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Propagation of extended objects across singularity of time
dependent orbifold
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In this paper we argue that the compactified Milne space is@iging model of the cosmological singular-
ity. It is shown that extended objects like strings propagata well-defined manner across the singularity
of the embedding space. Then a proposal for quantizationtehded objects in the case of a membrane is
given.
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1 Introduction

One of the simplest models of the neighborhood of the cosgicdd singularity, inspired by string/M
theory [1], is the compactified Milne spack{c. It has been used in the cyclic universe scenatibl[1, 2, 3].
This model seems to be attractive, because it consists edipgelarity and post-singularity epochs and
can be described in terms gfiantumelementary objects propagatingdlassicalspacetime.

Let us consider a two-dimensional spacetime with the lieeneint:

ds? = —dt* + t*d6>. (1)

We identify the point® ~ 6 + 3 for some fixed value o8, so that) € [0, 3[. Generalization of{1) to the
d + 1 dimensional spacetime, which will be denoted/f-, has the form:

ds® = —dt? + t2d0* + 6y da*dat, 2)

wheret,2* € R, 0 € St (k=2,....d).

One term in the metrid{2) disappears/appeats-at0, thus the spacé1- may be used to model the
big-crunch/big-bang type singularity. Orbifoldirf} to the segment gives a model of spacetime in the
form of two orbifold planes which collide and re-emerge at 0. Our results apply to both choices of
topology of the compact dimension.

The Polyakov action integral for a testbrane (i.e. 0-brane = particle,l-brane = string2-brane =
membrane, . .) embedded in a fixed background spacetime with mejricreads:

1
S, = —ghn [ @IV [0X X g~ (- ) @

wherey,, is mass per unit of-volume,c® arep-brane worldvolume coordinates,; is p-brane world-
volume metric,y := det[ya], (X*) = (T, X*,0) = (T, X*',..., X1 ©) are embedding functions
of p-brane, i.e. X* = X*(¢%), corresponding tdt,x', ..., z%~1 @) directions ofd + 1 dimensional
background spacetime. The case of a particle propagatingdnis not clear and was studied i1 [4, 5].

* E-mail: pmalk@fuw.edu.pl, Phone: (+48 22) 55 32 275, Fax: (+48 22) 62 16 085

Copyright line will be provided by the publisher


http://arxiv.org/abs/1001.3267v1

2 P. Malkiewicz: Propagation of extended objects acrossusmigy

2 Dynamics of classical string

Propagation of classical string across the singularitp6f is the best example of how extended objects
can successfully 'cure’ spacetime singularities. In wiodlbfvs we use théocal flathesof M to solve
the dynamics of a string. The well-known string’s propagain Minkowski space is given by:

x“(T,a):xi(T—i—a)—i—x‘i(T—a), 4)

02" 0y + Opa" 05z, = 0, 07t 0px, =0, (5)
wherez# (u = 0,1,...) are Minkowski coordinates and; are any functions. The equatioh$ (5) are just
gauge constraints. Ferindingmodesz(t, #) in M, wherez := (22, 23,. . . ,2%) one shows in[6] that
the extra conditions hold:

2’ =f(r+0) = f(=T+0), 2! = g(r +0) = g(~T +0), (6)
and

xi( Za )exp ( ﬁ 9) k> 1. @)

Satisfying the last condition is not straightforward anstseupon the fact that the dynamics is governed
by a second order differential equation. Thus it is suffittersatisfy the conditior[{7) by specifyingf,
dyx" on a single Cauchy’s line. In this way one rules out one of tiréables in[(¥) and compares functions
dependent on just a single variable. This strategy warkarié]leads to the solutions:

¥ = g¢sinh(oy) + qsinh(a_), x' = gcosh(o;) — gcosh(o_), (8)

k= Zan+exp ﬁ a+ +Zan_exp(z27a )+ (o +oo), 9)

wherek > 1 andaf,, af_, ¢f are constants. These solutions should satisfy the gaugikticors [3),

n—>?

which in the case aM ¢ read
Dy 0zt = ¢? = 0_x,0_a". (20)
Alternatively, the solutiong{9) in terms 6fandd have the form

Z (CLEH_S 2rrnarcsmf( 2q) 4 a 712"T"arcsinf(%)) exp (127‘-7”9)

n

. t
- 2c’garc5|nk(2—q), (11)

zF(t,0)

wheren denotes:-th excitation. The number of arbitrary constant$id (11) lbareduced by the imposition
of the gauge conditiof (10).

One observes that the above solutions are well-defined wherng and it is reasonable to expect that
the same holds for higher dimensional objects like clabgi@nbrane. The quantization should not spoil
this as it was proven in the case of a strindih [7].

3 Canonical quantization of membrane

Total Hamiltonian,Hr, corresponding to the Polyakov action reads (seele.g. [8]):

Hr = /d”U’HT , Hp = AC + A'C;, (12)
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whereA = A(c%) andA® = A’(c%) are any ‘regular’ functions, and' and C; are first-class constraints:

C= H,u Hl/ g‘“’ + ,LLZQ) 8a’)('uaa’)(yg,ul/ ~ 0 y O’L = H,uaix'u ~ Oa (Z = 17 o ap) (13)
D 0- 0-
with Poisson bracket:, -} := [ d cr(aX“ 31, — oI axu . We will consideruniformly windingmodes

of p-branes inM¢, i.e. o = 0 = O anddy X" = 0 = 0dyll,. This reduces number of world-volume
coordinates and subsequently number of constraints by®tiesit is now equivalent to the dynamics of
a(p — 1)-brane in thel-dimensional *flat FRW universe with the metri?,, = 7',, dX"dX". In the
case of membrane it leads to two constraints of the form:

1 p2bo
= I B DT 0, X0 X Pnas =0, Cp:=0,XII, ~ 0, 14
2#290T + 2 b Tlap B 1 ( )

which effectively are constraints of a string in the spanetivith the line elemenis?_.. We redefine the

constraints[(14) and smear them with test functions:

red’

/Ci -exp (ino)do, ne Z, Cy:= ¢ :; G (15)
and check that the new constraints satisfy the followingdlgeebra:
{Ly Ly} =im=n)Ly o ALy Ly} =i(m—n)Ly ., {L), Ly} =0, (16)

where(LF)* = Lfn. Now we define Hilbert space encoding many-field degreeseefiiom as in[9]:
H> \I/[?] = /1/)(?, ?,a)da, Y = ?(0’) a7

such that| || < oo and(¥|®) := [ ¥ 7 [?] [d?]. We define the operatols, as follows:

T — 8w ino’i " 8w d ino d "
LY = Z/ (aw o T Y ])da
_ ino 81/) 8w
- /e ( iyt Y m/))dcr eH (18)
One may check that:
[zmﬁm] =(n— m)zn-kmv <En\11|q)> = <\IJ|IA/L(I)> = <\I/|i/_nfl>>, (19)

which is a quantum counterpart for each subalgebra comtamehe full algebral(16). To construct the
representation of the full algebfa{16), which consistswaf commuting subalgebras, one may use standard
techniques, i.e. direct sum or tensor product of the reptatens of both subalgebras. Now, following
the Dirac prescription one solves the quantum constradietspne looks for suck that:

LaW[Y]=0,ne 2 (20)
Fory = ¢(7, ?) the condition[(2D) reads:
o\ 1 ¥y _
/(e )| 1/)—!—8},/#}/“] do=0,n¢€Z, (21)

which has the solution [9]:

o= (S

ﬁ)”_q (22)
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where}_  pi' = p. This is an expected result since the meas(yrﬁu |Y #|e* do is invariant with respect
to o-diffeomorphisms.

All operators acting on the solutior{sS{22) are observaliteeshey act on gauge invariant states. The
whole variety of states includes many subspaces, which we&sato construct representations of observ-
ables. An example of such subspace is spanned by:

b= a,(V)V — w[y] = / o, (V)dv™. 23)

We may introduce quantum observab@§ s = s*(Y")dyx such that:

~

65(/ozudY“) = / (s)‘ozﬂy)\ +s?‘#aA)dY“ e [65,Ot] = 6[57,5]. (24)

But what are the field§#? It seems that one needs to postulate (find?) a relation bety& and
{X*" x X" x1I,}. Such arelation was proposed|(in [9]. Study of this relatiould enable to interpret the
observables il (24) in physical terms and thus completeribyggsed quantization scheme for membrane.

4 Conclusions

It seems that the compactified Milne spagdé -, is suitable for modelling higher dimensional cosmolog-
ical singularity. We showed that classical propagationxeited string is well-defined and unambiguous.
The natural expectation would be: quantization should poti $!

We have proposed a quantization procedure for uniformiydimigg membrane, within which we made
some progress, particularly we found non-trivial quanttaes. It would be interesting to find some rela-
tion of our quantization of membrane with M-theory (in ouopedure there is no critical dimensionality).
However, our work is a first step toward the full resolutiontloé cosmological singularity that would
require quantization of both spacetime and physicatanes.
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