
 - 1 -

Statistics → Applications → Epidemiology 

 

Does adjustment for measurement error induce positive bias if there is no true 
association? 

 

Igor Burstyn, Ph.D. 
 

Community and Occupational Medicine Program, Department of Medicine, Faculty of Medicine and 
Dentistry, the University of Alberta, Edmonton, Alberta, Canada; 

Tel: 780-492-3240; Fax: 780-492-9677; E-mail: iburstyn@ualberta.ca 

Abstract 
This article is a response to an off-the-record discussion that I had at an international meeting 
of epidemiologists.  It centered on a concern, perhaps widely spread, that measurement error 
adjustment methods can induce positive bias in results of epidemiological studies when there 
is no true association.  I trace the possible history of this supposition and test it in a 
simulation study of both continuous and binary health outcomes under a classical 
multiplicative measurement error model.  A Bayesian measurement adjustment method is 
used.  The main conclusion is that adjustment for the presumed measurement error does not 
‘induce’ positive associations, especially if the focus of the interpretation of the result is 
taken away from the point estimate.  This is in line with properties of earlier measurement 
error adjustment methods introduced to epidemiologists in the 1990’s.  An heuristic 
argument is provided to support the generalizability of this observation in the Bayesian 
framework.  I find that when there is no true association, positive bias can only be induced 
by indefensible manipulation of the priors, such that they dominate the data.  The 
misconception about bias induced by measurement error adjustment should be more clearly 
explained during the training of epidemiologists to ensure the appropriate (and wider) use of 
measurement error correction procedures.  The simple message that can be derived from this 
paper is: ‘Do not focus on point estimates, but mind the gap between boundaries that reflect 
variability in the estimate’.  And of course: ‘Treat measurement error as a tractable problem 
that deserves much more attention than just a qualitative (throw-away) discussion’. 

Introduction 

There is a suspicion among some epidemiologists that correction for error in exposure 
variables can artificially create an observed positive association.  The typical argument to 
support this notion proceeds along these lines: “If non-differential exposure misclassification 
(measurement error) attenuates an estimate of risk, then adjusting for this phenomena will 
increase the risk estimate proportionately to the presumed extent of imprecision in the 
observed exposure.  In most cases an argument can be made that the observed exposures 
were not influenced by the knowledge of health outcome and therefore, exposure 
misclassification (measurement error) is non-differential. By simply assuming an ever 
increasing magnitude of error in exposure, one can arrive at a correspondingly increasing risk 
estimate even if there is no true association.”  Such arguments are rarely voiced openly, but 
are a common concern in private discussions and are one reason put forward against the use 
of measurement error adjustment techniques.  However, if “measurement error is threatening 
our profession”[1], then the apparent avoidance of measurement error adjustment techniques 
[2] seems to be a suicidal tendency for epidemiology.  This article is an attempt to contribute 
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to overcoming the reluctance of epidemiologists to explicitly tackle the measurement error 
problem. 

The above perception of artificial inflation of exposure-response associations due to 
measurement error adjustment can perhaps be traced to some of the early measurement error 
correction methods introduced to epidemiologists, such as the following relationship, 
popularized by Armstrong [3], between the true (β) and observed (β*; ‘asterisk’ denotes an 
observed parameter) slopes of linear regression via the coefficient of reliability (ρxx): β = 
β*/ρxx, which assumes a non-differential classical additive measurement error model.  A 
similar relationship is known for the true and the observed relative risks (RR): ( )xxRRRR

ρ1*≅  
, under the assumptions stated above [4].  If we note that ρxx < 1 and is inversely proportional 
to the measurement error variance, then it is obvious that as the measurement error variance 
grows larger, the correction methods proposed above will yield ever increasing estimates of 
slopes and relative risks (association parameters).  Consequently, a person wishing to ‘game’ 
the rules can always postulate a measurement error variance sufficiently large to arrive at 
some target ‘elevated’ association parameter.  While there is no empirical evidence (to my 
knowledge) of abuse of the above equations, the obvious opportunity for a dishonest or naïve 
individual to bias the results seems to have cast a shadow of suspicion on all measurement 
error correction techniques.   

The simple approaches to the measurement error problem reviewed above do not reflect the 
state of the art in measurement error adjustment.  Some of the developments in the field are 
Bayesian methods that reconcile our knowledge about measurement error with the available 
data and do not simply ‘fix’ naïve estimates of slopes and relative risks by an external 
multiplier [5,6].  It must be noted that even the simple approaches to measurement error 
correction illustrated above do not alter significance testing and may in fact lead to the 
widening of confidence intervals without adding insights about the direction of the 
association [4,7].  Thus, the concern about falsifying findings with the correct application of 
the older approaches is also not justified, if one properly considers the variability of the 
estimate in the interpretation.  In fact, it was shown in Bayesian framework “that failing to 
adjust for misclassification can (lead one to) overstate the evidence”, but “an honest 
admission of uncertainty about the misclassification” can also result in a more accurate 
estimate of the association parameter; “neither of these phenomena are predicted by common 
rules-of-thumb”[8].   Overall, given the bias towards over-interpreting point estimates among 
epidemiologists [9,10], it is worth addressing the concern about positive bias in post-
adjustment association parameter under the true null association. 

The purpose of this article is to determine whether the slopes of linear and logistic 
regressions that are known to be flat could be biased upward by employing Bayesian 
correction for suspected multiplicative measurement error. 

Analysis 

I consider a prospective epidemiological study, a cohort, in which health outcomes are either 
binary or continuous and exposures, distributed log-normally are measured for each subject.  
The study, if properly analyzed, should reveal no association between the exposure and the 
outcomes. 

Statistical models 

I propose a measurement error model that seems to arise naturally in environmental and 
occupational epidemiology of chemical exposures and particles (and probably many other 
applications).  True exposure (X) is assumed to be related to observed exposure (W) through 
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a multiplicative error process: W = X×e, such that e ~ LN(0, τe); i.e. a classical multiplicative 
measurement error model (NB: hereafter τ. is the precision parameter equal to the inverse of 
variance).  Since most environmental and occupational exposure cannot be less than zero, we 
also assume that X ~ LN(μx, τ x).  Two health outcome models are examined.  First, health 
outcome (Y) is assumed to be measured on a continuous scale that can be normalized: Y ~ 
N(μy, τ y).  Second, a binary disease state (Z), given exposure X, is assumed to follow 
Bernoulli distribution: Z ~ Bern(π); π = p(Z=1|X).  Independence is assumed among π, μy, τy, 
μx, τx and τe. 

Simulated data & naïve analyses 

I will focus on the large-sample performance of measurement error adjustment procedures, 
not on the variability in its performance due to random error in finite samples.  This is 
consistent with the objective of investigating what is expected to happen to the association 
parameter when the null hypothesis is true.  Consequently, a very large simulated cohort 
consisting of 100,000 subjects was generated only once.  Each subject was assigned true 
exposure as LN(0, 1) and observed exposures were simulated with τe = 1.  Continuous health 
outcomes were assigned to each subject by drawing samples from N(μy = 0, τy = 1).  A binary 
disease state was assigned to 5% of the cohort (π = 0.05).  Naïve frequentist models were 
fitted to the resulting data to test whether observed exposure W is associated with either Y or 
Z, using simple linear and logistic regressions, respectively.  If true exposure X was 
observed, these models would be: Y|X = β0 + βX + ε, where ε ~ N(0, σε2) and logit(π)|X = α0 
+ αX ; of course E( β̂ ) = E(α̂ ) = 0: exposure and outcome are unrelated.  With surrogate W 
instead of X, the models become Y|W = β*

0 + β*W + ε*, where ε ~ N(0, τ*ε) and logit(π)|W = 
α*

0 + α*W.  Simulations and naïve analyses were undertaken in R environment [11]. 

Bayesian adjustment for measurement error 

To simplify the notation, let [•] denote the probability density function of random variable •, 
as well as define β = (β0, β) and α = (α0, α).  I estimated naïve models with the slope and the 
intercept for [Y|W] and [Z|W] using frequentist procedures.  Next, I formulated Bayesian 
models that ignore measurement error (not described in detail) and those required to correct 
for measurement error in W.  To accomplish the latter task, I specified three models [5,12]: 

1. Outcome/disease model ([Y|X, β, τε] or [Z|X, α]), 

2. Measurement error model [W|X, τe], and 

3. Model for true exposure [X|μx τx]. 

The above three models are specified using the description that appears in the previous 
sections and are linked by conditional independence assumptions.  Using conditional 
independence assumptions, I derived the following proportionality for the posteriors: 

[β, X, τε, τe|W, Y] ∝ [β|Y, X, τε][W|X, τe][β][τε][μx][τx][τe] 

and 

[α, X, τe|W, Z] ∝ [α|Z, X][W|X, τe][α][μx][τx][τe], 

for the linear and logistic outcome models respectively. 

The targets of inference are the conditional posterior distributions [β|rest] and [α|rest].  
Samples from the posteriors were obtained by Markov chain Monte Carlo (MCMC) 
sampling in WinBUGS expert system, which selects appropriate estimation algorithms for 
the specified models and priors [13,14].  I chose the majority of priors to be uninformative.  
Priors had to be somewhat different for linear and logistic disease models for computational 
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reasons.  For the linear disease model: [β0] ~ N(0, 100),  [β] ~ N(0, 100), [μx] ~ LN(0, 100), 
[τx] ~ Γ(0.01, 10), [τε] ~ Γ(0.01, 10).  For the logistic disease model: [α0] ~ N(0, 10), [α] ~ 
N(0, 10), [μx] ~ N(0, 10), [τx] ~ Γ(0.1, 10). (All normally distributed priors are specified in 
N(mean, variance) notation in the previous two sentences).  Next, I alternated between four 
types of prior distribution of the precision of measurement error, [τe] (Table 1).  Smaller 
means and variances of priors on precision of measurement error reflect an ever increasing 
belief that large measurement error is present. 

Three MCMC chains were obtained for each model using different initial values for β and α, 
while initializing other parameters at their expected (by simulation) values (NB: logistic 
regression proved to be much more sensitive to initial values in the sense that WinBUGS 
‘crashed’ unless ‘suitable’ initial values were chosen).  After 10,000 burn-in iterations, 
40,000 samples from the posterior were used to summarize the posteriors in terms of means 
and 95% credible intervals (CrI).  Convergence of MCMC chains was judged by visual 
inspection and by the potential scale reduction factor, 1ˆ ≈R at convergence (the square root of 
the ratio of the between-chain and the within-chain variances) [15].  WinBUGS was run from 
R environment [11] using R2WinBUGS function [16].  All computer codes required to 
reproduce the results are available from the author upon request (with the cautionary note on 
the very computer-intensive nature of the Bayesian models estimated for this paper when the 
dataset and number of MCMC iterations are both large). 

Parameter estimates in the simulated data 

The naïve frequentist estimate of change in Y per unit of W ( *β̂ ) was 0.0001 with a 95% 
confidence interval from -0.0009 to 0.001.  Without ‘correction’ for measurement error the 
posterior mean of slope (β) was 0.0001 with 95% CrI from -0.0008 to 0.001 (3,006 samples 
from the posterior).  The naïve frequentist estimate of the odds ratio ( )ˆexp( *α ) was 0.996 
with a 95% confidence interval from 0.991 to 1.001 and the analogous descriptive statistic 
for the posterior of the odds ratio did not change when the Bayesian equivalent of the naïve 
model was fitted to the data.  These results provide good evidence that the ‘observed’ 
exposure is not associated with the outcomes and demonstrate agreement of frequentist and 
Bayesian methods under uninformative priors. 

After ‘correction’ for measurement error most of the point estimates of the slope in the linear 
disease model were <0.01 with credible intervals nearly centered on zero, except for that for 
prior type B: elevated posterior mean with a credible interval that includes zero, but 
noticeably shifted towards positive values (Table 2).  In the logistic disease model, an ever 
increasing assertion about the presence of large measurement error appears to produce point 
estimates (to be more precise: posterior means) of odds ratios that are biased further and 
further away from the ‘true value’ of one: all credible intervals are very wide and include one 
(Table 3).  In both the linear and logistic models, the posterior means of the association 
parameters are biased away from the estimates obtained in models that do not assume 
measurement error as would be expected if the measurement error correction procedure was 
‘nudging’ the estimate away from the null.  It is clear that over-interpreting the trend in point 
estimates in response to measurement error correction, in this case, would lead to a false 
positive conclusion.  It must be noted that if the independence of exposure and outcomes was 
not known to be true by simulation in my examples, the lack of power would not be a 
plausible explanation for not excluding an association in these cases, since the simulated 
cohort is very large.  Therefore, Bayesian adjustment for measurement error in the studied 
situations leads to the correct conclusion that true exposure does not appear to be associated 
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with the two outcomes (or at least, for a cautious analyst, that measurement error is not the 
cause for the lack of the associations). 

Heuristic argument 

The conclusions that can be drawn from this simulation study apply, strictly speaking, to 
only those models and parameter estimates that were considered.  Nonetheless, the results do 
suggest some general lessons about the likelihood that correctly applied measurement error 
adjustment methods may induce bias away from the null when there is no exposure-response 
association.  A simplistic heuristic argument may help further reassure us that the 
conclusions drawn from the simulations can be generalized. 

Let U = f (b, V) be the model under consideration with respect to some (U, V) data with 
association parameter (b) in disease mode f, such that b>0 implies a positive association of U 
and V, while b=0 implies independence of U and V (which is indeed the case).  A strong a 
priori belief that p(b>0) can be a function of a presumed non-differential measurement error 
model which is believed to attenuate the observed borderline positive association (b*), such 
that b>b*>0.  A similar belief typically motivates measurement error adjustment: a suspicion 
that the ‘true’ association was missed and/or under-estimated due to errors in an exposure 
estimate.  Suppose that we want to determine p(b>0|data) and p(b=0|data) and compare these 
probabilities to find whether there is support in the data for a positive association.  Bayes 
theorem states that  

p(b>0|data) = p(data|b>0)p(b>0) / p(data) (positive exposure-response)  

and  

p(b=0|data) = p(data|b=0)p(b=0) / p(data) (no exposure-response). 

The comparison of interest is characterized by  

Δ = p(data|b=0)p(b=0) / p(data|b>0)p(b>0),  

i.e. is it more likely, given the data, that there is a positive association or that there is no 
association. 

If U and V are independent, then p(data|b=0)>>p(data|b>0)≅0, i.e. the likelihood that data 
arose under b=0 is much greater than the likelihood that data arose under b>0.  In fact, if 
p(data|b>0) → 0+ (or =0 for the infinite sample size), then p(b>0|data) → 0+ (in a finite 
sample and tending to zero for the infinite sample size).  In other words, no matter how 
strongly we express our belief that there is a positive association, for example because we 
suspect V to be subject to severe measurement error that attenuated b*, if the data strongly 
rejects the positive association, the calculations will favor the correct conclusion, i.e. Δ>>1 
and b=0.  The only other way to bias Δ is to ensure that (p(b>0)/p(b=0)) > 
(p(data|b=0)/p(data|b>0)) by placing very little a priori faith into the null compared to the 
positive association.  But if p(data|b>0) → 0+ then one would have to argue strongly in favor 
of p(b=0) → 0+ (null hypothesis all but rejected a priori).  However, priors that do not allow 
for null association and/or completely dominate the data are a clear violation of the principles 
of empiricism and any such formulation should be noticed and rejected by the scientific 
community.  In other words, a reasonably conducted Bayesian analysis will not induce an 
association that is not at all supported by the data under the presumed model. 
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Conclusions 

The measurement error adjustment methods explored in this paper do not show any tendency 
to inflate an exposure-response association.  However, the same care should be taken in 
interpreting such adjusted association parameters as ought to go into considering the validity 
of inferences drawn from naïve estimates, with the added comfort of knowing that the impact 
of measurement error on the results has been reduced.   

It is also worth re-iterating the cautionary note of Armstrong [4]: “If corrections are carried 
out on the basis of incorrect information on error magnitude, bias may be increased, rather 
than decreased.”  The emphasis in the above quote in italics in the quote is mine as it 
reinforces the notion that only incorrect information about measurement error will induce 
bias.  In Bayesian methodology for measurement error, one is allowed to be uncertain about 
the extent of measurement error and the exact knowledge of the true distribution of exposure 
is not necessary[6].  I observed that the prior on measurement error variance did in fact 
influence the central tendency of the posterior distributions of the association parameters. 
Therefore, while blatantly incorrect assumptions about measurement error structure and 
magnitude are likely to lead to biased inferences, Bayesian methods for measurement error 
adjustment appear to be able to reflect uncertainty about the magnitude of measurement error 
in the estimates that they yield, while still providing informative results.  In other words, in 
the Bayesian framework an investigator no longer has to rely on correct adjustment for 
getting one number right – the reliability coefficient for example – which is indeed a risky 
proposition.  It must be noted that even though the posterior distribution of the association 
parameters were influenced by the presumed extent of measurement error, the interpretation 
of the results that considers variability in the posterior sample consistently led to the correct 
overall conclusion of no association. 

Of course in a small (finite) sample, spurious associations can arise which are absent in the 
population, but this is an independent phenomena from any (perceived) bias due to 
adjustment for measurement error.  Thus, any biases inherent in the unadjusted estimate will 
be present in the adjusted one unless care is taken to remove such bias, e.g. by simultaneous 
adjustment for latent confounding [17-20] and known (non-measurement-error) bias [21].  
The simple and unoriginal [9] message that can be derived from this paper is: ‘Do not focus 
on point estimates, but mind the gap between boundaries that reflect variability in the 
estimate’.  And of course: ‘Treat measurement error as a tractable problem that deserves 
much more attention than just a qualitative (throw-away) discussion’. 
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Table 1: Priors of the precision of measurement error model ([τe]) 

 Distribution1 Mean Variance 

Uninformative Γ(0.1, 10) 1 10 

Informative type A (close to true error value) Γ(1, 1) 1 1 

Informative type B (inflated error) Γ(0.5, 1) 0.5 0.5 

Informative type C (inflated error) Γ(0.05, 1) 0.05 0.05 

1: Gamma distributions in the form of (k = shape , θ = scale) with mean = kθ and variance = kθ2.   

 
Table 2: Summaries of posteriors for linear outcome model under different priors of the precision of 

measurement error ([τe]): An ever greater measurement error is assumed with an increasing confidence as we 
move down the table from uninformative to informative type C prior; the sample size from converged MCMC 

chains used to calculate posterior mean and percentiles is 1,002. 

Summary statistics for posterior of slope (β) 

[τe] Mean 2.5%ile 97.5%ile 

Uniformative1 0.003 -0.02 0.04 

Informative type A2 0.002 -0.03 0.03 

Informative type B3 0.5 -1.5 3.0 

Informative type C4 0.0006 -0.01 0.01 

1: Γ(0.1, 10); 2:  Γ(1, 1); 3: Γ(0.5, 1); 4: Γ(0.05, 1). 

 
Table 3: Summaries of posteriors for logistic outcome model under different priors of the precision of 

measurement error ([τe]): An ever greater measurement error is assumed with an increasing confidence as we 
move down the table from uninformative to informative type C prior; the sample size from converged MCMC 

chains used to calculate posterior mean and percentiles is 1,002 

Summary statistics for posterior of odds ratio (exp(α)) 

[τe] Mean 2.5%ile 97.5%ile 

Uniformative1 0.705 0.148 4.116 

Informative type A2 0.780 0.233 2.312 

Informative type B3 0.645 0.113 1.391 

Informative type C4 0.559 0.082 1.822 

1: Γ(0.1, 10); 2:  Γ(1, 1); 3: Γ(0.5, 1); 4: Γ(0.05, 1). 



 - 8 -

 

Reference List 
 

 1.  Michels KB: A renaissance for measurement error. Int J Epidemiol 2001, 30: 421-
422. 

 2.  Jurek AM, Maldonado G, Greenland S, Church TR: Exposure-measurement error is 
frequently ignored when interpreting epidemiologic study results. Eur J Epidemiol 
2006, 21: 871-876. 

 3.  Armstrong BG: The effects of measurement errors on relative risk regression. Am J 
Epidemiol 1990, 132: 1176-1184. 

 4.  Armstrong BG: Effect of measurement error on epidemiological studies of 
environmental and occupational exposures. Occup Environ Med 1998, 55(10): 651-
656. 

 5.  Gilks WR, Richardson S, Spiegelhalter D: Markov Chain Monte Carlo in Practice. 
Chapman & Hall/CRC Press; 1996. 

 6.  Gustafson P: Measurement Error and Misclassification in Statistics and Epidemiology. 
Chapman & Hall/CRC Press; 2004. 

 7.  Greenland S, Gustafson P: Accounting for independent nondifferential 
misclassification does not increase certainty that an observed association is in the 
correct direction. Am J Epidemiol 2006, 164: 63-68. 

 8.  Gustafson P, Greenland S: Curious phenomena in Bayesian adjustment for 
exposure misclassification. Stat Med 2006, 25: 87-103. 

 9.  Phillips CV. Further beyond the confidence interval. American Journal of 
Epidemiology 157(11 Suppl), S31. 2003.  
Ref Type: Abstract 

 10.  Phillips CV. Further beyond the confidence interval (slides from the conference 
presentation): http://www.epiphi.com/papers/phillips_furtherbeyondci_sertalk.pdf. The 
36th Annual Meeting of the Society for Epidemiologic Research.Atlanta, Georgia, 
USA.June 11-14, 2003 . 2003. 11-18-0008.  
Ref Type: Electronic Citation 

 11.  R Development Core Team: R: A language and environment for statistical computing. 
ISBN 3-900051-07-0. Vienna, Austria: R Foundation for Statistical Computing; 2006. 

 12.  Gustafson P: Measurement Error and Misclassification in Statistics and Epidemiology. 
Chapman & Hall/CRC Press; 2003. 

 13.  Lunn DJ, Thomas A, Best N, Spiegelhalter D: WinBUGS -- a Bayesian modelling 
framework: concepts, structure, and extensibility. Statistics and Computing 2000, 
10: 325-337. 



 - 9 -

 14.  Spiegelhalter D, Thomas A, Best N: WinBUGS User Manual Version 1.4.3. MRC 
Biostatistics Unit, Institute of Public Health, Imperial College, London, UK; 2007. 

 15.  Gelman A, Carlin JB, Stern HS, Rubin DB: Bayesian data analysis, 2 edn. Chapman 
and Hall/CRC; 2004. 

 16.  Gelman A. R2WinBUGS: http://cran.r-
project.org/web/packages/R2WinBUGS/index.html. CRAN: R Project . 2008. 10-21-
2008.  
Ref Type: Electronic Citation 

 17.  Steenland K, Greenland S: Monte Carlo sensitivity analysis and Bayesian analysis 
of smoking as an unmeasured confounder in a study of silica and lung cancer. Am 
J Epidemiol 2004, 160: 384-392. 

 18.  McCandless LC, Gustafson P, Levy A: Bayesian sensitivity analysis for unmeasured 
confounding in observational studies. Stat Med 2007, 26: 2331-2347. 

 19.  McCandless LC, Gustafson P, Levy AR: A sensitivity analysis using information 
about measured confounders yielded improved uncertainty assessments for 
unmeasured confounding. J Clin Epidemiol 2008, 61: 247-255. 

 20.  de Vocht F, Kromhout H, Ferro G, Boffetta P, Burstyn I: Bayesian modelling of lung 
cancer risk and bitumen fume exposure adjusted for unmeasured confounding by 
smoking. Occup Environ Med 2008, in press. 

 21.  Phillips CV: Quantifying and reporting uncertainty from systematic errors. 
Epidemiology 2003, 14: 459-466. 

 
 


