CARFIMA(p,
H, q) process given by equation (1), where 0 < H < 1, H 6= 1/2, α(·) and β(·) have no
common zeros, all roots of α(z) = 0 and the roots of β(z) = 0 have negative real parts.
If the step size ti = ih with h > 0, then for (θ1, σ

2
1) 6= (θ2, σ

2
2), the set {ω|fh(ω; θ1, σ

2
1) 6=

fh(ω; θ2, σ
2
2)} has positive Lebesgue measure.
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We note that the roots of the polynomial α(·) are the same as the eigenvalues of the
matrix A and the condition on the roots of α(z) = 0 is necessary for the stationarity of
the process, whereas the condition on β(z) = 0 is akin to the invertibility condition for
discrete-time processes.

3. Proofs

Proof of equation (9). Consider simple functions of the form f(u) =
∑m−1

i=0 ci1(si,si+1](u),

where sm = s, and g(v) =
∑n−1

j=0 dj1(tj ,tj+1](v), where tn = t. Then, the left-hand side of
(9) becomes

Cov

(
∫ s

−∞

f(u)dBH
u ,

∫ t

−∞

g(v)dBH
v

)

= Cov

(

m−1
∑

i=0

ci(B
H
si+1

−BH
si

),

n−1
∑

j=0

dj(B
H
tj+1

−BH
tj

)

)

(17)

= 1
2

m−1
∑

i=0

n−1
∑

j=0

cidj{|si+1 − tj |
2H + |si − tj+1|

2H − |tj+1 − si+1|
2H − |si − tj |

2H}.

The first term of the right-hand side of (9) is

Hf(s)

∫ t

−∞

|s− v|2H−1 sgn(s− v)g(v)dv

= Hcm−1

n−1
∑

j=0

dj

∫ tj+1

tj

|sm − v|2H−1 sgn(sm − v)dv (18)

= 1
2cm−1

n−1
∑

j=0

dj{|sm − tj |
2H − |sm − tj+1|

2H}.

If we let c−1 = 0, then the second term of the right-hand side of (9) is

H

∫ t

−∞

∫ s

−∞

g(v)|u− v|2H−1 sgn(v − u)df(u)dv

= H

∫ t

−∞

g(v)
m−1
∑

i=0

|si − v|2H−1 sgn(v − si)(ci − ci−1)dv

= H

m−1
∑

i=0

(ci − ci−1)

n−1
∑

j=0

dj

∫ tj+1

tj

|si − v|2H−1 sgn(v − si)dv (19)
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= 1
2

m−1
∑

i=0

(ci − ci−1)

n−1
∑

j=0

dj{|si − tj+1|
2H − |si − tj |

2H}

= 1
2

m−1
∑

i=0

n−1
∑

j=0

cidj{|si − tj+1|
2H − |si − tj |

2H}

− 1
2

m−2
∑

i=0

n−1
∑

j=0

cidj{|si+1 − tj+1|
2H − |si+1 − tj |

2H}.

Therefore, by (18) and (19), the right-hand side of (9) becomes

1
2

m−1
∑

i=0

n−1
∑

j=0

cidj{|si − tj+1|
2H − |si − tj |

2H + |si+1 − tj |
2H − |si+1 − tj+1|

2H},

which is the same as equation (17). This proves the validity of equation (9) for simple

functions. �

Proof of Theorem 1. The proof for H = 1/2 is trivial. For the proof where 1/2 < H < 1,

see Tsai and Chan [37]. We now consider the case where 0 < H < 1/2. The proof of the

first part of the theorem is similar to that of Theorem 1(a) in [37] and is hence omitted. For

the proof of equation (10), first note that equations (4) and (6) are essentially equivalent

if α0 = 0. Since, by (6), we can write X0 = σ
∫ 0

−∞
e−Auδp dBH

u and Bt =
∫ t

0 dBH
u , by

equation (9), we have

cov(Y0,B
H
t )

= cov

(

σ

∫ 0

−∞

β′e−Auδp dBH
u ,

∫ t

0

dBH
u

)

= Hσβ′δp

∫ t

0

| − v|2H−1 sgn(−v)dv (20)

−Hσ

∫ t

0

∫ 0

−∞

|u− v|2H−1 sgn(v − u)β′Ae−Auδp dudv

= −
σ

2
β′δpt

2H −
σ

2

∫ ∞

0

{(t + u)2H − u2H}β′AeAuδp du.

Now, based on the integration by parts technique, the equality in (10) follows from

equation (20). The stationary mean of {Yt} follows from equation (5) and the subsequent

discussion. �
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Proof of Theorem 2. The proofs of 2(a) and (b) with H = 1/2 are trivial. First, we
prove part (a) with 0 < H < 1/2. By equations (7), (9) and routine calculus, we have

γY (h) = σ2H

∫ t

−∞

β′δpδ
′
pe

A′(t−v)β(t + h− v)2H−1 dv

−Hσ2

∫ t

−∞

∫ ∞

0

β
′

AeA(t+h+w−v)δpβ
′eA(t−v)δpw

2H−1 dwdv (21)

+ Hσ2

∫ t

−∞

∫ t+h−v

0

β
′

AeA(t+h−w−v)δpβ
′

eA(t−v)δpw
2H−1 dwdv.

Now, equation (11) follows from equation (21) and equation (6.20) of Karatzas and
Shreve [22], namely, AV ∗ + V ∗A′ = −σ2δpδ

′
p. For 1/2 < H < 1, equation (11) follows

from Theorem 1(c) of Tsai and Chan [37] and the integration by parts technique.
Below, we prove part 2(b) with 0 < H < 1/2. The proof with 1/2 < H < 1 is similar

and is hence omitted. When all the eigenvalues of A have negative real parts and are all
distinct, Brockwell and Marquardt [12], equation (2.15), show that, for h≥ 0,

β′eAhδp =

p
∑

i=1

β(λi)

α(1)(λi)
eλih. (22)

Differentiating the above equation with respect to h on both sides, we have

β′AeAhδp =

p
∑

i=1

β(λi)λi

α(1)(λi)
eλih. (23)

By expressions (21), (22), (23) and routine calculus, we obtain

γY (h) (24)

=−
σ2

2
Γ(2H + 1)

[

p
∑

i=1

β(λi)

α(1)(λi)
{eλih(−λi)

1−2H + eλihλ1−2H
i P (2H,λih)}

×

p
∑

j=1

β(λj)

α(1)(λj)(λi + λj)

+

p
∑

j=1

β(λj)

α(1)(λj)
(25)

×{e−λjh(−λj)
1−2H − e−λjh(−λj)

1−2HP (2H,−λjh)}

×

p
∑

i=1

β(λi)

α(1)(λi)(λi + λj)

]

.
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By the partial fraction (Feller [18], page 276)

β(s)

α(s)
=

p
∑

j=1

β(λj)

α(1)(λj)(s− λj)
, (26)

we have

−
β(−λi)

α(−λi)
=

p
∑

j=1

β(λj)

α(1)(λj)(λi + λj)
. (27)

Equation (12) now follows from equations (25) and (27). This proves (b).
To prove (c) with 0 < H < 1/2, we note that P (a, z) = 1− Γ(a, z)/Γ(a). Furthermore,

by equation (6.5.32) in [1], Γ(a, z) ∼ za−1e−z{1 + (a − 1)/z} when z → ∞. Thus, as
h→∞, we have

u(H,λ,h)∼−
4H(2H − 1)

Γ(2H + 1)λ
h2H−2. (28)

Hence, by equations (12) and (28), as h →∞, we have

γY (h) ∼ −2σ2H(2H − 1)h2H−2

p
∑

i=1

β(λi)β(−λi)

α(1)(λi)α(−λi)λi
. (29)

Now, 1/(λiλj) = 1/{λi(λi + λj)}+ 1/{λj(λi + λj)} and expression (27) implies that

p
∑

i=1

β(λi)β(−λi)

α(1)(λi)α(−λi)λi

= −

p
∑

i=1

p
∑

j=1

β(λi)β(λj)

α(1)(λi)α(1)(λj)λi(λi + λj)

= −
1

2

p
∑

i=1

p
∑

j=1

β(λi)β(λj)

α(1)(λi)α(1)(λj)λi(λi + λj)

(30)

−
1

2

p
∑

i=1

p
∑

j=1

β(λi)β(λj)

α(1)(λi)α(1)(λj)λj(λi + λj)

= −
1

2

p
∑

i=1

p
∑

j=1

β(λi)β(λj)

α(1)(λi)α(1)(λj)λiλj

= −
1

2

β2(0)

α2(0)
,
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where the last equality follows from the identity (26). The proof of (c) with 0 < H < 1/2
now follows from expressions (29) and (31). Note that the proof of (c) with 1/2 < H < 1
is similar to that of 0 < H < 1/2 and is therefore omitted. �

Proof of Theorem 3. For the proof with 1/2 < H < 1, readers can refer to Tsai and
Chan [38]. For case where H = 1/2 is trivial, the proof with 0 < H < 1/2 is similar to
that of Theorem 1 in [38] and is hence omitted. �

Proof of Theorem 4. For the proof with 1/2 < H < 1, see Tsai and Chan [38]. The
following proof with 0 < H < 1/2 is similar to that in [38].

If we write fc(ω) = fY (ω) = g(H)L(ω)|ω|1−2H , where g(H) = Γ(2H +1) sin(πH)/(2π),

L(ω) = σ2|β(iω)|2/|α(iω)|2, then f
(1)
c (ω) = g(H)|ω|−2H{|ω|L(1)(ω) + (1− 2H)L(ω)} and

log(f (1)(ω)) = log(f (1)
c (ω)) + log

{

1 +

∑

k 6=0 f
(1)
c (ω + 2kπ)

f
(1)
c (ω)

}

= log g(H)− 2H log |ω|+ log{|ω|L(1)(ω) + (1− 2H)L(ω)} (31)

+ log(1 + R(ω)),

where R(ω) = R2(ω)/R1(ω), R1(ω) = f
(1)
c (ω) and R2(ω) =

∑

k 6=0 f
(1)
c (ω+2kπ). It follows

from limω→0{log(f (1)(ω))/ log |ω|} = −2H that the Hurst parameter H is identifiable.
Following Tsai and Chan [38], it suffices to show that, given f(ω), ω ∈ [−π,π], we can
determine L and all of its higher derivatives at ω = 0. Below, we show that L(0) and
L(1)(0) are identifiable. The identifiability of L(k)(0) for k ≥ 2 can be proven similarly by
the arguments in [38]. The identifiability of L(0) simply follows from the fact that

lim
ω→0

{log(f (1)(ω))− log g(H) + 2H log |ω| − log(1− 2H)}

= lim
ω→0

[

logL(ω) + log

{

1 +
|ω|L(1)(ω)

(1− 2H)L(ω)

}

+ log(1 + R(ω))

]

= logL(0).

Next, we prove the identifiability of R2(0), which is needed to prove the identifiability of
L(1)(0). By equation (31), we have

∂

∂ω
{log(f (1)(ω)) + 2H log |ω|}

=
|ω|L(2)(ω) + (2− 2H)L(1)(ω)

|ω|L(1)(ω) + (1− 2H)L(ω)
+

R(1)(ω)

1 + R(ω)
, (32)

where

R(1)(ω)

1 + R(ω)
=

R
(1)
2 (ω)

(1 + R(ω))R1(ω)
−

{

R2
1(ω)

R2(ω)R
(1)
1 (ω)

+
R1(ω)

R
(1)
1 (ω)

}−1

. (33)
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By equations (32) and (33), we have

lim
ω→0

[

|ω|1−2H ∂

∂ω
{log(f (1)(ω)) + 2H log |ω|}

]

= lim
ω→0

{

|ω|1−2HR(1)(ω)

1 + R(ω)

}

= lim
ω→0

{

−
|ω|1−2HR2(ω)R

(1)
1 (ω)

R2
1(ω)

}

= lim
ω→0

[

−
R2(ω){|ω|2L(2)(ω) + 2(1− 2H)|ω|L(1)(ω)− 2H(1− 2H)L(ω)}

g(H){|ω|L(1)(ω) + (1− 2H)L(ω)}2

]

=
2HR2(0)

g(H)(1− 2H)L(0)
,

hence R2(0) is identifiable. Now, equation (33) implies that

lim
ω→0

{

R(1)(ω)

1 + R(ω)
−

2HR2(0)|ω|2H−1

g(H)(1− 2H)L(0)

}

= lim
ω→0

{

−
R2(ω)R

(1)
1 (ω)

R2
1(ω)

−
2HR2(0)|ω|2H−1

g(H)(1− 2H)L(0)

}

= lim
ω→0

[

−
R2(ω)|ω|2H−1{|ω|2L(2)(ω) + 2(1− 2H)|ω|L(1)(ω)− 2H(1− 2H)L(ω)}

g(H){|ω|L(1)(ω) + (1− 2H)L(ω)}2

(34)

−
2HR2(0)|ω|2H−1

g(H)(1− 2H)L(0)

]

=
2H

g(H)
lim
ω→0

[

|ω|2H−1

{

(1− 2H)L(ω)R2(ω)

{|ω|L(1)(ω) + (1− 2H)L(ω)}2
−

R2(0)

(1− 2H)L(0)

}]

= 0

because R2(ω) = R2(0)+ ωO(1) and L(ω) = L(0)+ ωO(1) for ω tending to 0. Therefore,
by (32), (33) and (34),

lim
ω→0

[

∂

∂ω
{log(f (1)(ω)) + 2H log |ω|} −

2HR2(0)|ω|2H−1

g(H)(1− 2H)L(0)

]

= lim
ω→0

|ω|L(2)(ω) + (2− 2H)L(1)(ω)

|ω|L(1)(ω) + (1− 2H)L(ω)

=
(2− 2H)L(1)(0)

(1− 2H)L(0)
,
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which proves the identifiability of L(1)(0). �

4. Conclusion

We have proposed a unified continuous-time framework that is useful for studying time
series with short memory, long memory and antipersistence. The identifiability of the
CARFIMA process with discrete-time data established in Theorem 4 is a fundamental
feature that makes the model practical for data analysis. Therefore, in future research,
it would be both interesting and useful to study the statistical inference of antipersistent
CARFIMA models for data analysis.
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