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In this work, we make use of the OpenCL framework to accelerate an EMRI modeling
application using the hardware accelerators – Cell BE and Tesla CUDA GPU. We describe
these compute technologies and our parallelization approach in detail, present our per-
formance results, and then compare them with those from our previous implementations
based on the native CUDA and Cell SDKs. The OpenCL framework allows us to execute
identical source-code on both architectures and yet obtain strong performance gains that
are comparable to what can be derived from the native SDKs.

1. Introduction

In recent decades there has been a tremendous rise in numerical computer simulations
in nearly every area of science and engineering. This is partly due to the development
of cluster computing that involves putting together “off-the-shelf” computing units i.e.
commodity desktop computers into a configuration that would achieve the same level of
performance, or even outperform, traditional supercomputers at a fraction of the cost.
The main reason behind the significant cost benefit of cluster computing is that it is
entirely based on mass-produced, common desktop computers. Computational science
has benefited and expanded tremendously in the last decade due to rapid improvements
in CPU performance (Moore’s Law) and major price drops due to mass production and
intense competition.
However, a few years ago the computer industry hit a serious frequency wall, implying

that increasing the processor’s clock-rate for gains in performance could not be done in-
definitely, due to increases in power consumption and heat generation (power wall). This
led all the major processor manufacturers toward multi-core processor designs. Today,
nearly all commodity desktop and laptop processors are multi-core processors which com-
bine two or more independent computing cores on a single chip. Thus, manufacturers
continue to pack more power in a processor, even though their clock-frequencies have not
risen (and have stabilized at around 3 GHz).
It is interesting to note that there are other computing technologies that are based on a

many-core design and their overall performance has continued to increase at a rate much
higher than that of traditional multi-core processors. These technologies have typically
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been employed in desktop graphics cards (GPUs) and consumer gaming consoles. For
example, Compute Unified Device Architecture (CUDA) [ 1] and Cell Broadband Engine
Architecture (CBEA) [ 2] are many-core architectures designed to provide high perfor-
mance and scaling for multiple hardware generations. The Cell Broadband Engine (Cell
BE), which is the first incarnation of the CBEA, was designed by a collaboration be-
tween Sony, Toshiba, and IBM. The Cell BE was originally intended to be used in game
consoles (namely Sony’s Playstation 3 [ 3]) and consumer electronics devices, but the
CBEA itself was not solely designed for this purpose and is been used in areas such as
high-performance computing as well (IBM’s Cell blades [ 4], LANL RoadRunner [ 5]).
These many-core technologies are sometimes referred to as hardware accelerators, and
have recently received a significant amount of attention from the computational science
community because they can provide significant gains in the overall performance of many
numerical simulations at a relatively low cost.
However, these accelerators usually employ a rather unfamiliar and specialized pro-

gramming model that often requires advanced knowledge of their hardware design. In
addition, they typically have their own vendor- and design- specific software development
framework, that has little in common with others: CUDA SDK for Nvidia’s GPUs; ATI
Stream SDK for ATI’s GPUs; IBM Cell SDK for the Cell BE, while traditional multi-
core processors (Intel, AMD) typically involve OpenMP-based parallel programming. All
these SDKs enable parallel software development on their respective hardware, and offer
programmability in the ubiquitous C programming language in conjunction with a set
of libraries for memory management. Yet, the details involved in the programming are
remarkably different for each such architecture. Therefore, for a computational scientist,
with limited time and resources available to spend on such specialized software engineer-
ing aspects of these architectures, it becomes exceedingly difficult to embrace and make
effective use of these accelerators for furthering science.
Over the past year, under Apple’s leadership, an open standard has been proposed to

“unify” the software development for all these different computer architectures under a
single standard – the Open Computing Language (OpenCL) [ 6]. All major processor
vendors (Nvidia, AMD/ATI, IBM, Intel, etc.) have adopted this standard and have just
released support for OpenCL for their current hardware. In this work, we perform a
careful performance-evaluation of OpenCL for scientific computing on several different
hardware architectures.
The scientific application that we will concentrate on in this work is an application from

the Numerical Relativity (NR) community – the EMRI Teukolsky Code which is a finite-
difference, linear, hyperbolic, inhomogeneous partial difference equation (PDE) solver [
7]. It should be noted that in recent work [ 8] this same application was accelerated
using a Tesla GPU and Cell BE . In that work, native SDKs were used to perform this
optimization i.e. CUDA SDK for the Nvidia Tesla GPU and IBM Cell SDK for the Cell
BE. In our current work, we achieve the same using the OpenCL framework instead,
and compare the outcome with previous work [ 8]. The main advantage of our current
approach is that the exact same OpenCL-based source-code executes on both accelerator
hardware, therefore yielding a tremendous saving in the code development effort. It is
also worth pointing out that our NR application is of a type that is quite common in
various fields of science and engineering, therefore we expect that our work would be of
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interest to the larger community of computational scientists.
This article is organized as follows: In Section 2, we provide a very brief introduction to

multi- and many- core processor architectures and also the OpenCL framework. In Section
3, we introduce the EMRI Teukolsky Code, the relevant background gravitational physics
and the numerical method used by the code. Next, we emphasize aspects of OpenCL
and the compute hardware relevant to our implementation in Section 4. In Section 5,
we present the overall performance results from our OpenCL-based parallelization efforts.
Finally in Section 6, we summarize our work and make some conclusive remarks.

2. Computing Technologies

In this section we describe in some detail the many-core compute hardware accelerators
and the software development framework that are under consideration in our work.

2.1. Multi-core & Many-core Processor Architectures

As mentioned above, all processor manufacturers have moved towards multi-core designs
in the quest for higher performance. At the time of the writing of this article, high-end
desktop processors by Intel and AMD have a maximum of six (6) cores. On the other
hand, there are other computing technologies that have been in existence for several years
that have traditionally had many more compute cores than standard desktop processors.
As mentioned before, these are sometimes referred to as hardware accelerators and have
a many-core design. Examples of these accelerators include GPUs and the Cell BE.
The Cell BE [ 2] is a totally redesigned processor that was developed collaboratively

by Sony, IBM and Toshiba primarily for multimedia applications. This processor has a
general purpose (PowerPC) CPU, called the PPE (that can run two (2) software threads
simultaneously) and eight (8) special-purpose compute engines, called SPEs available for
raw numerical computation. Each SPE can perform vector operations, which implies
that it can compute on multiple data, in a single instruction (SIMD). All these compute
elements are connected to one another through a high-speed interconnect bus (EIB). Note
that because of this heterogeneous design, the Cell BE is very different from traditional
multi-core processors. The outcome of this distinctive design is that a single, 3.2 GHz
(original 2006/2007) Cell BE has a peak performance of over 200 GFLOP/s in single-
precision floating-point computation and 15 GFLOP/s in double-precision operations. It
should be noted that the current (2008) release of the Cell BE, called the PowerXCell, has
design improvements that bring the double-precision performance up to 100 GFLOP/s.
One challenge introduced by this new design, is that the programmer has to explicitly
manage the data transfer between the PPE and the SPEs. The PPE and SPEs are
equipped with a DMA engine – a mechanism that enables data transfer to and from main
memory and each other. The parallel programming model on Cell BE allows for the use
of SPEs for performing different tasks in a workflow (task parallel model) or performing
the same task on different data (data parallel model).
In the CUDA context, the GPU (called device) is accessible to the CPU (called host)

as a co-processor with its own memory. The device executes a function (usually referred
to as a kernel) in a data parallel model i.e. a number of threads run the same program
on different data. The many-core architecture of the GPU makes it possible to apply
a kernel to a large quantity of threads in one single call. If the hardware has a large
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number of cores, it can process them all in parallel (for example, Nvidia’s Tesla GPU
has as many as 240 compute cores clocked at 1.3 GHz). In the area of high performance
computing, this idea of massive parallelism is extremely important. The Tesla GPU can
also perform double-precision floating point operations, at a performance comparable to
that of the PowerXCell mentioned above. GPUs provide significant flexibility in terms
of memory management: Six (6) main types of memory exist in the form of registers,
local memory, shared memory, global memory, constant memory and texture memory.
We will not attempt to go into detail with these different memory arrangements in this
document; instead we will simply refer the reader to online resources on this somewhat
involved topic [ 1].

2.2. The Open Computing Language

The main software framework that is under consideration in this work is the Open Com-
puting Language. As mentioned already, OpenCL is a new framework for programming
across a wide variety of computer hardware architectures (CPU, GPU, Cell BE, etc). In
essence, OpenCL incorporates the changes necessary to the programming language C,
that allow for parallel computing on all these different processor architectures. In addi-
tion, it establishes numerical precision requirements to provide mathematical consistency
across the different hardware and vendors – a matter that is of significant importance
to the scientific computing community. Computational scientists would need to rewrite
the performance intensive routines in their codes as OpenCL kernels that would be ex-
ecuted on the compute hardware. The OpenCL API provides the programmer various
functions from locating the OpenCL enabled hardware on a system to compiling, sub-
mitting, queuing and synchronizing the compute kernels on the hardware. Finally, it is
the OpenCL runtime that actually executes the kernels and manages the needed data
transfers in an efficient manner. As mentioned already, most vendors have released an
OpenCL implementation for their own hardware.
From a programming standpoint, OpenCL is a relatively simple language to use, pro-

vided that the programmer has a strong C language background. Operations are per-
formed with respect to a given context – the creation of which is the first step to initial-
izing and using OpenCL. Each context can have a number of associated devices (CPU,
GPU) and within a context, OpenCL guarantees a relaxed memory consistency between
devices. OpenCL uses buffers (1 dimensional blocks of memory) and images (2 and 3
dimensional blocks of memory) to store the data of the kernel that is to be run on the
specified device. Once memory for the kernel data has been allocated and a device has
been specified, the kernel program (the program which the programmer intends to run
on the device) needs to be loaded and built. To call a kernel, the programmer must build
a kernel object. Once the kernel object has been built and the arguments to the kernel
have been set, the programmer must create a command queue. All of the computations
done on the device are done using a command queue. The command queue is essentially
a virtual interface for the device and each command queue has a one-to-one mapping with
the device. Once the command queue has been created, the kernel can then be queued
for execution. The total number of elements or indexes in the launch domain is referred
to as the global work size and individual elements are referred to as work items. These
work items can be combined into work groups when communication between work items
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is required. The kernel can be executed on a 1, 2 or 3 dimensional domain of indexes –
all of which execute in parallel, given proper resources.

3. EMRI Teukolsky Code

In our earlier work [ 8] we describe the EMRI Teukolsky Code in detail, and also
present the relevant background gravitational physics. Therefore, we simply reproduce
the relevant section from Ref. [ 8] below for completeness with minimal alterations.
Many gravitational wave observatories [ 9] are currently being built all over the globe.

These laboratories will open a new window into the Universe by enabling scientists to make
astronomical observations using a completely new medium – gravitational waves (GWs)
as opposed to electromagnetic waves (light). These GWs were predicted by Einstein’s
relativity theory, but have not been directly observed because the required experimental
accuracy was simply not advanced enough (until very recently).
Numerical Relativity is an area of gravitational physics that is focussed on the numerical

modeling of strong sources of GWs – collisions of compact astrophysical objects such as
neutron stars and black holes. Thus, it plays an extremely important role in this new and
upcoming area of GW astronomy. The specific NR application that we consider in this
paper is one that evolves the GWs generated by a compact object (such as a star of the
size of our own Sun) that has a decaying orbit around a supermassive black hole. Such
large black holes – often more massive than a million times our Sun – lurk at the center
of most galaxies and routinely devour smaller stars and black holes. Such processes are
commonly referred to as extreme mass-ratio inspirals (EMRIs) in the relevant literature.
The low-frequency gravitational waves emitted from such EMRI systems are expected to
be in good sensitivity band for the upcoming space-borne gravitational wave detectors –
such as the ESA/NASA Laser Interferometer Space Antenna (LISA) mission [ 10]. Studies
of the dynamics and the orbital evolution of a binary system in the extreme mass-ratio
limit is therefore an important issue for low-frequency gravitational wave detection.
Because of the extreme mass-ratio, the small object orbiting around the central super-

massive black hole can be modeled as a small structure-less object, and the problem can
be addressed within black hole perturbation theory. This is where the Teukolsky equation
becomes relevant. This equation governs the evolution of the perturbations of rotating
(Kerr) black holes, with the small object acting as a “source” of the perturbations. In
other words, the Teukolsky equation is essentially a linear wave equation in Kerr space-
time geometry, with the small object acting as generator of the gravitational waves. Thus,
to numerically model an EMRI scenario, we solve the inhomogeneous Teukolsky equation
in the time-domain.
The next two subsections provide more detailed information on this equation and the

associated numerical solver code.

3.1. Teukolsky Equation

The Teukolsky master equation describes scalar, vector and tensor field perturbations
in the space-time of Kerr black holes [ 11]. In Boyer-Lindquist coordinates, this equation
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takes the form
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Ψ = −4π(r2 + a2 cos2 θ) T, (1)

where M is the mass of the black hole, a its angular momentum per unit mass, ∆ =
r2 − 2Mr + a2 and s is the “spin weight” of the field. The s = ±2 versions of these
equations describe the radiative degrees of freedom of the gravitational field, and thus
are the equations of interest here. As mentioned previously, this equation is an example
of linear, hyperbolic, inhomogeneous PDEs that are quite common in several areas of
science and engineering, and can be solved numerically using a variety of finite-difference
schemes. The quantity T in Eq. (1) is the “source” term as mentioned in the previous
section. It plays an extremely critical role in this work and that will be discussed in detail,
later in this paper. Ref. [ 7] has a mathematical formula for this quantity and to save
space, we will not reproduce that expression here.

3.2. Numerical Method

Ref. [ 12] demonstrated stable numerical evolution of Eq. (1) for s = −2 using the well-
known Lax-Wendroff numerical evolution scheme. Our Teukolsky Code uses the exact
same approach, therefore the contents of this section are largely a review of the work
presented in the relevant literature [ 7].
Our code uses the tortoise coordinate r∗ in the radial direction and azimuthal coordinate

φ̃. These coordinates are related to the usual Boyer-Lindquist coordinates by

dr∗ =
r2 + a2

∆
dr (2)

and

dφ̃ = dφ+
a

∆
dr . (3)

Following Ref. [ 12], we factor out the azimuthal dependence and use the ansatz,

Ψ(t, r∗, θ, φ̃) = eimφ̃r3Φ(t, r∗, θ). (4)

Defining

Π ≡ ∂tΦ + b ∂r∗Φ , (5)

b ≡
r2 + a2

Σ
, (6)
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and

Σ2 ≡ (r2 + a2)2 − a2∆ sin2 θ (7)

allows the Teukolsky equation to be rewritten as

∂tu+M∂r∗u+Lu +Au = T , (8)

where

u ≡ {ΦR,ΦI ,ΠR,ΠI} (9)

is the solution vector. The subscripts R and I refer to the real and imaginary parts
respectively (note that the Teukolsky function Ψ is a complex valued quantity). Explicit
forms for the matrices M , A and L can be easily found in the relevant literature [ 12].
Rewriting Eq. (8) as

∂tu+D∂r∗u = S , (10)

where

D ≡









b 0 0 0
0 b 0 0
0 0 −b 0
0 0 0 −b









, (11)

S = T − (M −D)∂r∗u− Lu−Au, (12)

and using the Lax-Wendroff iterative scheme, we obtain stable evolutions. Each iteration
consists of two steps: In the first step, the solution vector between grid points is obtained
from

u
n+1/2
i+1/2 =

1

2

(

u
n
i+1 + u

n
i

)

− (13)
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D
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(

u
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n
i

)

− S
n
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.

This is used to compute the solution vector at the next time step,

u
n+1

i = u
n
i − δt

[

1

δr∗
D

n+1/2
i

(

u
n+1/2
i+1/2 − u

n+1/2
i−1/2

)

− S
n+1/2
i

]

. (14)

The angular subscripts are dropped in the above equation for clarity. All angular deriva-
tives are computed using second-order, centered finite difference expressions.
Following Ref. [ 12], we set Φ and Π to zero on the inner and outer radial boundaries.

Symmetries of the spheroidal harmonics are used to determine the angular boundary
conditions: For even |m| modes, we have ∂θΦ = 0 at θ = 0, π while Φ = 0 at θ = 0, π for
modes of odd |m|.
Numerical evolutions performed using the EMRI Teukolsky Code can provide a wealth

of information, not only about the gravitational wave emitted by the EMRI system, but
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Figure 1. Recoil velocity or “kick” experienced by an EMRI system, as a function of
time as computed by our EMRI Teukolsky Code. This recoil is caused due the linear
momentum carried away by the gravitational waves emitted by this collapsing system.

also about the behavior of the black hole binary system itself. For example, gravitational
wave emission can cause the binary system to experience a recoil, much like the “kick”
experienced upon firing a rifle. This is due to the fact that these waves not only carry
away energy from the binary system, they also carry linear and angular momentum away.
These recoil velocities can be in the thousands of km/s and may be responsible for ejecting
the binary system from the host galaxy! In Fig. 1 we depict a recoil experienced by a
binary system with a mass-ratio of 1/10. The larger black hole here is a rotating (Kerr)
black hole with Kerr parameter a/M = 0.5.

4. OpenCL Parallel Implementation

In our recent work [ 8] the EMRI Teukolsky Code has been developed for optimized ex-
ecution on the Cell/GPU hardware. That accelerated code yields a speed up of well more
than an order-of-magnitude over a PPE/CPU-only code [ 8]. It should be noted that the
context of this computation is double-precision floating point accuracy. In single-precision
this speed up would be significantly higher. The code development performed in [ 8] uses
Nvidia’s CUDA SDK for the GPU hardware and IBM Cell SDK for the Cell BE. It is
worth pointing out that in spite of the fact that the approach taken towards paralleliza-
tion is identical, the actual code involving these two different architectures has little in
common. This is because of the vast differences between CUDA and Cell SDK – from
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the explicit memory and thread management to even the compilation process. OpenCL is
uniquely positioned to address this serious problem and allows a computational scientist
to experiment with different accelerator hardware without such a significant redundant
software development effort. Below we describe our approach toward parallelization of
the EMRI Teukolsky Code in the OpenCL framework.
The 8 SPEs of the Cell BE and the 240 cores of the Tesla GPU are the main compute

engines of these accelerator devices respectively, therefore one would want these to execute
the most compute intensive tasks of a code in a data-parallel fashion. Upon performing a
basic profiling of our code using the GNU profiler gprof, we learn that simply computing
the source-term T (see Section 3.1) takes 99% of the application’s overall runtime. Thus,
it is natural to consider accelerating this T calculation using data parallelization on the
SPEs of the Cell BE and the cores of the Tesla GPU.
A data-parallel model is straightforward to implement in a code like ours. We simply

perform a domain-decomposition of our finite-difference numerical grid and allocate the
different parts of the grid to different SPEs or GPU cores. Essentially, each compute
thread computes T for a single pair of r∗ and θ grid values. Note that all these calculations
are independent, i.e. no communication is necessary between the SPEs/GPU threads.
In addition, it is necessary to establish the appropriate data communication between the

SPEs/GPU cores and the remaining code that is executing on the PPE/CPU respectively.
We simply use clEnqueueReadBuffer, clEnqueueWriteBuffer instructions to achieve
this. In total, only a rather small amount of data is required to be transferred back and
forth from the SPEs/GPU at every time-step of the numerical evolution. To be more
specific, approximately 10 floating-point numbers are required by the SPEs/GPU to begin
the computation for a specific (r∗, θ) and then they release only 2 floating-point values
as the result of the source-term T computation. Because of the rather modest amount of
data-transfer involved, we do not make use of any advanced memory management features
on both architectures. In particular, we do not make use “double buffering” on the Cell
BE, and we only use global memory on the GPU.
The source-term computation in itself is rather complicated – the explicit mathematical

expression for T is too long to list here. A compact expression of its form can be found in
Ref. [ 7] although that is perhaps of limited usefulness from the point of view of judging
its computational complexity. It will suffice here to say that it is essentially a very long
mathematical formula that is implemented using numerical code which uses elementary
floating-point operations and approximately 4000 temporary variables of the double1

data-type. The code makes use of double-precision floating-point accuracy because that is
the common practice in the NR community and also a necessity for such finite-difference
based evolutions, especially if a large number of time-steps are involved.

1It is worth pointing out that in our earlier work [ 8] made use of the complex data-type in the source-
term calculation, as is required for full generality. Because of the unavailability of the complex data-type
in OpenCL, in our current work we restricted our computation to cases wherein the complex data-type
is unnecessary. More specifically, instead of modeling rotating (Kerr) central black holes, we only model
non-rotating (Schwarzschild) black holes in our present work.
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Figure 2. Overall performance of the EMRI Teukolsky Code accelerated by the Cell
Broadband Engine using the OpenCL framework. The baseline here is the Cell’s PPE.

5. Performance Results

In this section of this article, we report on the performance results from our OpenCL
implementation, and also how they compare with those from our previous implementations
based on CUDA and Cell SDKs. We use the following hardware for our performance
tests: IBM QS22 blade system, with two (2) PowerXCell processors clocked at 3.2 GHz.
This system is equipped with 16 GBs of main memory. In the GPU context, our system
supports the Nvidia C1060 Tesla CUDA GPU. This system has an AMD 2.5 GHz Phenom
(9850 quad-core) processor as its main CPU and four (4) GBs of memory. All these
systems are running Fedora Linux as the primary operating system. Standard open-source
GCC compiler suite for code development is available on all these systems. However,
on the QS22 blade system we make use of the commercial IBM XLC/C++ compiler
suite. We use vendor (IBM, Nvidia) supplied OpenCL libraries and compilers on both
systems – these are presently in beta development stage and are therefore likely to improve
significantly in the future.

5.1. OpenCL EMRI Teukolsky Code Performance on Cell BE Hardware

In Fig. 2 we show the overall performance results from our EMRI Teukolsky Code
as accelerated by the Cell BE. We choose the PPE as the baseline for this comparison.
Both our OpenCL (Binary) and Cell SDK based codes deliver an impressive 30x gain
in performance over the PPE. For this comparison, we use the maximum allowed lo-
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Figure 3. Overall performance of the EMRI Teukolsky Code accelerated by the Tesla
CUDA GPU using OpenCL. The baseline here is the supporting system’s CPU – an
AMD Phenom 2.5 GHz processor.

cal work size of 256 in the OpenCL code. There are two remarks worth making in the
context of this comparison. Firstly, the OpenCL-based performance we mention for the
comparison above, results when the OpenCL kernel is pre-compiled. If the kernel is left
as source-code, the kernel compilation itself strongly dominates the total runtime of the
code, resulting in negligible performance gain over the PPE. These results are labelled in
Fig. 2 as OpenCL (Source). Secondly, OpenCL makes use of all the available SPEs in the
QS22 blade i.e. 16 SPEs in total. Therefore, to estimate the gain from a single Cell BE
processor (8 SPEs), we halve the performance gain obtained from the entire QS22 blade.
On the Cell BE, an OpenCL based implementation delivers comparable performance

to that based on the native Cell SDK. These performance gains are well over an order-
of-magnitude and therefore the Cell BE with OpenCL framework has great potential for
significantly accelerating many scientific applications.

5.2. OpenCL EMRI Teukolsky Code Performance on Tesla GPU Hardware

In Fig. 3 we show the overall performance results from our EMRI Teukolsky Code as
accelerated by the Nvidia Tesla CUDA GPU. Here we choose the CPU of the supporting
system as the baseline. This CPU is a four (4) core AMD Phenom 2.5 GHz processor.
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Figure 4. Relative performance of the OpenCL-based EMRI Teukolsky Code on all dis-
cussed architectures – CPU, CBE and GPU. The baseline here is the system CPU – an
AMD Phenom 2.5 GHz processor.

We choose the baseline for these comparisons to be the single-core 2 performance of our
EMRI Teukolsky Code on an AMD 2.5 GHz Phenom processor.
Once again we note that the OpenCL based implementation performs comparably well

to the one based on CUDA SDK (25x gain). These performance gains are well over an
order-of-magnitude and therefore the Tesla GPU with OpenCL has great potential for
significantly accelerating many scientific applications. In addition, even for the case in
which the OpenCL kernel is not pre-compiled, the overall performance gain is significant.
For this comparison, we use a local work size of 128 in the OpenCL code, because a
larger value yields incorrect results.

5.3. Relative Performance

In Fig. 4 we depict the relative performance of all these architectures together, with
the single-core 2.5 GHz AMD Phenom processor as the baseline. The results presented
there are self explanatory. In addition, it is worth commenting on the comparative cost
associated to procuring these different hardware architectures. The 2.5 GHz AMD Phe-
nom is very inexpensive, and a system similar to the one we used for testing can be easily
obtained for under $1,000. The Cell BE, that exhibits very impressive performance in

2The OpenCL Teukolsky Code cannot be executed on this multi-core CPU platform because (at the time
this work was conducted) AMD’s OpenCL implementation does not include support for double-precision
floating point operations.
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our tests is the most expensive hardware to obtain, with its listed price on IBM’s website
being $5,000 per processor. However, IBM is currently heavily discounting QS22 blades,
and thus the “street” price is closer to $2,500 per processor. Finally, the Nvidia Tesla
GPU is currently available for approximately $1,500.

6. Conclusions

In this work, we take an important NR application – the EMRI Teukolsky Code – and
perform a low-level parallelization of its most computationally intensive part using the
OpenCL framework, for optimized execution on the Cell BE and Tesla CUDA GPU. We
describe the parallelization approach taken and also the relevant important aspects of the
considered compute hardware in some detail. In addition, we compare the performance
gains we obtain from our OpenCL implementation to the gains from native Cell and
CUDA SDK based implementations.
The final outcome of our work is very similar on these architectures – we obtain well over

an order-of-magnitude gain in overall application performance. Our results also suggest
that an OpenCL-based implementation delivers comparable performance to that based on
a native SDK on both types of accelerator hardware. Moreover, the OpenCL source-code
is identical for both these hardware platforms, which is a non-trivial benefit – it promises
tremendous savings in parallel code-development and optimization efforts.
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